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ABSTRACT A circular thin plate is proposed for vibration attenuation, which is attached al-
ternately by annular piezoelectric unimorphs with resonant shunt circuits. Two kinds of equal
frequency resonant shunt circuits are designed to achieve an integrated locally resonant (LR)
band gap (BG) with a much smaller transmission factor: (1) the structure is arrayed periodically
while the resonant shunt circuits are aperiodic; (2) the resonant shunt circuits are periodic while
the structure is aperiodic. The transmission factor curve is calculated, which is validated by the
finite element method. Dependences of the LR BG performance upon the geometric and electric
parameters are also analyzed.
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I. Introduction
In recent years, there have been growing efforts to the study of phononic crystals (PCs). A PC is a

composite consisting of two or more materials arranged periodically. The elastic waves can be modulated
when propagating in the PCs. Consequently, the vibration and waves can be isolated or enormously
attenuated in some frequency ranges, which are called band gaps (BGs)[1,2]. The BGs can be divided
into two categories according to generation mechanism: Bragg scattering and locally resonant (LR)[3].
It implies that the PCs have good potential for application in vibration absorption or reduction for the
machines.

Nevertheless, low-frequency vibration is always a hot and difficult issue in vibration isolation or
absorption for the machines by the use of the PCs. There are at least three reasons. First of all, most
environmental noise and mechanical vibration focus in low frequency range. Next, to bring about low-
frequency Bragg BG means that a PC structure should have a big size, because the spatial modulation
of elasticity must be of the same order as the wavelength. In other words, only high frequency Bragg
BGs can be brought about by a PC in normal size, which are far beyond the vibration frequency. In
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addition, although low-frequency LR BGs can be produced by the PCs with small dimensions, each
unit cell of the conventional LR PCs consists of a heavy core with a soft coat, which is equivalent to a
mass-spring oscillator. Thus a lower resonance frequency can just be obtained by a heavier PC[3–5]. As
a result, designing smaller and lighter PCs with low-frequency BGs is an ideal way to meet the demand
of vibration isolation or absorption for the machines.

However, heavy mass-spring structures of the LR PCs can be replaced by light inductor-capacitor
oscillators, which are composed of piezoelectric patches connected independently by a resonant shunt
circuit. Beams attached by periodic arrays of piezoelectric patches connected by shunt circuits were
studied to control the propagation of vibration[6–9]. These studies revealed that locally resonant BGs
could be obtained when the same resonant shunt circuits were adopted. Besides, another significant
advantage of the PCs with piezoelectric materials was found that their BGs could be adjusted by
tuning circuits and their parameters synchronously[10–15]. Aperiodicity was also introduced in the
shunt circuit parameters[16]. Recently, vibration of a plate was suppressed by periodic arrays of hybrid-
shunted piezoelectric patches connected by resonant resistive/inductive circuit and negative impedance
converter, respectively. An attenuation band with width of 500 Hz and attenuation rate of 19 dB
was obtained[17]. In a study of a thin rectangular plate with piezoelectric patches, the location and
attenuation constants of the Bragg gap was tuned by resistive shunts, while the internal resonances of
resonant shunt system split the dispersion curves and formed a LR BG[18]. Apparently, the PCs with
beam and rectangular plate structure have been extensively studied.

It is crucial to control and isolate micro vibration for precision semiconductor manufacturing equip-
ment like lithography[19], highly precise instruments such as atomic force microscopes, and machine
tools for ultra-high precision machining[20]. An ultra-precision motion platform (UPMP) is an essential
component of all the above-mentioned mechanical devices. A circular plate is commonly chosen as a
structure of the UPMP since it owns better dynamic characteristics than a rectangular plate, espe-
cially for the rotary motion. Accordingly, isolating vibration for circular plate has aroused increasing
interest[21,22]. The piezoelectric bimorphs are often introduced into a thin circular plate. It is because the
plate has a planar neutral layer and its governing equation for the transverse vibration meets the Bessel
equation in cylindrical coordinate. However, usually a smooth surface should be owned by the UPMP
in order to facilitate the installation of the workpiece. Thus, only one of the two surfaces of the circular
plate can be attached by piezoelectric patches. In an asymmetrically laminated plate with elastic and
piezoelectric layers, the neutral layer is unknown in advance. The neutral layer is no longer planar and
is also load dependent. Therefore, one cannot place axes on the neutral curve as a reference[23].

Accordingly, a thin circular plate periodically attached by annular piezoelectric unimorphs is con-
sidered. The emphasis is placed on studying the isolation on vertical vibration coming from the side
of the circular plate. The electric field in the flexural piezoelectric unimorphs is analyzed using precise
electric field method by taking into account a distribution of the electric field over the thickness, not
as a constant[24].

It can be assumed that the plate consists of cells arrayed periodically in the radius direction. However,
different cells have different equivalent capacitances since each piezoelectric unimorph has a distinct
electrode area though with the same width. It is because that the electrode area of piezoelectric unimorph
increases with radius. That is to say, the plate is not a periodic structure as usual, and the Bloch theorem
is not applicable here. Considering its inherent aperiodicity, the frequency response function (FRF)
would be an effective tool to describe BG for a PC of limited size structure in practical application.

To achieve a LR BG, one should make all shunt circuits own an equal resonance frequency. There are
two methods for two different scenarios. On one hand, if the plate arrayed periodically by piezoelectric
patches of the same width, one should adopt different inductances in shunt circuits due to the variation
of capacitance in cells. On the other hand, if an equal inductance is used in resonant shunt circuits of
all unit cells, one should make the piezoelectric unimorphs own an equal equivalent capacitance. We
mainly discuss the first method since these two methods have much similarity in analysis.

The paper is organized in four sections. This introduction (§I) is followed by the formulation of the
model of the circular thin plate attached with piezoelectric unimorphs (§II). Numerical examples are
given in §III where the features of LR BG are discussed. The effects of model parameters on the BGs
of the plate are also illustrated in this section. Finally, a summary is presented and some conclusions
are drawn in §IV.
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II. Configuration and Formulation of the Model
As illustrated in Fig.1, the periodic circular thin plate model is composed of N unit cells. Each

unit cell is divided into two parts based on whether or not it has a piezoelectric unimorph: Part α
is composed of pure elastic rings which are only made of metallic material, and Part β consists of a
piezoelectric unimorph and a metal layer with the thicknesses of hp and hm respectively. R0 , R and h
denote the inner radius, outer radius and thickness of the whole plate, respectively. The thickness and
width of a unit cell satisfy: h = hp +hm and a = a1 + a2, where a1 and a2 are the widths of Part α and
Part β respectively. The plate is simply supported at the edge by a fixture, which vibrates along the
vertical direction harmonically with amplitude A at a certain frequency ω, and a concentrated mass
m0 is attached in the middle of the plate. Each piezoelectric unimorph is polarized along the z axis,
with electrodes on its upper and lower surfaces connected by a circuit consisting of an inductor and a
resistor. The circuit impedance of the nth unit cell is denoted by Z(n).

Fig. 1. Cross section of the plate.

2.1. Part α

For Part α, since the deflection is much smaller than the thickness of the plate and R − R0 ≫ h,
and the bending of this Part is axisymmetric about the z axis, the deflection uz has the following form:

uz = uz (r, t) (1)

and the nontrivial components of strain are

Srr = −zuz,rr , Sθθ = −

z

r
uz,r (2)

where the convention that a comma followed by an index denotes the partial derivative of the corre-
sponding variable applies.

The constitutive equations of the isotropic metallic material are

Trr = (λ + 2G)Srr + λSθθ + λSzz

Tθθ = λSrr + (λ + 2G)Sθθ + λSzz

Tzz = λSrr + λSθθ + (λ + 2G)Szz

(3)

where the Lame’s constants λ = EµI/(1 + µI) (1 − 2µI), and G = E/2 (1 + µI); E and µI are Young’s
modulus and Poisson’s ratio of the metallic material, respectively. For a thin plate, Eq.(3) can be reduced
by performing stress relaxation, i.e. Tzz = 0, as

Trr = YI (Srr + µISθθ)
Tθθ = YI (Sθθ + µISrr)

(4)
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where YI = E
/(

1 − µ2
I

)

. The bending moments and shearing force per unit length can be obtained from
Eqs.(2) and (4) as

Mr =

∫ h/2

−h/2

Trrzdz = −KI

(

uz,rr +
µI

r
uz,r

)

(5)

Mθ =

∫ h/2

−h/2

Tθθzdz = −KI

(

µIuz,rr +
1

r
uz,r

)

(6)

Qr =

∫ h/2

−h/2

Trzdz = Mr,r +
Mr − Mθ

r
= −KI

(

∇

2uz

)

,r
(7)

where KI = YIh
3
/

12, and the Laplacian operation ∇

2 = ∂2
/

∂r2 + ∂/(r∂r).
The equation of motion of elastic rings is

Qr,r +
Qr

r
= mIüz (8)

where mI = ρIh is the mass per unit area of the elastic material, and ρI is the density of the elastic
material. A superimposed dot represents the derivative with respect to time. Substituting Eq.(7) into
Eq.(8) yields

−KI∇
2
∇

2uz = mIüz (9)

2.2. Part β

For the asymmetrically laminated Part β with elastic and piezoelectric layers, we introduce a middle
plane instead of a neutral axis[23]. The axes x1 and x2 of a coordinate (x1, x2, x3) are placed in the
geometric middle plane. Then the displacement field is approximated as

u1 (x1, x2, x3, t) = u
(0)
1 (x1, x2, t) − x3u3,1

u2 (x1, x2, x3, t) = u
(0)
2 (x1, x2, t) − x3u3,2

u3 (x1, x2, x3, t) = u3 (x1, x2, t)

(10)

where u
(0)
1 and u

(0)
2 are the middle surface extensional displacements, and u3 is the middle surface

flexural displacement. The corresponding strains are

S1 = u
(0)
1,1 − x3u3,11, S2 = u

(0)
2,2 − x3u3,22

S12 = u
(0)
1,2 + u

(0)
2,1 − 2x3u3,12

(11)

Letting the cylindrical coordinate (r, θ, z) correspond to (x1, x2, x3), since the deformation of the

plate is axisymmetric about the z axis, then u
(0)
θ = 0 and ∂/∂θ = 0. In the cylindrical coordinate

system, Eq.(11) can be recast as

Srr = u(0)
r,r − zuz,rr, Sθθ = −

z

r
uz,r, Srθ = 0 (12)

The constitutive equations for the piezoelectric material are[25]

Tij = cijklSkl − ekijEk

Di = eiklSkl + εikEk
(13)

where Tij and Skl are the mechanical stress and strain components, respectively, Ek is the electric field
component, and Di is the electric displacement component. Also, cijkl , ekij and εki denote the elastic,
piezoelectric and dielectric constants, respectively.

The electric field, corresponding to the electrodes configuration inFig.1, has the following components:

E1 = E2 = 0, Ez = E3 = −ϕ,3 (14)

where ϕ is the electric potential across the piezoelectric layers. Trz, Tzθ and Trθ can be neglected by
considering axially symmetrical deflection of the thin plate.
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From Eqs.(13) and (14), the constitutive equations of Eq.(13) of the piezoelectric material poled in
the z axis can be reduced to

Trr = c11Srr + c12Sθθ + c13Szz − e31Ez

Tθθ = c12Srr + c11Sθθ + c13Szz − e31Ez

Tzz = c13Srr + c13Sθθ + c33Szz − e33Ez

Dz = D3 = e31Srr + e31Sθθ + e33Szz + ε33Ez

(15)

Performing stress relaxation, i.e. Tzz = 0, on Eq.(15) yields

Trr = c̄11Srr + c̄12Sθθ − ē31Ez

Tθθ = c̄12Srr + c̄11Sθθ − ē31Ez

Dz = ē31(Srr + Sθθ) + ε̄33Ez

(16)

where c̄11 = c11 − c2
13

/

c33, c̄12 = c12 − c2
13

/

c33, ē31 = e31 − e33c13/c33, and ε̄33 = ε33 + e2
33

/

c33. The
electric displacement satisfies the Gaussian theorem of electrostatics

Dz,z = 0 (17)

From Eqs.(12), (14)3, (16)3 and (17), the electric field component E3 and electric potential of the
piezoelectric unimorph can be solved as

Ez =
ē31

ε̄33

(

uz,rr +
uz,r

r

)

z −

ē31

ε̄33
u(0)

r,r + c1

ϕ = −

∫

Ezdz = −

ē31

2ε̄33

(

uz,rr +
uz,r

r

)

z2 +

(

ē31

ε̄33
u(0)

r,r − c1

)

z + c2

(18)

where c1 and c1 are the integration constants independent of coordinate x3. For piezoelectric unimorphs,
the electrodes of z = (hm − hp)/2 are regarded as zero voltage reference, i.e. ϕ [(hm − hp)/2] = 0, thus
the voltage on the electrodes of z = (hm + hp)/2 is viewed as the output voltage, i.e. ϕ [(hm + hp)/2] = V .
From these two electric boundary conditions and Eq.(18)2, c1 and c2 can be solved as

c1 = −

V

hp
−

hm

2

ē31

ε̄33

(

uz,rr +
uz,r

r

)

+
ē31

ε̄33
u(0)

r,r

c2 = −

hm − hp

2

V

hp
−

h2
m − h2

p

8

ē31

ε̄33

(

uz,rr +
uz,r

r

)

(19)

Therefore, the precise electric field and electric displacement of piezoelectric unimorphs can be written
as

Ez = −

V

hp
+

ē31

ε̄33

(

uz,rr +
uz,r

r

)

(

z −

hm

2

)

Dz = −ε̄33
V

hp
+ ē31u

(0)
r,r −

ē31hm

2

(

uz,rr +
uz,r

r

)
(20)

The axial extensional force, the bending moments and the shearing force per unit length can be calculated
from the combination of Eqs.(4), (12), (16) and (20) as

Nr =

∫ h/2

−h/2

Trrdz = ē31V + (YIhm + c̄11hp)u(0)
r,r

+
YIhmhp

2

(

uz,rr +
µI

r
uz,r

)

−

1

2
c̄11hmhp

(

uz,rr +
µII

r
uz,r

)

(21)

where µII = c̄12/c̄11. There are no radial load and radial constrain of the plate, therefore, the radial
tension force satisfies

Nr = 0 (22)

Then from Eqs.(21) and (22), we obtain

u(0)
r,r = −k1V − k2

(

uz,rr +
µI

r
uz,r

)

+ k3

(

uz,rr +
µII

r
uz,r

)

(23)
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where

k1 =
ē31

ξ
, k2 =

YIhmhp

2ξ
, k3 =

c̄11hmhp

2ξ
, ξ = c̄11hp + YIhm

The moments and shearing force are

Mr =

∫ h/2

−h/2

Trrzdz

=
1

2
hmē31V + d1u

(0)
r,r − d2

(

uz,rr +
µI

r
uz,r

)

− d3

(

uz,rr +
µII

r
uz,r

)

− d4

(

uz,rr +
uz,r

r

)

(24)

Mθ =

∫ h/2

−h/2

Tθθzdz

=
1

2
V hmē31 + d5u

(0)
r,r − d2

(

µIuz,rr +
uz,r

r

)

− d3

(

µIIuz,rr +
uz,r

r

)

− d4

(

uz,rr +
uz,r

r

)

(25)

Qr =

∫ h/2

−h/2

Trzdz = Mr,r +
Mr − Mθ

r

= − (d2 + d3 + d4)
(

∇

2uz

)

,r
+ d5

[

k1

r
V + k2

(µI

r2
uz,r +

uz,rr

r

)

− k3

(µII

r2
uz,r +

uz,rr

r

)

]

−d1

[

k1

r
V + k2

(

uz,rrr +
1 + µI

r
uz,rr

)

− k3

(

uz,rrr +
1 + µII

r
uz,rr

)]

(26)

where

d1 =
hmhp

2
(c̄11 − YI) , d2 = YI

(

h3
m

12
+

1

4
hmh2

p

)

, d3 = c̄11

(

h3
p

12
+

1

4
h2

mhp

)

d4 =
h3

pē2
31

12ε̄33
, d5 =

hmhp

2
(µIIc̄11 − µIYI)

The equation of motion of Part β is

Qr,r +
Qr

r
= mIIüz (27)

where mII = ρIhm + ρIIhp is the mass per unit area of Part β and ρII is the density of the piezoelectric
material.

Substituting Eq.(26) into Eq.(27) yields

[f1 − (d2 + d3 + d4)] uz,rrrr + [f1 − (d2 + d3 + d4)]
2

r
uz,rrr

− [f2 − (d2 + d3 + d4)]
1

r2
uz,rr + [f2 − (d2 + d3 + d4)]

1

r3
uz,r = mIIüz

(28)

where

f1 =
h2

mh2
p (YI − c̄11)

2

4ξ
, f2 =

h2
mh2

p (µIYI − µIIc̄11)
2

4ξ

Equation (28) is a differential equation with variable coefficients, and it is difficult to obtain its
analytic solution. Therefore, we adopt an approximate calculation method[26]. At first, Part β in an
arbitrary nth unit cell is equally divided into N1 infinitesimal elements along the radial direction. In
each element, the radius of midpoint is approximately taken as the value of r in the coefficients since
the elements size is sufficiently small to make the solution converge. Thus Eq.(28) is transformed into
a differential equation with constant coefficients, which make it easy to obtain the solution.
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2.3. Equal frequency circuit

The charge on the electrode of the piezoelectric unimorph of the nth unit cell is

Q(n)
e =

N1
∑

k=1

∫

Ak

D3 (z = h/2) dAk (29)

where the superscript (n) denotes the nth unit cell, and Ak is the area of the kth infinitesimal element
in the nth unit cell. The current flowing out of the electrode is

I(n) = −Q̇(n)
e (30)

The output voltage and current meet the Ohm’s law

I(n) =
V (n)

Z(n)
(31)

where Z(n) = iωL(n) + R(n), with the imaginary unit ‘i =
√

−1’, since the circuit of the nth unit cell
is composed of an inductor L(n) and a resistor R(n).

For an arbitrary nth unit cell, the equivalent static capacitance C
(n)
p of the piezoelectric unimorph

and the circuit inductor L(n) constitute an electromagnetic oscillator. The resonant frequency f
(n)
r of

the oscillator can be estimated as

f (n)
r =

1

2π

√

1

L(n)C
(n)
p

(32)

where C
(n)
p = πε̄33 [2 (R0 + na) − a2] a2/hp. Hence, C

(n)
p varies with the number of unit cells if the

plate is arrayed periodically in the geometric structure. As can be further known from Eq.(32), different
unit cells have different resonant frequencies if the inductors in the circuits of unit cells have an equal
inductance. Consequently, it is necessary to design equal frequency resonant shunt circuits for the
periodic circular plate to achieve a LR BG. In order to make all unit cells have an equal resonant
frequency, the inductance of the nth unit cell needs to be

L(n) =
2R − a2

2 (R0 + na) − a2
L0 (33)

where n = 1, 2, 3, . . . , N . The outer radius of the plate R = R0 +Na. L0 is chosen as a basic inductance,
which is equal to inductance L(N) of the outermost unit cell.

2.4. General solutions

When the time-harmonicmotion reaches the steady state, all fields arewith the same timedependence,
and the eiωt factor can be dropped. Therefore, we have the complex notation

{

uz, V (n), Q(n)
e , I(n)

}

= Re
{[

Uz, V̄ (n), Q̄(n)
e , Ī(n)

]

eiωt
}

(34)

Then the governing equations of Eq.(9) become

KI∇
2
∇

2Uz = ω2mIUz (35)

The general solutions to Eq.(35) are

Uz = A
(n)
1 J0 (αIr) + A

(n)
2 I0 (αIr) + A

(n)
3 Y0 (αIr) + A

(n)
4 K0 (αIr) (36)

where α4
I = mIω

2
/

KI; A
(n)
i (i =1, 2, 3, 4) are undetermined constants for Part α of the nth unit cell;

J0 and Y0 are zero-order Bessel functions of the first kind and the second kind, respectively; and I0 and
K0 are modified zero-order Bessel functions of the first kind and the second kind, respectively.

Similarly, Eq.(28) can be rewritten as

Uz,rrrr +
2

r
Uz,rrr −

g0

r2
Uz,rr +

g0

r3
Uz,r − g1Uz = 0 (37)
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where g0 = (d2 + d3 + d4 − f2)/(d2 + d3 + d4 − f1), and g1 = mIIω
2
/

(d2 + d3 + d4 − f1). For an in-
finitesimal element, Eq.(37) is transformed into a differential equation with constant coefficients using
the above-mentioned method. Thus for the kth infinitesimal element in the nth unit cell, the solution
to Eq.(37) is

Uz =
4
∑

j=1

B
(n)
jk eλjkr (k = 1, 2, 3, . . . , N1) (38)

where B
(n)
jk (j = 1, 2, 3, 4) are undetermined constants, and λjk (j = 1, 2, 3, 4) are characteristic roots

of the differential equation with constant coefficients.

2.5. Continuity and boundary conditions

It is necessary to satisfy the boundary conditions at both end edges and the continuity conditions
inside the plates for the solutions in Eqs.(36) and (38). Inside Part β of an arbitrary nth unit cell, the
continuity conditions between two adjacent infinitesimal elements are

U
(n)

β

z

(

r+
n(k−1)

)

= U
(n)

β

z

(

r−nk

)

, U
(n)

β

z,r

(

r+
n(k−1)

)

= U
(n)

β

z,r

(

r−nk

)

M
(n)

β

r

(

r+
n(k−1)

)

= M
(n)

β

r

(

r−nk

)

, Q
(n)

β

r

(

r+
n(k−1)

)

= Q
(n)

β

r

(

r−nk

)

(39)

where k = 2, 3, 4, . . . , N1; the superscripts ‘+’ and ‘−’ denote the right and left ends of the element,
respectively. From Fig.1, Part α and Part β within the nth unit cell are connected at r = rn + a1.
Thus the displacement, the deflection angle, the bending moment and the shearing force satisfy the
continuity conditions

U
(n)

α

z (rn + a1) = U
(n)

β

z (rn + a1) , U
(n)

α

z,r (rn + a1) = U
(n)

β

z,r (rn + a1)

M
(n)

α

r (rn + a1) = M
(n)

β

r (rn + a1) , Q
(n)

α

r (rn + a1) = Q
(n)

β

r (rn + a1)
(40)

In addition, the continuity conditions between two adjacent unit cells, such as the (n − 1)th and the
nth unit cells, are

U
(n−1)

β

z (rn) = U
(n)

α

z (rn) , U
(n−1)

β

z,r (rn) = U
(n)

α

z,r (rn)

M
(n−1)

β

r (rn) = M
(n)

α

r (rn) , Q
(n−1)

β

r (rn) = Q
(n)

α

r (rn)
(41)

Since the plate is attached by a concentrated mass at r = R0, and is simply supported at the edge
where r = R, the boundary conditions are respectively

U
(1)

α

z,r (R0) = 0

2πR0 KI

(

∇

2U
(1)

α

z

)

,r

∣

∣

∣

∣

r=R0

= ω2m0U
(1)

α

z (R0)
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(42)

There are 4 (4N1 + 4)N linear equations in Eqs.(40), (41) and (42), which can determine 4N un-

knowns A
(n)
i and 4NN 1 unknowns B

(n)
jk . Subsequently, the deflection at the center of the plate, i.e.

r = R0, can be obtained. In order to measure the performance of the plate in attenuating the amplitude
of elastic wave propagation, the transmission factor is defined as

Tf = 20 lg
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∣
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(43)

The vibration can be attenuated in some frequency bands where the transmission factors are less
than zero. Among these bands, apart from the locally resonant (LR) band gap (BG) and the Bragg
BG, there also exist other frequency bands of vibration attenuation, which are named as the vibration
attenuation band (VAB).
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III. Numerical Results and Discussion
For the periodic circular thin plate shown in Fig.1, PZT-5H is chosen as the material for piezoelectric

unimorphs, and Aluminum for metallic plates. For Aluminum, Young’s modulus E = 70 GPa, Poisson’s
ratio µI = 0.3 and density ρI = 2700 kg/m3. While for PZT-5H, density ρII = 7500 kg/m3 and other
material properties are listed below[27]:

c11 = 12.6, c12 = 7.95, c13 = 8.41, c33 = 11.7 × 1010 N/m2, e31 = −6.5
e33 = 23.3 C/m2, ε33 = 1470ε0, ε0 = 8.854× 10−12 F/m.

We set h = 0.4 mm, hp = 0.1 mm, R0 = 25 mm, N = 4, and the acceleration amplitude of the input
vibration ω2A = 1 m/s2 in all calculation. The widths a = 20 mm, a1 = 10 mm, the concentrated mass
m0 = 7.7 g, and the resistance of each load circuit R(n) = 5 Ω are fixed unless otherwise stated.

To verify the theoretical model, the Frequency Response Function (FRF) curves, i.e. transmission
factor versus frequency, which are obtained by theoretical calculation and the Finite Element Method
(FEM) carried on the ANSYS software, respectively, are compared in Fig.2, where the basic inductance
L0 = 0.02 H is used. The results of the theoretical calculation agree well with those obtained from
the FEM, especially when the frequency is below 1000 Hz. The increasing difference between the two
curves above 1000 Hz results from ignoring the shearing deformation in the theoretical calculation. It
also shows that there exists no obvious Bragg BGs within the frequency range between 0 and 3 kHz.
It is because the size of structure is not big enough to obtain a Bragg BG of low frequency. Vibration
isolation is focused on low frequency due to its importance and difficulty. The theoretical results are
only demonstrated in the following discussion due to the high efficiency of calculation.

Fig. 2. FRF curves calculated by theoretical model and the

FEM, respectively.

Fig. 3. FRF curves for different load circuits, where R = 5Ω

is fixed.

The necessity of equal frequency resonant shunt circuits in achieving LR gap is then investigated.
Figure 3 shows the FRF curves of three kinds of shunt circuits. It can be seen that only VABs occur
when the circuits of all unit cells are shorted, which are caused by the periodic material arrangement
due to the lack of electromagnetic oscillators. In the case that inductance L(n) of each unit cell is 0.02
H, there appear 4 additional LR gaps with minus transmission factor corresponding to the resonant
frequency of the oscillators. It should be noted that the differences among them result from the unequal

capacitance C
(n)
p of each unit cell. Finally, when equal frequency resonant shunt circuits are obtained

by tuning inductance of each unit cell to satisfy Eq.(33), where L0 = 0.02 H, an integrated LR gap
is achieved with a much smaller transmission factor, −20 dB. It can be seen that the frequency (964
Hz), where the minimum transmission factor of the integrated gap locates, is lower than the resonant
frequency (1068 Hz) obtained by Eq.(32). It is because that only the static capacitance in Eq. (32) is
adopted, but in fact the capacitances include static and motional ones when the plate is vibrating. The
motional capacitance depends on the driving frequency, while the static capacitance does not[28].

Then the effect of the parameters of equal frequency resonant shunt circuits on the integrated LR BG
is discussed. Firstly, as shown in Fig.4, the FRF curves for different basic inductances, the integrated
LR BG can be tuned by the inductances, where L0 = 0.02, 0.035, 0.05 H. It is found that the variation
of the inductance barely affects the VABs, especially for those far away from the LR BG. However, the
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Fig. 4. FRF curves for different basic inductances. Fig. 5. FRF curves for different resistances.

center frequency as well as the width of the LR BG decreases with the increase of the inductance. It
indicates that tuning an integrated LR BG is simply needed by adjusting the inductances, rather than
reconfiguring the structure.

The effect of resistance on the BGs is further investigated. Figure 5 illustrates the FRF curves for
different resistances, where R(n) = 5, 10, 20 Ω, respectively, and the basic inductance L0 = 0.02 H is
fixed. It’s clear that the increase of resistance dramatically increases the transmission factor of the LR
BG, while the center frequency of the LR BG keeps unchanged. What’s more, it should be noted that
the transmission factor of peaks on both sides of the LR BG decreases with the increase of resistance.
To further investigate the impact of resistance on peaks of the LR BG, the curves of transmission factor
versus resistance for specific peak frequencies are plotted in Fig.6. The frequencies of 883, 964 and 1109
Hz correspond to the left, center and right peak frequencies of the LR BG, respectively. Clearly, if an
optimum resistance is adopted, the appropriate transmission factors on the center frequency as well as
on the two-side peak frequencies of the LR BG can be obtained.

Furthermore, we study the influence of structural or geometric parameters on vibration transmission
by fixing the circuit parameters, such as the basic inductance L0 = 0.02 H and resistances R(n) = 5 Ω.
The dependence of FRF curves on concentrated mass m0 is shown in Fig.7, where m0 = 7.7 g, 15.4 g,
and 23.1 g, respectively. The curves indicate that the attenuation in VABs is strengthened and its center
frequency decreases when the concentrated mass m0 increases. However, it should also be pointed out
that the change of concentrated mass almost has no influence upon the LR BG.

The impact of width ratio a2/a of Part β to the whole unit cell on the FRF curves is shown in Fig.8,
where L0 = 0.02 H is fixed. Frequency of the LR BG decreases with the increase of a2/a. The reason

is that the capacitance C
(n)
p increases with the increase of width ratio a2/a, and it leads to the decline

of the resonant frequency f
(n)
r of the oscillators, which can be known from Eq.(32). It is similar to the

effect of increasing inductances on the LR BG frequency, as is shown in Fig.4. Moreover, the increase
of width ratio a2/a softens stiffness of the whole structure, which results in the decreasing frequency
of the VABs.

Fig. 6. Transmission factor versus resistance for different

frequencies, where m0 = 7.7 g, L0 = 0.02 H, a2/a = 0.5.
Fig. 7. FRF curves for different concentrated masses.
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Fig. 8. FRF curves for different width ratios a2/a.
Fig. 9. FRF curves for different inductances of shunt cir-

cuits.

Finally, another model of equal frequency circuit is proposed by periodic circuit. The shunt circuits
are designed to be periodic. Every inductor in all unit cells has the same inductance. An equal electrode
area is needed to make every piezoelectric unimorph own the same equivalent capacitance. Hence width

a
(n)
2 of the nth piezoelectric unimorph should satisfy

a
(n)
2 = R0 + na −

√

(R0 + na)2 − 2 (R0 + a) a
(1)
2 +

(

a
(1)
2

)2

(44)

where n = 2, 3, . . . , N . With the same parameters of a
(1)
2 = 10 mm, R(n) = 5 Ω, m0 = 7.7 g, a = 20

mm, R0 = 25 mm, and N = 4 as those in Fig.4, Fig.9 demonstrates that three integrated LR gaps
are obtained when the inductances of shunt circuits are L = 0.02, 0.035, 0.05 H, respectively. Figure
9 shows the same tendency as Fig.4, i.e. the center frequency of the integrated LR gap decreases with
increasing inductance. Compared to those in Fig.4, the piezoelectric unimorphs in Fig.9 have smaller
ratios of width, and smaller equivalent capacitance accordingly. Therefore, the integrated LR gaps have
larger center frequencies.

IV. CONCLUSIONS
Aiming at the service in a UPMP, a circular thin plate attached periodically by annular piezoelectric

unimorphs is proposed to isolate vibration. Two kinds of equal frequency resonant shunt circuits are
designed to obtain the LR gap. The theoretical model is verified by the FEM. Bragg BGs doesn’t appear
in the low frequency region. However, an integrating LR BG is achieved when the resonance frequency
of every unit cell is tuned the same. With the increase of the inductance, the frequency of LR BG
decreases, and the width of the LR BG becomes narrower. The transmission factor of the LR BG can be
reduced dramatically, but the center frequency keeps fixed when the resistance decreases. For LR BG,
there exist optimum resistances to obtain a small transmission factor at its center frequency; meanwhile
the transmission factors on both sides are not large. The attenuation in VABs is strengthened and the
center frequency of these gaps decreases when the concentrated mass increases. Both frequencies of the
LR and VABs decrease with increasing material ratio, but with different mechanisms.
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