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ABSTRACT Reliability and optimization are two key elements for structural design. The reliability-
based topology optimization (RBTO) is a powerful and promising methodology for finding the
optimum topologies with the uncertainties being explicitly considered, typically manifested by
the use of reliability constraints. Generally, a direct integration of reliability concept and topol-
ogy optimization may lead to computational difficulties. In view of this fact, three methodologies
have been presented in this study, including the double-loop approach (the performance measure
approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential
optimization and reliability assessment, SORA). For reliability analysis, the stochastic response
surface method (SRSM) was applied, combining with the design of experiments generated by the
sparse grid method, which has been proven as an effective and special discretization technique.
The methodologies were investigated with three numerical examples considering the uncertainties
including material properties and external loads. The optimal topologies obtained using the de-
terministic, RBTOs were compared with one another; and useful conclusions regarding validity,
accuracy and efficiency were drawn.

KEY WORDS reliability-based design optimization, topology optimization, first-order reliability
method (FORM), stochastic response surface method, sparse grid method

I. Introduction
Since the epoch-making work of Bendsøe and Kikuchi[1], a considerable development of continuous

structural topology optimization has been seen in both theories and industrial applications during the
last two decades, mainly featured by obtaining a material or design parameter distribution within a
fixed design domain that minimize/maximize the required objective function while satisfying the given
constraint[2,3]. Traditionally, the optimization process was performed in a deterministic manner, where
the optimal solution was usually located at the limits of constraint boundaries. However, in the real-life
of practical engineering design, variations can inevitably exist in geometric and material properties as
well as external loads due to the inherent uncertainty of nature. Therefore, the deterministic topology
optimization (DTO) design, without considering such input uncertainties, may not reasonably represent
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the reliability level. For this reason, the reliability-based topology optimization (RBTO) has emerged,
by means of which, optimal topologies can be achieved with the effects of uncertainties explicitly taken
into account through reliability constraints.

In general, the traditional RBTO techniques are referred to as double-loop (or nest-loop) approaches,
where the reliability constraints are transformed, so that the measurable reliability index optimization
problems can be solved by using the first-order reliability method (FORM). Two of the most popular
FORM-based approaches are the reliability index approach (RIA) and its inverse, the more efficient
performance measure approach (PMA)[4]. Maute and Frangopol[5] presented an RBTO framework that
combined material-based topology optimization and the PMA for MEMS mechanism design to take
into account the uncertainty parameters. Kim et al.[6] formulated the RBTO problems based on the
FORM, where the RIA and PMA were compared with each other. The results clearly showed that the
PMA had better convergence and efficiency than the RIA. Cho et al.[7] proposed an RBTO procedure
for the electro-thermal-compliant mechanism design, where the probabilistic constraints were evaluated
by the PMA. However, empirical evidence showed that such double-loop approaches led to substantially
high computational cost and weak convergence stability, especially when repeated evaluations of the
limit state function are involved in the virtual simulation models for different sets of design and random
variables in each design iteration. To overcome these problems, different methods aimed at simplified
and efficient formulations have been proposed for solving the RBTO problems. Kharmanda and Olhoff[8]

proposed the so-called hybrid (or concurrent) RBTO method, which was based on the simultaneous
solution of the reliability and the design optimization problems. Themajor advantage of this methodology
was that it found the global solution in a more efficient way, i.e. without additional computing cost of
the reliability evaluation. Mariana et al.[9] performed component and system RBTO using a variant of
the single loop method, which was amenable to be compatible with the existing topology optimization
software and suitable for practical applications. Nguyen et al.[10] proposed a single-loop algorithm for
system reliability-based topology optimization (SRBTO), in which the statistical dependence between
limit states was taken into account through the computation of system failure probability using the
matrix-based system reliability (MSR) method.

Application of the FORM-based approach can only be possible when the limit state function is known.
However, in many practical complex structures, the implicit relationships between the output responses
and the input data are difficult to be formulated. To overcome this difficulty, these implicit models were
replaced with explicit approximate functions formulated using the meta-modeling techniques based
on design of experiments (DOE). Yoo et al.[11] applied traditional response surface method (RSM)
and standard response surface method to construct the limit state function in RBTO. Eom et al.[12]

extended the use of standard RSM to three-dimensional structure design during the RBTO procedure,
where the central composite design (CCD) was used in DOE. It was well recognized that the reliability
analysis could be easily implemented when the RSM was applied to construct the limit state function.
However, the RSM cannot be applied in the FORM directly, because the input uncertainties are random
parameters instead of standard random variables.

Based upon the summary of reported works, in this study, three typical RBTO methodologies were
presented, implemented and tested on three numerical examples. The method of solid isotropic mi-
crostructure with penalty (SIMP) was used here for topology optimization. To evaluate the probabilistic
constraint, the FORM was employed to consider the uncertainties of material properties and external
loads. The limit state function was constructed by the stochastic response surface method (SRSM)
based on the DOE generated by using the sparse grid method, which was proven as an effective and
special discretization technique.

The paper is organized as follows. In §II, topology optimization formulations are presented, including
the deterministic topology optimization and the reliability-based topology optimization. The selected
threemethodologies covering the double-loop formulations (PMA)and the efficient decoupled approaches
(Hybrid and SORA) are briefly discussed in §III, respectively. This is followed by a description of the
SRSM and the sparse grid method in §IV. The numerical results and discussion on the design are
presented in §V. Finally, the conclusion and summary are provided in §VI.
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II. Topology Optimization Formulations
2.1. Deterministic topology optimization (DTO)

In topology optimization of continuum structures, many different solution procedures have been de-
veloped, such as the homogenization method[13], solid isotropic microstructure with penalty (SIMP)[14],
bidirectional evolutionary structural optimization (BESO)[15], and level set method (LSM)[16]. For a
detailed review on these methods, the readers are referred to the paper by Eschenauer and Olhoff[17].
In this paper, based on the SIMP, a typical formulation of DTO can be stated as

min
ρ

: C (ρ)

s.t. :

{
Gi (ρ) ≥ 0 (i = 1, . . . , m)
ρmin ≤ ρ ≤ ρmax

(1)

where ρ is the vector of design variables (i.e. the element densities) with upper bounds ρmax and lower
bounds ρmin; C is the objective function (i.e. volume fraction); Gi is the ith constraint function (i.e.
structural compliance); and m is the number of constraints.

2.2. Reliability-based topology optimization (RBTO)

In RBTO, the effects of uncertainty can be explicitly characterized by the reliability constraints.
Here, two types of variables are involved, i.e. design variables ρ and random variables X. A typical
RBTO formulation is expressed as

min
ρ

: C (ρ)

s.t. :

{
Pr [Gi (ρ, X) ≤ 0] ≤ PT

fi
(i = 1, . . . , m)

ρmin ≤ ρ ≤ ρmax

(2)

where X is the vector of random variables (i.e. loads and material properties) with the realizations noted
as x, identified by probability distributions; Gi is known as the ith limit state function or performance
function; Pr[·] is the probability operator; PT

fi
is the admissible failure probability of the ith constraint.

It should be noted that the design variables ρ are independent deterministic variables. To evaluate the
failure probability with respect to a chosen failure scenario, the failure region is defined as G(ρ, X) < 0,
and the limit state function as G(ρ, X) = 0. The failure probability Pfi for each constraint may be
obtained by evaluating the following integral:

Pfi
= Pr [Gi (ρ, X) ≤ 0] =

∫

· · ·

∫

Gi(ρ,X)≤0

fX (x) dx (3)

where fX( x) is the joint probability density function (PDF) of random vector X. In practice, it is
generally difficult or even impossible to obtain the above multidimensional integration, because the limit
state functions are sometimes provided in implicit or high nonlinear forms, even without any essential
information on the joint density function. Various analytical methods suitable for solving this integral
approximately were reviewed by Lee and Chen[18]. Among these approaches, the FORM is a particularly
favorable one because of its simplicity and efficiency. The idea of the FORM is that it transforms the
integral in the original random space into a measurable reliability index that is interpreted as the
minimum distance from the origin to the limit state function in the normalized space (u-space) with
the most probable point (MPP) being searched, as shown in Fig.1.

Using the FORM approximation, the failure probability and the allowable failure probability are
evaluated by

Pfi
≈ Φ (−βi) and PT

fi
≈ Φ

(
−βT

i

)
(4)

where Φ is the standard cumulative distribution function (CDF); βT

i
is the target reliability index for

the ith constraint; and βi is the reliability index evaluated by the distance from the origin to the MPP
in the normalized space[19]. By applying the Rosenblatt[20] or the Nataf transformations[21], random
vector X is transformed into an independent and normalized vector U (zero means, unit variance),
expressed as U = T (X), or X = T

−1(U). In the case of a normal distribution, a normalized vector U

is given by

U =
X − µx

σx

(5)
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Fig. 1. The first order reliability method (FORM).

where µx and σx are the vector of mean values and the standard deviations associated with X,
respectively. Based on the above transformation, the constraint function is further defined as

Gi (ρ, X) = Gi

(
ρ, T−1 (U)

)
= gi (ρ, U) (6)

where gi is the ith constraint in the normalized space.

III. Three Approaches for RBTO
3.1. Double-loop RBTO approach

The traditional solution of RBTO problem requires a double-loop iteration, with the outer loop being
an optimization problem in terms of the design variables ρ, and the inner loop a reliability analysis in
terms of the random variables X. The two most popular double-loop RBTO approaches are the RIA
and its inverse, the PMA. The PMA seems to be robust and efficient, since it is easier to optimize a
complex objective function subject to a simple constraint (PMA) than to optimize a simple objective
function subject to a complex constraint (RIA)[22].

By using the PMA formulation, the RBTO is expressed as

min
ρ

: C
(
ρ

(k)
)

s.t. :

{
Gp

i

(
ρ

(k), x
(k−1)
i

)
≥ 0 (i = 1, . . . , m)

ρmin ≤ ρ
(k) ≤ ρmax

(7)

where k indicates the current cycle; Gp

i
is the target performance with respect to the ith limit state

function calculated at the MPP noted as x
(k−1)
i

in the physical space, given by the transformation of

u
∗(k−1)
i

. By applying the probabilistic transformation, the MPP u
∗(k−1)
i

is evaluated by the inverse
reliability analysis in normalized space, given as

min
u

: gi

(
ρ

(k−1), u
)

s.t. : ‖u‖ =
√

uTu = βT

i

(8)

This is a special optimization problem with the spherical-equality constraint. Besides using the
general-purpose mathematical programming algorithms, the problem can be solved by some high-
efficient algorithms, such as the methods of the so-called advanced mean value (AMV), the conjugate
mean value (CMV), and the hybrid mean values (HMV). Brief overviews on such methods were presented
by Wu[23] and Grujicic[24]. The AMV method is formulated, here, simply defined as

u
(0) = 0 and u

(k+1) = −βT

i

∇ugi

(
u

(k)
)

∥
∥∇ugi

(
u(k)

)∥
∥ (9)

where ∇ugi

(
u

(k)
)

=

{
∂gi

∂u1
,

∂gi

∂u2
, · · · ,

∂gi

∂un

}T
∣
∣
∣
∣
∣
u(k)

.

Applications of the RBTO with double-loop procedure is restricted due to the high numerical cost,
especially when virtual simulation models (e.g. the finite element models) are involved.
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3.2. Decoupled RBTO approaches

The main idea of decoupled techniques is to convert the RBTO into a sequence of deterministic
topology optimization and independent reliability analysis. By means of these approaches, the relia-
bility analysis is not carried out within the topology optimization loop, but before/after the topology
optimization procedure. Therefore, the computational efficiency is improved significantly and the design
is generally updated from cycle to cycle until the convergence criterion is achieved.

3.2.1. Hybrid (or concurrent) method for RBTO

This approach was initiated by Kharmanda et al.[8], which consists of a sequence of beforehand
reliability analyses and deterministic topology optimization. At first, the chosen random variables are
modified as deterministic quantities according to the MPP obtained from the reliability index evaluation
and sensitivity analysis for the objective function with respect to the variables. Finally, using the resulting
random variables, the new reliable and optimal topology is obtained through the deterministic topology
optimization process. The so-called hybrid (or concurrent) RBTO method can be expressed as

given : xi (i = 1, · · · , m)
min

ρ
: C (ρ)

s.t. :

{
Gi (ρ) ≥ 0 (i = 1, . . . , m)
ρmin ≤ ρ ≤ ρmax

(10)

where xi is the MPP vector for the chosen random variables in the physical space with respect to the
ith limit state given by the transformation of normalized variables uT

i
, obtained from the reliability

index evaluation, given as

min
u

‖u‖ = βi =
√∑

u2
j

(j = 1, . . . , n)

s.t. : βi (u) ≥ βT
i

(11)

where n is the number of random variables with respect to the ith limit state function. Derivative of
the reliability index βi with respect to the normalized variable uj can be analytically provided by

∂βi

∂uj

=
1

2

(∑
u2

j

)
−1/2

· 2uj =
uj

βi

(12)

In the case of normal distribution, the resulting random variable xj is conveniently transformed by
using Eq.(5), where the normalized variable uj has the same sign with the corresponding gradient.

xj = mxj
+ sign

(
∂C

∂mxj

)

ujσxj
(13)

where mxj
and σxj

are the mean value and standard-deviation for the jth random variable, respectively.
Sensitivity of the objective function with respect to the chosen means of random variables can be simply
calculated using the classical finite difference approach, written as

∂C

∂mxi

=
∆C

∆mxi

=
C (mxi

+ ∆mxi
) − C (mxi

)

∆mxi

(14)

where ∆mxj
is the difference step, usually assigned as ∆mxj

=0.01mxj
. The main advantage of this

new RBTO model lies in that the resulting optimal topologies are more reliable and different than the
deterministic topologies when subject to different target reliability levels. It is noted that the limit state
function is a linear combination of the random variables, and does not have any physical significance
with respect to the failure probability of the structure.

3.2.2. Sequential optimization and reliability assessment (SORA) for RBTO

By using SORA, the RBTO model is decoupled into sequential cycles of equivalent deterministic
topology optimization, followedby confirmation of the reliability analysis[25]. In each cycle, the equivalent
deterministic topology optimization formulation is updated based on the MPP information obtained
from the reliability analysis of the previous cycle. The entire optimization process is repeated until the
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deterministic topology optimization becomes convergent and the reliability requirements are satisfied.
The SORA for RBTO can be expressed as

min
ρ

: C
(
ρ

(k)
)

s.t. :

{
Gi

(
ρ

(k), x
(k−1)
i

)
≥ 0 (i = 1, . . . , m)

ρmin ≤ ρ
(k) ≤ ρmax

(15)

where k indicates the end cycle of each deterministic topology optimization; x
k−1
i

is the MPP vector in
the physical space with respect to the ith limit state in the (k−1)th cycle, given by the transformation

of u
∗(k−1)
i

. Provided the current optimal design ρ
∗(k), the next MPP u

∗(k)
i

can be obtained via the
PMA analysis, defined as

min
u

: gi

(
ρ
∗(k), u

)

s.t. : ‖u‖ =
√

uTu = βT

i

(16)

Through this decoupling method procedure, the number of reliability analyses can be significantly
reduced as it is equal to the number of cycles. Therefore, the computational efficiency can be much
higher than the double-loop approach. What’s more, it can be easily implemented via the integration
with any traditional topology optimization software.

IV. Structural Reliability Analysis
In practice, when using the FORM, the RBTO requires explicit formulation of the limit state function.

However, in many complex structures, relationships between the output responses and the input data
usually do not exist, especially when applications of numerical methods such as the finite element analy-
sis are involved. Therefore, the metamodeling-based approaches are generally suggested in constructing
the unknown limit state function explicitly, making it convenient to use the FORM directly. When
applying the metamodeling techniques to the structural reliability analysis, two key issues should be fo-
cused on, i.e. the construction of accurate metamodeling approximations and the design of experiments.

4.1. Stochastic response surface method

The stochastic response surface method (SRSM) is one of the most widely used meta-modeling tech-
niques in reliability analysis[26,27], which extends the classical deterministic response surface methodol-
ogy to structures with uncertain inputs and response outputs. By means of the SRSM, the implicit limit
state function is approximated through a series of expansions consisting of the multi-dimensional Hermite
orthogonal polynomials of independent normalized random variables with undetermined coefficients,
given as

g (u) = a0Γ0 +
d∑

i1=1

ai1Γ1 (ui1) +
d∑

i1=1

i1∑

i2=1

ai1i2Γ2 (ui1 , ui2) +
d∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3Γ3 (ui1 , ui2 , ui3) + · · ·

(17)
where {ui}

∞

i=1 is a set of independent normalized random variables; a0, ai1, . . ., are deterministic coeffi-
cients to be estimated; g(u) is the approximated limit state function; and Γi are the Hermite polynomials
of degree p. For example, a two dimensional SRSM with second order can be expressed as

g (u) = a0 + a1u1 + a2u2 + a3

(
u2

1 − 1
)

+ a4 (u1u2) + a5

(
u2

2 − 1
)

(18)

Based on a set of sampling points N and the corresponding real function evaluations ḡ (u), the coefficients
ai can be estimated by minimizing the following residual error function:

min J (a) =

N∑

i=1

ε2
i =

N∑

i=1

(ḡ (ui) − g (ui))
2

(19)

Applying the least square method, the analytical solution can be obtained via the matrix approach as
follows:

a =
(
Γ

T
Γ

)
−1

Γ
T
ḡ (20)
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where ḡ is the vector of limit state functions at sampling points; and Γ is the matrix of bases at sampling
points, defined as

Γa = ḡ ⇒








Γ0 (u1) Γ1 (u1) · · · ΓP (u1)
Γ0 (u2) Γ1 (u2) · · · ΓP (u2)

...
...

. . .
...

Γ0 (uN) Γ1 (uN) · · · ΓP (uN)













a0

a1

...
aP






=






ḡ (u1)
ḡ (u2)

...
ḡ (uN)






(21)

where (P+1) is the number of bases. In order to achieve rapid convergence with an acceptable level
of accuracy being maintained, the design of experiment (DOE) to generate suitable sampling points
becomes an important issue in the SRSM.

4.2. Sparse grid method

The sparse grid method is a special discretization technique, which can be traced back to the Smolyak
algorithm[28]. It is based on the hierarchical basis, which is a representation of a discrete function space
equivalent to the conventional nodal basis, and a sparse tensor product construction[29]. Compared
with the support nodes obtained via a ‘full grid’ algorithm, much less scenarios are constructed through
the use of a certain combination of special tensor products in the Smolyak algorithm. The readers
are referred to the paper by Xiong[30] and the references therein for more information. In this study,
the sparse grid method was proposed to generate sampling points for the SRSM construction, which
provided an attractive experimental design scheme.

Let U i
1 denote the one-dimension support nodes, which can be obtained using the univariate quadra-

ture algorithms, such as the Newton-Cotes, Gauss quadrature, Clenshaw-Curtis rules[31], etc. Thus the
d-dimensional sampling points Ud with k levels (k ≥0) generated by the Smolyak algorithm, a tensor
product rule specific to spares grids, are given as:

U
k

d
= ∪

q−d+1≤|i|≤q

(
U i1 ⊗ · · · ⊗ U id

)
(22)

where q = k + d; and |i| denotes the summation of multi-indices (|i| = i1 + . . . + id) which is intelli-
gently bounded such that the tensor products can exclude the points from full grids without losing the
approximation accuracy.

In this paper, the Chebyshev-Gauss-Lobatto type sparse grid HCC is constructed[32]. Here, the
support points ui

j
comprising the set of support nodes U

i = {ui
1, . . . , u

i

d
} are defined as

ui

j
=

{
−cos [π (j − 1) / (mi − 1)] + 1

2
for j = 1, · · · , mi, if mi > 1

0.5 if mi = 1
(23)

where, mi =

{
1 if i = 1
2i−1 + 1 if i > 1

Examples of the two- and three-dimensional support nodes of Smolyak sparse grid based on the
Chebyshev-Gauss-Lobatto rule with level l = 2 are shown in Fig.2.

V. Numerical Examples
In this section, three examples are demonstrated by comparing the results obtained using the DTO

with those using the RBTO, including the double-loop formulations (PMA), and the decoupled ap-
proaches (Hybrid and SORA). The standard SIMP method has been implemented in a MATLAB setting
for all these numerical examples, which are solved using the method of moving Asymptotes (MMA) with
standard settings[33]. To ensure the existence of solutions, the basic mesh-independent density filtering
is used to eliminate the appearance of numerical instabilities[34], such as the checkerboard pattern and
mesh dependency. The procedure of topology optimization is conducted on a Window 7 workstation
(Intel Xeon (R) E5440, 2.83GHz, 4.00GB RAM, 8 cores).
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Fig. 2. The Chebyshev-Gauss-Lobatto type sparse grid.

Fig. 3. Design domain and loading conditions.

Table 1. Geometrical and material properties and loading condition, uncertainties marked by mean values

Horizontal length H = 100 mm
Geometry Vertical length V = 15 mm

Thickness t = 1 mm

Young’s modulus E0 = 7.1 × 104 MPa
Material property

Poisson’s ratio ν = 0.33

Loading condition External load F = 100 N

5.1. A simple supported beam

In the first example, a simple supported beam with a single load case, as shown in Fig.3, was optimized
to minimize the volume fraction under a vertical displacement constraint being enforced at the loading
point. The geometrical and material properties, as well as the loading condition are listed in Table 1.
The design domain was discretized by 1500 (100×15) four-node bi-linear finite elements.

The selected two random variables were Young’s modulus E0 and the magnitude of external load
F , which were assumed to obey normal distributions with a variance of 5% from the mean values. The
limit state function was defined as G = δmax− δ with δ being the actual vertical displacement and δmax

the maximum allowable displacement assigned as 0.142 mm. The target reliability index was assumed
to be 3.0 for displacement constraint.

Fig. 4. Optimized design obtained from various approaches.
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Table 2. Comparison of topology optimization design results

Design point
Approach Volume fraction (%) Reliability index (β) Computing time (s)

E0 (MPa) F (N)

DTO 30.87 1.5426×10−5 28.89 - -

RBTO

PMA 40.37 3.000 143.98 6.28×104 109.61
Hybrid 40.27 2.9687 39.31 6.49×104 108.66
SORA 40.37 3.000 49.50 6.28×104 109.61

Table 3. Approximated limit state function constructed by SRSM in PMA

Iteration a0 a1 a2 a3 a4 a5

1 −1.4673 0.1257 −0.1247 −0.0063 0.0063 −0.0000
2 −0.2534 0.0638 −0.0633 −0.0032 0.0032 −0.0000
...

...
...

...
...

...
...

53 0.1907 0.0412 −0.0409 −0.0021 0.0021 −0.0000
54 0.1907 0.0412 −0.0409 −0.0021 0.0021 −0.0000

Approximated limit state function:
g(u) = a0 + a1u1 + a2u2 + a3(u

2

1 − 1) + a4u1u2 + a5(u
2

2 − 1)

Table 4. Approximated limit state function constructed by SRSM in SORA

Iteration a0 a1 a2 a3 a4 a5

1 −0.0026 0.0511 −0.0507 −0.0026 0.0026 −0.0000
2 0.1907 0.0412 −0.0409 −0.0021 0.0021 −0.0000

The optimal topologies are presented in Fig.4, with the corresponding results summarized in Table
2, including volume fraction, reliability index, computing time and design point. The reliability index
was calculated using the standard 100,000 Monte Carlo simulations. The coefficients of SRSM at some
iteration during the PMA and SORA procedures are given in Tables 3 and 4, respectively, where u1

and u2 are the normalized values of E0 and F , respectively.

5.2. An L-shaped structure

In this example, an L-shaped structure with two load cases, shown in Fig.5, was optimized to minimize
the volume fraction under the compliance constraint. The geometrical and material properties, as well
as the loading conditions are summarized in Table 5. The design domain was meshed with 3600 (60×60)
four-node elements.

Fig. 5. Design domain and boundary conditions.

The three random variables were selected as Young’s modulus E0 and the magnitudes of external
loads Fx and Fy, which were assumed to follow normal distributions with a variance of 5% from the
mean values. The limit state function was defined as G = cmax − c, with c being the sum of compliance
associated with the two load cases and cmax the maximum allowable compliance assigned as 40 N·mm.
The target reliability index was assumed to be 3.0 for compliance constraint.
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Table 5. Geometrical and material properties and loading conditions, uncertainties marked by mean values

Geometry
Length L = 60 mm

Thickness t = 1 mm

Material property
Young’s modulus E0 = 7.1 × 104 MPa
Poisson’s ratio ν = 0.33

Loading conditions
Load case I Fx = 150 N
Load case II Fy = 100 N

In Fig.6, the optimal topologies are shown, with the results summarized in Table 6, including volume
fraction, reliability index, computing time and design point. The reliability index was calculated using
the standard Monte Carlo simulations. The coefficient of SRSM during the PMA and SORA procedures
at some iteration are given in Tables 7 and 8, respectively, where u1, u2 and u3 are the normalized
values of E0, Fx and Fy, respectively.

Fig. 6. Optimized design obtained from various approaches.

Table 6. Comparison of topology optimization design results

Volume Reliability Computing Design point
Approach

fraction (%) index (β) time (s) E0 (MPa) Fx (N) Fy (N)

DTO 25.52 1.7801 × 10−5 960.78 - - -

RBTO

PMA 32.09 3.000 3431.23 6.42×104 162.79 107.79
Hybrid 32.07 2.9725 158.20 6.49×104 162.99 108.66
SORA 32.09 3.000 1509.29 6.42×104 162.79 107.79
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Table 7. Approximated limit state function constructed by SRSM in PMA

Iteration a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 −1.8709 0.1472 −0.1404 −0.1476 −0.0074 0.0071 −0.0035 0.0000 −0.0037 0.0075
2 −0.3074 0.0670 −0.0581 −0.0730 −0.0034 0.0029 −0.0015 0.0000 −0.0018 0.0037
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

73 0.2234 0.0398 −0.0373 −0.0406 −0.0020 0.0019 −0.0009 0.0000 −0.0010 0.0021
74 0.2234 0.0398 −0.0373 −0.0406 −0.0020 0.0019 −0.0009 0.0000 −0.0010 0.0021

Approximated limit state function:
g(u) = a0 + a1u1 + a2u2 + a3u3 + a4(u2

1
− 1) + a5u1u2 + a6(u2

2
− 1) + a7u2u3 + a8(u2

3
− 1) + a9u1u3

Table 8. Approximated limit state function constructed by SRSM in SORA

Iteration a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 −0.0050 0.0515 −0.0473 −0.0536 −0.0026 0.0024 −0.0012 0.0000 −0.0013 0.0027
2 0.2233 0.0398 −0.0375 −0.0405 −0.0020 0.0019 −0.0009 −0.0000 −0.0010 0.0021
3 0.2234 0.0398 −0.0373 −0.0406 −0.0020 0.0019 −0.0009 −0.0000 −0.0010 0.0021

5.3. A multiple load bridge problem

A multiple load bridge problemas shown in Fig.7 was optimized to minimize the volume fractionunder
the compliance constraint. The geometrical and material properties, as well as the loading conditions
are summarized in Table 9. Three load cases were considered here. The design domain was meshed with
5400 (90×60) four-node elements.

Fig. 7. Design domain and boundary conditions.

Table 9. Geometrical and material properties and loading conditions, uncertainties marked by mean values

Horizontal length H = 90 mm
Geometry Vertical length V = 60 mm

Thickness t = 1 mm

Young’s modulus E0 = 7.1 × 104 MPa
Material property

Poisson’s ratio ν = 0.33

Load case I F1 = 100 N
Loading condition Load case II F2 = 100 N

Load case III F3 = 100 N

The selected four random variables were Young’s modulus E0 and the magnitudes of loads F1, F2,
F3, which were assumed to follow normal distributions with a variance of 10% from the mean values.
The limit state function was defined as G = cmax − c, with c being the sum of compliance for the three
load cases and cmax the maximum allowable compliance assigned as 7 N·mm. The target reliability
index was assumed to be 3.0 for compliance constraint.
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The optimal topologies are shown in Fig.8, and the corresponding results are compared in Table 10,
including volume fraction, reliability index, computing time and design point. The reliability index was
calculated using the Monte Carlo simulations. And the coefficient of SRSM at some iteration during
the PMA and SORA procedures are given in Tables 11 and 12, respectively, where u1, u2, u3 and u4

are the normalized values of E0, F1, F2 and F3, respectively.

Fig. 8. Optimized design obtained from various approaches.

Table 10. Comparison of topology optimization design results

Volume Reliability Computing Design point
Approach

fraction (%) index (β) time (min) E0 (MPa) F1 (N) F2 (N) F3 (N)

DTO 20.12 2.0201×10−5 31.91 - - -

RBTO

PMA 25.42 3.000 662.22 5.51×104 115.83 108.61 108.61
Hybrid 24.42 2.9503 35.84 5.87×104 117.32 117.32 117.32
SORA 25.42 3.000 147.16 5.51×104 115.83 108.61 108.61

Table 11. Approximated limit state function constructed by SRSM in PMA

Iteration a0 a1 a2 a3 a4 a5 a6 a7 a8

1 −2.6915 0.4058 −0.2344 −0.2541 −0.2541 −0.0409 0.0251 −0.0117 −0.0000
2 −0.5993 0.1758 −0.1635 −0.0791 −0.0791 −0.0177 0.0175 −0.0082 −0.0000
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
154 0.1610 0.0922 −0.0786 −0.0451 −0.0451 −0.0093 0.0084 −0.0039 0.0000
155 0.1610 0.0922 −0.0786 −0.0451 −0.0451 −0.0093 0.0084 −0.0039 0.0000

Iteration a9 a10 a11 a12 a13 a14

1 −0.0127 −0.0000 −0.0127 0.0272 0.0272 −0.0000
2 −0.0039 0.0000 −0.0039 0.0085 0.0085 −0.0000
...

...
...

...
...

...
...

154 −0.0022 −0.0000 −0.0022 0.0048 0.0048 0.0000
155 −0.0022 −0.0000 −0.0022 0.0048 0.0048 0.0000

Approximated limit state function:
g(u) = a0 + a1u1 + a2u2 + a3u3 + a4u4 + a5(u2

1
− 1) + a6u1u2 + a7(u2

2
− 1) + a8u2u3

+a9(a2

3
− 1) + a10u3u4 + a11(u2

4
− 1) + a12u1u4 + a13u1u3 + a14u2u4

5.4. Comparative performances of the three RBTO approaches

From the comparison of the results, the DTO yields optimal topologies with low reliability levels,
where uncertainties are not taken into account. For the RBTO, more volume material is required to
achieve the target reliability index; and by comparison with the DTO, a distinct difference in topology
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Table 12. Approximated limit state function constructed by SRSM in SORA

Iteration a0 a1 a2 a3 a4 a5 a6 a7 a8

1 −0.0204 0.1122 −0.1009 −0.0522 −0.0522 −0.0113 0.0108 −0.0051 −0.0000
2 0.1550 0.0929 −0.0798 −0.0451 −0.0451 −0.0094 0.0085 −0.0040 −0.0000
3 0.1512 0.0933 −0.0794 −0.0457 −0.0457 −0.0094 0.0085 −0.0040 −0.0000
4 0.1610 0.0922 −0.0786 −0.0451 −0.0451 −0.0093 0.0084 −0.0039 0.0000

Iteration a9 a10 a11 a12 a13 a14

1 −0.0026 −0.0000 −0.0026 0.0056 0.0056 −0.0000
2 −0.0022 0.0000 −0.0022 0.0048 0.0048 −0.0000
3 −0.0023 −0.0000 −0.0023 0.0049 0.0049 −0.0000
4 −0.0022 −0.0000 −0.0022 0.0048 0.0048 0.0000

configuration may emerge, which can be found in all the three examples. In the example of the simple
supported beam, the reliability level for the optimum of DTO is nearly 0, and the RBTO uses up to
about 9% more material in design domain than the DTO to achieve the target reliability level. It is
also observed that higher computation cost is required by the RBTO due to the reliability analysis on
exploring the design point, especially for the PMA and SORA, meaning that reliability enhancement is
inevitably accompanied with the sacrifice of computational expense. It can be demonstrated that the
reliability concept is necessary to be incorporated into the topology optimization when considering the
uncertainties, such as external loads and material properties.

Results obtained from the three examples have demonstrated that the three typical RBTO ap-
proaches have similar optimal topologies. This is not surprising because the proposed methods are
all implemented based on the reliability theory. For comparison purpose, there exists a considerable
difference in computational costs, which is mainly dependent on the number of reliability analyses. The
computational effort for PMA is very high due to the multiplication of the iteration numbers in both
topology optimization and reliability analysis loops. The reliability analysis for SORA is only conducted
after the equivalent topology optimization procedure, which is equal to the number of the entire cycles.
However, the Hybrid only has one reliability analysis loop at the beginning of the procedure where
the limit state function is predetermined as a linear combination of the random variables. Therefore,
the Hybrid is more efficient than the PMA and SORA. But the PMA and SORA are superior to the
Hybrid in view of the computational accuracy, for the Hybrid does not have any physical significance
with respect to the failure probability of the structure. It can be seen from the L-shaped structure
problem that, computing time for the SORA is 1509.29 s corresponding to the number of reliability
analyses being significantly reduced to 3, compared with that of up to 3431.23 s with 171 times of
reliability analysis for the PMA. Especially, the Hybrid is even more efficient than the DTO when the
reliability analysis is excluded from the entire RBTO procedure for auxiliary implementation. It is also
demonstrated from the results that the reliability level of the Hybrid is slightly lower than those of the
PMA and SORA reaching up to 3.0 through the validation using Monte Carlo Simulation.

Results presented herein have also shown that, the SRSM with sparse grid method is capable of
producing an efficient reliability analysis in the RBTO, where the limit state function is approximated
using the SRSM, and the reasonable sampling points for the design of experiments are generated using
the sparse grid method. For the example of the multiple load bridge problem, the limit state function
involving the relationship between the structural compliance and uncertainty parameters are clearly
exhibited during the PMA and SORA procedures. It can be clearly observed that the final coefficients
of SRSM for the PMA and SORA have the same values in the construction of the limit state function,
exploring the identical design points.

VI. Conclusion
This paper integrates the reliability concept into the SIMP-based topology optimization to solve the

RBTO problems. Specifically, three selected typical RBTO methodologies are implemented, discussed
and tested upon three numerical examples, including the double-loop formulation (PMA) and the
decoupled approaches (Hybrid and SORA). The meta-modeling technique is proposed to construct the
implicit limit state function for reliability analysis. From the comparison of the numerical results, the
following conclusions are drawn:
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(1) The optimal topologies obtained using the proposed RBTO methods are more reliable than that
using the DTO; and the RBTO may exhibit manifest differences in topologies. It is demonstrated that
the reliability concept is necessary to be integrated into the topology optimization when taking into
account the effect of uncertainty parameters such as material properties and external loads.

(2) The double loop approach (PMA) is easy to implement, but the computational cost is unaffordable
for complex structures due to the multiplication of the iteration numbers in both topology optimization
and reliability analysis loops. Although specific treatment is required, the decoupled approaches (Hybrid
and SORA) are recommended for their efficiency and small loss of accuracy.

(3) The SRSM combined with the sparse grid method can be used to conduct an efficient reliability
analysis for the RBTO, where the limit state function is explicitly approximated by the SRSM through
a series of expansions consisting of the multi-dimensional Hermite orthogonal polynomials with the
design of experiments generated using the sparse grid method.

(4) Future research on implementation and testing of the proposed RBTO methods is still suggested.
Onepossible extension includes the design of compliantmechanisms andmulti-physics problems.Another
interesting point of possibility is applications of various metamodeling methods in the RBTO, such as
the Kriging and support vector machine.
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