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ABSTRACT The wave method is introduced to vibration analysis of the fluid-conveying carbon
nanotube. The constitutive relation of carbon nanotube on micro-scale is founded using the non-
local elastic theory. The governing equation on micro-scale is obtained. And the first five orders of
the natural frequency of the carbon nanotube conveying fluid with various speeds are calculated
through the wave method. Besides, the critical flow velocity when the carbon nanotube loses
stability is obtained. Meanwhile, a contrast is made between the result obtained through the
wave method and that in previous researches.
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I. INTRODUCTION
The carbon nanotube (CNT) discovered by Iijima in 1991[1] as a new form of carbon element has

an extremely high strength, which is a huge potential of fluid conveyance[2]. When CNTs are conveying
fluid, the flow-induced vibration will occur. Many researchers have studied the flow-induced vibration
of CNTs via molecular dynamics simulation or traditional elastic theory. M. Mir has simulated the
vibration characteristics of various CNTs by using the finite element method[3]. Y. Yan has studied the
natural frequency and the aspects that may affect the natural frequency of triple-walled CNTs[4].

As a pipe on nanometer scale, the scale effect has not been taken into consideration in the model of
CNT based on the traditional elastic theory. To solve this problem, researchers resorted to non-local
continuum mechanics for the research on CNT. H.M. Ma et al. have researched a microstructure-
dependent Timoshenko beam model based on a modified couple stress theory[5]. L.L. Ke and Y.S.
Wang have used modified couple stress theory to research the size effect on the dynamic stability of
micro-beams[6]. M. Simsek has made a dynamic analysis of an embedded micro-beam carrying a moving
micro-particle based on the modified couple stress theory[7]. On the other hand, G.M. Qu et al. have
investigated the scattering of antiplane shear waves by two Griffith cracks using the non-local theory[8].
A.R. Setoodeh et al. have researched exact nonlocal solution for post buckling of single-walled carbon
nanotubes[9]. M. Simsek and H.H. Yurtcu have obtained analytical solutions for bending and buckling
of functionally graded nanobeams based on the nonlocal Timoshenko beam theory[10]. The basic idea
of nonlocal continuum mechanics is that the strain state of a point refers to the stress states of all the
points in the elastic body, instead of the stress state of this point alone, and this is the stress gradient

⋆ Corresponding author. E-mail: zhangzijun@mail.nwpu.edu.cn
⋆⋆ The authors acknowledge the support of a grant from Aeronautical Science Foundation of China (2010ZA53013 and
2011ZA53014), the open funds of Key Laboratory of Advanced Design and Intelligent Computing(Dalian University),
Ministry of Education (ADIC2010007) and Northwestern Polytechnical University Basic Research Fund(JC201114 and
JC20110255), to whom the authors express their deep gratitude.

http://crossmark.crossref.org/dialog/?doi=10.1016/S0894-9166(15)60007-6&domain=pdf


Vol. 27, No. 6 Zijun Zhang et al.: Free Vibration Analysis of Fluid-conveying Carbon Nanotube · 627 ·

theory widely used in research[11]. Furthermore, H. Askes and E.C. Aifantis have expanded this theory
to the strain gradient theory, or the so-called strain-inertia gradient theory[12]. They held that the strain
state of a point also refers to the change rate of strain. D.C.C. Lam et al. have tried to validate the
strain gradient elasticity by experiment[13]. S.L. Kong et al. have addressed the static and dynamic
characteristics of micro beams based on the strain gradient elasticity theory[14].

There have been many researches on the dynamics of fluid conveying pipe. Q. Ni et al.[15] and
Q. Qin et al.[16] have developed the differential quadrature method to tackle the chaotic transients
in a curved fluid-conveying tube and the stability of upward-fluid-conveying pipe immersed in rigid
cylindrical channel. L. Wang et al. have studied Hopf bifurcation of a nonlinear restrained curved
pipe conveying fluid through the differential quadrature method[17]. Z.M. Wang et al.[18] and F. Zhao
et al.[19] have dealt with the dynamic behaviors of viscoelastic pipe conveying fluid with the Kelvin
model and three-parameter solid model, respectively. X. Jian et al. have exploited the 2-dimensional
bifurcations in cantilevered pipe conveying time varying fluid[20]. But in the nanometer scale, there
have been but a few researches on the dynamics of fluid-conveying tube. L. Wang et al.[21] have studied
the wave propagation of fluid-conveying single-walled CNT through the strain-inertia gradient theory,
and calculated the critical flow speed when CNT loses stability. Also, L. Wang et al have focused on
the vibration characteristics and stability of fluid-conveying micro-pipe with scale effects[2,22].

As an analytical method of calculating the dynamic response of piping system or truss structure,
the wave method has its governing equation built by analyzing the circulation transfer of the elastic
wave. Reflection and transmission will occur on the boundary. B. Li et al. have used the wave method
to learn more about the in-plane vibration of curved pipe and multi-span fluid conveying pipe[23,24].

In this paper, the constitutive relation of carbon nanotube in micro-scale is formed through the
non-local elastic theory. Then the first five orders of the natural frequency of the fluid conveying carbon
nanotubes with various speeds are calculated through the wave method. And the critical speed of fluid
when the carbon nanotube loses stability is obtained, which agrees well with the result in L. Wang’s
research[21]. The application of the wave method in the vibration of the micro-scale pipe is rational.

II. DYNAMICS MODEL OF FLUID CONVEYING CNT
2.1. Nonlocal Continuum Mechanics Theory

In the traditional linear elastic model, the constitutive relation of an elastic object can be expressed
as

σ = Cε (1)

where C is the elastic module matrix, σ is the stress state of the point studied, and ε is the strain state
of this point.

In the non-local continuum mechanics model, the strain state of one point in an elastic body refers
not only to the stress state of this point, but also to the stress state of all the points in the elastic body.
According to the theory of Eringen[3], the constitutive relation based on the stress gradient theory is

(

1 − τ2
0 l2∇2

)

σ = Cε (2)

In Eq.(2), τ0 = e0a/l is a parameter which represents the scale effect, e0 depends on the material.
And a/l is the characteristic length ratio, where ‘a’ is an internal characteristic length (e.g., lattice
parameter, granular distance) and l is the external characteristic length (e.g., crack length,wavelength)[7].
a = d0/

√
12, where d0 = 1.23×10−10 m refers to the inter-particle distance, which is the axial distance

between two rings of carbon atoms for the single-walled carbon nanotube[25]. When the dimension to
be researched is one, Eq.(2) can be written as

(

1 − τ2l2
∂2

∂x2

)

σ = Eε (3)

Then, we can develop stress gradient theory to strain-inertia gradient theory. According to the
research of Askes[12], the constitutive relation based on the strain-inertia gradient theory is

σ = E

(

1 − l21
∂2

∂x2

)

ε + ρl22
∂2ε

∂t2
(4)
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where l1 and l2 are internal characteristic length values determined by experiment or microscopic
models. l1 = a = 3.55 × 10−11 m, l2/l1 = 10 for (20,20) CNT[12]. Actually, l1 and l2 show the impor-
tance of the change rate of strain with respect to position and time (∂2ε/∂x2 and ∂2ε/∂t2), respectively.

2.2. Timoshenko Beam Model of CNT

As shown in Fig.1, a model of fluid-conveying CNT with fixed constraints at both ends is built. By
analyzing the stress on the cross-section, the bending moment can be obtained.

M =

∫

A

σydA (5)

Substituting Eq.(4) into Eq.(5), we have

M = −EI

(

∂2w

∂x2
− l21

∂4w

∂x4

)

− ρIl22
∂4w

∂x2∂t2
(6)

where w is the deflection of the CNT, and I =
∫

A y2dA represents the moment of inertia for the cross
section.

Then the dynamic differential equation of the fluid-conveying CNT can be obtained as

∂F

∂x
− ρfAf

(

∂2w

∂t2
+ 2U

∂2w

∂x∂t
+ U2 ∂2w

∂x2

)

= ρtAt
∂2w

∂t2
(7)

where F is the shear force on the cross-section, U is the mean flow velocity of the fluid[26]. In this
paper, fluid is considered incompressible. According to the research of L. Wang[26], the fluid conveyed
in nanotube cannot permeate the pipe wall because the length of the C-C bond is far smaller than the
diameter of the fluid molecule. According to the research of Tuzun[27], the friction force between fluid
and pipe wall can be neglected because the friction force is far smaller than the Coriolis force caused by
the fluid. As the same reason, plug flow assumption is introduced into the research on CNT conveying
fluid. The relationship between F and the bending moment M is

F =
∂M

∂x
+ ρI

∂2Φ

∂t2
(8)

where Φ is the curvature ratio caused by bending moment. Shear stress and strain must be taken into
consideration in Timoshenko beam model. The constitutive relation between shear stress and strain is

τ = G

(

1 − l21
∂2

∂x2

)

γ + ρl22
∂2γ

∂t2
(9)

Then the shear force F can be represented as

F =

∫

A

τdA (10)

The whole curvature ratio of the beam is

∂w

∂x
= Φ + γ (11)

Fig. 1. CNT model with fixed constraints at both ends[26].
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Substituting Eq.(11) into Eq.(6) and equation Eq.(10), respectively, we can conclude,

M = −EI

(

∂Φ

∂x
− l21

∂3w

∂x3

)

− ρIl22
∂5w

∂x3∂t2
(12)

F = GAtk

[

∂w

∂x
− Φ − l21

(

∂3w

∂x3
− ∂2Φ

∂x2

)]

+ ρAtkl22

(

∂3w

∂x∂t2
− ∂2Φ

∂t2

)

(13)

where k is the shear coefficient of CNT, for the thin-walled circular pipe, k is equal to 2(1+ν)/(4+3ν).
Then substituting Eqs.(12) and (13) into Eq.(7), the governing equation of bending can be obtained.

GAtk

(

∂2w

∂x2
− ∂Φ

∂x
− l21

∂4w

∂x4
+ l21

∂3Φ

∂x3

)

+ ρtAtkl22

(

∂4w

∂x2∂t2
− ∂3Φ

∂x∂t2

)

−ρfAf

(

U2 ∂2w

∂x2
+ 2U

∂2w

∂x∂t
+

∂2w

∂t2

)

− ρtAt
∂2w

∂t2
= 0 (14)

The differential equation of the torsion motion of Timoshenko beam can be represented as

F − ∂M

∂x
= (Jt + Jf )

∂2Φ

∂t2
(15)

where Jt and Jf are the moment of inertia of the CNT and the fluid, respectively. Substituting Eqs.(12)
and (13) into Eq.(15), we conclude,

EI

(

∂2w

∂x2
− l21

∂4w

∂x4

)

+ ρtIl22
∂4Φ

∂x2∂t2
+ GAtk

(

∂w

∂x
− Φ − l21

∂3w

∂x3
+ l21

∂2Φ

∂x2

)

+ρtAtkl22

(

∂3w

∂x∂t2
− ∂2Φ

∂t2

)

− (Jt + Jf )
∂2Φ

∂t2
= 0 (16)

Equations (14) and (16) are the governing equations of the fluid-structure interaction[21].

III. VIBRATION ANALYSES THROUGH WAVE METHOD
3.1. Wave Method Used in Fluid-conveying CNT Vibration Analysis

The elastic wave in a pipe can be regarded as vibration propagation in the pipe. Given that the
vibration of the pipe can be resolved into several simple harmonic vibrations, the elastic wave in the
pipe can be regarded as a superposition of several harmonic waves. The harmonic wave components
can be represented as Eqs.(17).

w (x, t) = W exp [iκ (x − ct)] , φ (x, t) = ϕ exp [iκ (x − ct)] (17)

where i =
√
−1. Substituting Eqs.(17) into Eqs.(14) and Eq.(16), we conclude that

W
[

−GAtkκ2
(

1 + l21κ
2
)

+ ρtAtkl22κ
4c2 + ρfAfU2κ2 − 2ρfAfUκ2c + (ρfAf + ρtAt)κ2c2

]

= iκϕ
[

GAtk
(

1 + l21κ
2
)

− ρtAtkl22κ
2c2

]

W
[

κ2GAtk
(

1 + l21κ
2
)

− ρtAtkl22κ
4c2

]

= iκϕ
{

−GAtk
(

1 + l21κ
2
)

+ κ2c2
[

(Jt + Jf ) + ρtAtkl22 + ρtItl
2
2κ

2
]

− κ2EIt

(

1 + l21κ
2
)}

(18)

Then the dispersion equation of the wave in CNT can be obtained as follows:
[

−GAtk
(

1 + l21κ
2
)

+ ρtAtl
2
2κ

2c2 + ρfAfU2 − 2ρfAfUc + (ρfAf + ρtAt) c2
]

×
{

−GAtk
(

1 + l21κ
2
)

+ κ2c2
[

(Jt + Jf ) + ρtAtkl22 + ρtItl
2
2κ

2
]

− κ2EIt

(

1 + l21κ
2
)}

=
[

GAtk
(

1 + l21κ
2
)

− ρtAtkl22κ
2c2

]2
(19)

The dispersion equation with respect to κ has eight roots, two of which are real roots corresponding
to travel waves while the remaining six are conjugate complex numbers corresponding to the gradually
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Fig. 2. Wave propagation in CNT.

failing waves. Consider the direction along the pipe axis only, and let κ1,2,3,4 and κ5,6,7,8 represent wave
numbers of the right- and left-travelling waves, respectively. Given that κ1 and κ5 are the two real
roots, then the other six can be expressed as κ2 = κ6, κ3 = κ7, κ4 = κ8 respectively.

The wave propagating in CNT is a superposition of the eight waves above.

w (x, t) =
8

∑

j=1

Cwj exp [i (κjx − ωt)], φ (x, t) =
8

∑

j=1

Cφj exp [i (κjx − ωt)] (20)

The transfer of the elastic wave in CNT is reflected at the boundaries. As shown in Fig.2, a

and b represent the vibrations at the ends of CNT. Given that a and b are expressed as a =
{a1, a2, a3, a4, a5, a6, a7, a8}T and b = {b1, b2, b3, b4, b5, b6, b7, b8}T, respectively, and setting a

− =

{a1, a2, a3, a4}T
, b

− = {b1, b2, b3, b4}T
, a

+ = {a5, a6, a7, a8}T
, b

+ = {b5, b6, b7, b8}T
,the propagation

and reflection of wave in CNT can be illustrated by Eqs.(21) and Eq.(22).

a
− = T lb

−, b
+ = T ra

+ (21)

a
+ = Rla

−, b
− = Rrb

+ (22)

Then the propagation matrix of the wave in CNT can be derived from Eq.(20), that is,

T l =









exp (−iκ1L) 0 0 0
0 exp (−iκ2L) 0 0
0 0 exp (−iκ3L) 0
0 0 0 exp (−iκ4L)









T r =









exp (iκ5L) 0 0 0
0 exp (iκ6L) 0 0
0 0 exp (iκ7L) 0
0 0 0 exp (iκ8L)









(23)

where L is the length of the CNT. The reflection matrix of the wave at the boundaries can be derived
from the boundary conditions. The boundary conditions of the fixed CNT can be expressed as

w|x=0 = 0, w|x=L = 0, Φ|x=0 = 0, Φ|x=L = 0, γ|x=0 = 0, γ|x=L = 0 (24)

Meanwhile, Eqs.(24) can be written as Eqs.(25).

8
∑

j=1

Cwj = 0,
8
∑

j=1

Cwj exp (iκjL) = 0

8
∑

j=1

CΦj = 0,
8
∑

j=1

CΦj exp (iκjL) = 0

8
∑

j=1

κjCwj = 0,
8
∑

j=1

κjCwj exp (iκjL) = 0

(25)

According to Eqs.(18), the relation between Cwj and CΦj can be obtained as Eq.(26).

Cwj = ζjCΦj (26)

where,

ζj =
iκj

[

GAtk
(

1 + l21κ
2
j

)

− ρtAtkl22κ
2
jc

2
]

−GAtkκ2
j

(

1 + l21κ
2
j

)

+ ρtAtkl22κ
4
jc

2 + ρfAfU2κ2
j − 2ρfAfUκ2

jc + (ρfAf + ρtAt)κ2
jc

2

(j = 1, 2, ...8) (27)
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According to Eqs.(25)-(27), the reflection matrix of wave at the boundaries can be selected as follows:

Rl = −









1 1 1 1
ζ5 ζ6 ζ7 ζ8

κ5 κ6 κ7 κ8

eiκ5L eiκ6L eiκ7L eiκ8L









−1 







1 1 1 1
ζ1 ζ2 ζ3 ζ4

κ1 κ2 κ3 κ4

eiκ1L eiκ2L eiκ3L eiκ4L









(28a)

Rr = −









1 1 1 1
ζ1 ζ2 ζ3 ζ4

κ1 κ2 κ3 κ4

e−iκ1L e−iκ2L e−iκ3L e−iκ4L









−1 







1 1 1 1
ζ5 ζ6 ζ7 ζ8

κ5 κ6 κ7 κ8

e−iκ5L e−iκ6L e−iκ7L e−iκ8L









(28b)

3.2. Discussion on the Wave Method

The reflection of wave at the boundary of CNT determines the reflection matrix. A wave circulation
is formed in the fixed CNT, as illustrated in Fig.2. Actually, without considering the energy dissipation
as a constraint, the energy in the elastic wave will not decrease. Since the elastic modulus of CNT can
be as high as 1 TPa, the dispersion during transfer can be neglected.

The order of the reflection matrix refers to the number of roots of the dispersion equation. On the
other hand, the reflection matrix is derived from the boundary conditions. For statically determinate
problems, the order of the reflection matrices based on the two methods above will be identical. But to
statically indeterminate problems, the order of reflection matrices derived from the dispersion equation
and the boundary conditions will not be identical. In this paper, a Timoshenko beam model fixed at
both ends is used, so the problem is a statically indeterminate problem. A simplification of the boundary
conditions is made by applying Sanit Venant principle.

As the wave transfers circularly in the CNT, by combining Eqs.(21) and (22), we conclude that

a
+ = Rla

− = RlT lb
− = RlT lRrb

+ = RlT lRrT ra
+ = Aa

+ (29)

i.e. ,
(I − A)a

+ = 0 (30)

And, only when Eq.(31) is valid will Eq.(30) have nontrivial solutions.

H (ω) = detH (ω) = det (I − A) = 0 (31)

Equation (31) is the characteristic equation of the wave method. Considering that c = ω/κ, where
ω is the wave frequency and κ is the wave number, we can conclude that the only unknown quantity
in Eq.(31) is ω. The solution of Eq.(31) for ω is the natural frequency of the fluid-conveying CNT.

The displacement shape function is replacedby the wave solution of the governing equation in the wave
method. So the wave method is an analytical method which is more accurate than the numerical method.
Meanwhile, the number of wave modes in actual problems is small, so the efficiency of computation
is high. But when the dispersion equation is complex, the wave solution of the dispersion equation
can only be obtained via the numerical method. So error will accumulate in the following calculation.
Nevertheless, the wave method is meaningful in theoretical analysis.

IV. CALCULATION AND DISCUSSION
4.1. The Natural Frequency of CNT Based on Strain-inertia Gradient Theory

There are two scale effect parameters in the constitutive equation based on the strain-inertia gradient
theory. Take the CNT with form (20, 20) for example, the scale effect parameters are l1 = 3.55× 10−11

m, l2/l1 = 10 respectively[12]. For single-walled CNTs, the density is ρt = 2.3 × 103 kg/m3, the
elasticity modulus is E = 1.27 TPa, and the Poisson’s ratio is ν = 0.2. The thickness of the wall is
δ = 3.4 × 10−10 m[25], the outer diameter of CNT is chosen as D = 1.4 × 10−8 m. The moment of

inertia for the cross section is I =
π

64
(D4 − d4). The rotational inertia of CNT and that of the fluid

are Jt =
1

4
ρtAt

[

(

D

2

)2

+

(

d

2

)2
]

, Jf =
1

4
ρfAf

(

d

2

)2

, respectively.
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Fig. 3. The curve of ln |H(ω)| with respect to ln(ω) under different fluid velocities.

The step length of ln(ω) is chosen as 1.0 × 10−3, and the curve of ln |H(ω)| with respect to ln(ω)
can be obtained for different flow velocities.

As shown in Eq.(31), the solution of the equation must guarantee that the real part and the imaginary
part of the determinant are both equal to zero. The relative points are hard to find directly. So ln |H(ω)|
is employed as the vertical axis. When the determinant of H(ω) equals zero, ln |H(ω)| tends to be
negative infinity. So the curve presents a ‘sharp tip’, as shown in Fig.3. The abscissa values relative to
the ‘sharp tips’ are the approximate values of the natural frequencies.

The first five orders of the natural frequency of fluid conveying CNT with various speeds are obtained
through the same procedure as mentioned above.

Table 1. The first five orders of the natural frequency of fluid conveying CNT

U (m/s) 1st to 5th order natural frequency (×1010rad/s)

0 3.908 11.848 22.078 32.618 42.938
500 3.870 11.801 22.071 32.413 42.938
1000 3.721 11.737 21.868 32.294 42.515
2000 3.200 10.988 20.832 31.056 40.872
2500 2.724 10.485 20.045 29.868 39.686
3000 1.990 9.731 19.093 28.717 38.153

Natural frequencies decrease with an increase of fluid velocity, as shown in Fig.3 and Table 1. When
the fluid velocity is sufficiently great, the first-order natural frequency will vanish. The critical velocity
when zero natural frequency appears is related to the instability of CNT. Through further calculation,
the curve of the first-order frequency with respect to fluid velocity can be obtained, as shown in Fig.4.

By choosing the step length of fluid velocity as 25 m/s, the critical flow velocity related to the
instability of CNT can be obtained as 3875 m/s for the strain gradient Timoshenko beam model.

For the purpose of contrast, the natural frequency of CNT based on the stress gradient theory is
calculated. According to Eq.(2) and the process derived in this paper, the first-order natural frequencies
of CNT with various flow speeds are obtained, as shown in Fig.4.

4.2. Contrasts and Discussions

In Wang’s research[21] the curve of phase velocity with respect to the flow velocity for strain-inertia
and the stress gradient Timoshenko beam model is as follows.
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Fig. 4. The curve of 1st order frequency with respect to
fluid velocity.

Fig. 5. Phase velocity of CNT versus fluid speed[21].

The trends of Fig.4 are similar to those in Fig.5. Considering the relation between frequency and
phase velocity, i.e. c = ω/κ, the similarity of the trends can be proved.

According to Fig.4, the critical flow speed based on strain-inertia gradient theory and that on stress
gradient theory are 3875 m/s and 3900 m/s, respectively. Contrasts between the results in this paper
and in previous research are listed in Table 2.

Table 2. Contrast of critical velocities

Strain gradient theory Stress gradient theory

This paper 3875 m/s 3900 m/s

Wang’s research[21] 3850 m/s 3850 m/s
Relative error < 0.65% < 1.30%

As shown in Table 2, the results in this paper agree well with those in Wang’s research[21]. However,
the calculated results in this paper have a certain degree of error as the step length of ω should not be
too small to guarantee the efficiency of calculation.

V. SUMMARY
The vibration characteristics of fluid-conveying CNT are researched in this paper based on the

non-local continuum mechanics theory. The first five orders of natural frequency of the fluid-conveying
CNT are calculated with the wave method. Meanwhile, the critical flow speed when CNT loses stability
is found to be 3875 m/s for strain gradient Timoshenko beam model.

For the purpose of contrast, the critical flow speed is calculated based on stress gradient theory. The
result 3900 m/s is bigger than the result via strain-inertia theory.

These results are in agreement with those in Ref.[21]. The analysis and contrast mentioned above
prove that it is rational to use the wave method in the vibration analysis of fluid-conveying CNT. This
provides a new thought in the research on mirco-pipe dynamics.
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