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ABSTRACT The Karhunen-Loeve (KL) expansion and probabilistic collocation method (PCM)
are combined and applied to an uncertainty analysis of rock failure behavior by integrating a self-
developed numerical method (i.e., the elastic-plastic cellular automaton (EPCA)). The results
from the method developed are compared using the Monte Carlo Simulation (MCS) method. It
is concluded that the method developed requires fewer collocations than MCS method to obtain
very high accuracy and greatly reduces the computational cost. Based on the method, the elasto-
plastic and elasto-brittle-plastic analyses of rocks under mechanical loadings are conducted to
study the uncertainty in heterogeneous rock failure behaviour.

KEY WORDS uncertainty analysis, probabilistic collocation method, elasto-plastic cellular au-
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I. INTRODUCTION
The heterogeneity of rocks is an important cause for the complexity of their mechanical behaviour.

The mechanical parameters of rocks show great heterogeneity and anisotropy in space, which directly
affects their mechanical behaviour and leads to uncertainty. Uncertainty analysis is therefore meaningful
and of theoretical value.

In past decades and with the development of computational techniques, random theory and methods
were gradually introduced for the analysis of random systems. Many stochastic approaches have been
developed[1–11] to study the effect of spatial variability on the physical behaviour (e.g., subsurface flow)
of rock masses. The Monte Carlo Simulation (MCS) method is the most popular used to solve random
problems[12,13]. However, it requires a large number of samples to reach convergence.The technique is gen-
erally used to provide benchmark solutions for assessing the accuracy of other stochastic approaches due
to its easy implementation[7,14]. An alternative to MCS simulation is the moment equation method[15],
which derives a system of deterministic differential equations that govern the statistical moments of
the random variables. However, the computational cost of the conventional moment equation method
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is high for large-scale problems. A moment equation approach based on the Karhunen-Loeve (KL)
expansion was proposed for single-phase, unsaturated and multiphase flows[8,14,16]. Another approach
called the polynomial chaos expansion (PCE) method has aroused considerable interest in quantifying
uncertainty in various mechanics problems[17]. However, the deterministic coefficients of the PCE are
governed by a set of coupled equations, which are difficult to solve when the number of coefficients is
large. Furthermore, the simulators used in deterministic simulations cannot be directly employed since
the original governing equations are coupled to PCE coefficients. The probabilistic collocation method
(PCM) introduced by Tatang et al.[18] is another efficient stochastic approach. This method uses PCEs
to represent the random variables of interest. A collocation technique is used instead of the Galerkin
scheme to solve PCE coefficients prior to deriving independent deterministic equations.

Other methods, such as the moment equation method, KL moment equation, probabilistic collocation
method, random finite element method, etc., are used by researchers to reduce the computational costs
and guarantee accuracy. Of these methods, the PCM is widely used because of its unique characteristics
for solving random problems.

Moreover, the traditional deterministic mechanical model we used does not perfectly agree with
practice. Therefore, research into uncertainty problems has important practical and theoretical values.
We introduce both the random field theory and the methods required to characterise the complex
mechanical behaviour of rocks. Therefore, the current aim is to combine stochastic analytical methods
with geotechnical engineering numerical simulations while considering the variability of the mechanical
rock parameters in the spatial domain. Furthermore, it is necessary to establish both the suitable
stochastic analytical theory and the corresponding calculation methods for geotechnical engineering.
This paper addresses a method for studying the uncertainty of rock failure behaviour using a combination
of PCM and a self-developed numerical code (i.e., the elasto-plastic cellular automaton (EPCA)[19,20]).
The integration of these two methods and their associated applications are demonstrated.

II. PROBABILISTIC COLLOCATION METHOD
In rock engineering, probabilistic problems can be expressed using the following random differential

equation:
K(u, ̟(x, θ))u = F (θ) (1)

where K is a random coefficient matrix. u is the target of the problem. F (θ) is the random external
force. ̟(x, θ) represents the random material properties. θ is a random event and x is an independent
variable.

The PCM is implemented using the following steps:
(1) Representation of random input field
In this work, we use KL expansion to represent the input field based on a set of independent standard

random variables. Consider the following random input domain:

Y (X, θ) = ln̟(X, θ) (X ∈ D, θ ∈ Ω) (2)

where D is the physical domain, and Ω is the probability space.
The mean value is assumed to be the following:

Ȳ (X) = 〈Y (X, θ)〉 (3)

The covariance of Y (X, θ) is as follows:

CY (X1, X2) =
〈[

Y (X1, θ) − Ȳ (X1)
][

Y (X2, θ) − Ȳ (X2)
]〉

(4)

For two arbitrary points, X1 = {x11, x12, x13}T, X2 = {x21, x22, x23}T, in domain D, the covariance
function can be expressed in the Gaussian form

CY (X1, X2) = σ2
Y exp

[

−π

4

3
∑

i=1

(

x1i − x2i

λi

)2
]

(5)

where σ2
Y is the variance, and λi is the autocorrelation length.
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As the covariance equation is symmetrical and positive, it can be divided as follows:

CY (X1, X2) =
∞
∑

i=1

ηifi(X1)fi(X2) (6)

where ηi is the eigenvalue of covariance function, and f(X) is the eigenfunction, which can be solved
using the Fredholm integral equation of the second kind:

∫

D

CY (X1, X2)fi(X2)dX2 = ηifi(X1) (7)

The random domain, Y (X, θ), can be divided into a mean value Ȳ (X) and residual part Y ′(X, θ),
which is represented by the KL expansion. Therefore, the random domain can be expressed as follows:

Y (X, θ) = Ȳ (X) + Y ′(X, θ) = Ȳ (X) +

∞
∑

i=1

ξi(θ)
√

ηifi(X) (8)

where ξi is a standard set of orthogonal random variables that satisfy < ξi >= 0 and < ξiξj >= δij .
When the eigenvalue is sorted as η1 ≥ η2 ≥ . . ., the associated characteristic function is sorted in

the same way. The attenuation rate of ηn determines the number of retained items, which determines
the random dimension of the problem.

If the KL expansion is truncated at the N th item, we have the following:

Y (X, θ) = Ȳ (X) + Y ′(X, θ) = Ȳ (X) +

N
∑

i=1

ξi(θ)
√

ηifi(X) (9)

Y (X, θ) approximates the weighted sum of N random variables ξi (i = 1, 2, · · · , N) using the
eigenvalue and deterministic characteristic function.

(2) Representation of random output domain
In this work, we use PCE to describe the output field based on the standard random variables of

the input field.
The random output domain depends on the input, and its function depends on the random vector

ξ = (ξ1, ξ2, · · · , ξN )T; where ξi is a random variable for an input parameter. The relation between the
output domain and ξ should be determined. The random output domain cannot be represented by a
KL expansion as its statistical characteristics are unknown. The PCE method is used to represent the
output domain.

The output domain u is expressed using the following polynomials[21–23]:

u(X, t, ξ) = a0(X, t) +

∞
∑

i1=1

ai1(X, t)Γ1(ξi1 ) +

∞
∑

i1=1

i1
∑

i2=1

ai1i2(X, t)Γ2(ξi1 , ξi2)

+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3(X, t)Γ3(ξi1 , ξi2 , ξi3) + · · · (10)

where a0(X, t) and ai1i2...id
(X, t) are deterministic functions of X , and Γd(ξi1, ..., ξid) is a PCE of order

d with respect to the independent random variables (ξi1, ..., ξid).
The above equation is the discrete version of the original Wiener polynomial chaos expansion, where

continuous integrals are replaced by summations[24].
For independent standard Gaussian random variables, Γd(ξi1, ..., ξid) is expressed as follows:

Γd(ξi1, ..., ξid) = (−1)deξTξ/2 ∂d

∂ξξi1...ξid

(e−ξTξ/2) (11)

where ξ = (ξi1, ..., ξid)
T.

In practice, Eq.(10) is usually truncated to a finite number of terms, P , and can be simplified as
follows:

û(X, t, ξ) =

P
∑

j=1

cj(X, t)Φj(ξ) (12)
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where ξ is a vector of dimension N . Φj (ξ) is a basis function. There is a one-to-one correspondence
between the terms in Eq.(10) and those in Eq.(11). The total number of terms P is determined by the
random dimensionality, N , and PCE degree,

P = 1 +
N !

(N − 1)!
+

(N + 1)!

(N − 1)!2!
+

(N + 2)!

(N − 1)!3!
+ · · · + (N − 1 + d)!

(N − 1)!d!
=

(N + d)!

N !d!
(13)

(3) Determining the PCE coefficients
Both the Galerkin scheme and the PCM are commonly used to determine the PCE coefficients that

can be derived via the weighted residual method. In this work, the PCM is used to obtain random
solutions from random space.

If the solution of a non-linear random differential equation is u = u(X, t, ξ), the residual R is defined
as follows:

Rp(X, t, ξ) = u(X, t, ξ) − û(X, t, ξ) (14)

Letting Rp(X, t, ξ) = 0 yields the following:

P
∑

j=1

{ΦkΦjK[u, exp(Ȳ (X) +

N
∑

i=1

ξi(θ)
√

ηifi(X))]}Cj(X, t) = (ΦkF (θ)) (k = 1, 2, · · · , P ) (15)

For each position X in space and t in time, P linear equations and p unknowns, Cj(X, t), are
formulated. The coefficients Φj(ξ

i) at the collocation point ξi can be calculated in advance. By solving
this linear equation, the coefficients in the PCE can be determined from their position and time.

Compared to the Galerkin scheme, the PCM creates non-coupling equations that can be solved using
other numerical methods. Therefore, the PCM is suitable for solving linear and non-linear problems.

(4) Evaluation of the output statistical behaviour
An important feature of the PCE is that its polynomial items are orthogonal,

〈Φi(ξ)Φj(ξ)〉 = 0 (i 6= j) (16)

if i = j,
〈

Φ2
j

〉

can be easily calculated.
The following is the mean value of the output domain:

¯̂u(X, t, ξ) = 〈û(X, t, ξ)〉 =

P
∑

j=1

cj(X, t) 〈Φj(ξ)〉 = c1(X, t) (17)

The variance of the output domain can be expressed as follows:

σ2
û =

〈

[û(X, t, ξ) − 〈û(X, t, ξ)〉]2
〉

=

P
∑

j=2

P
∑

k=2

cj(X, t)ck(X, t) 〈Φj(ξ)Φk(ξ)〉

=

P
∑

j=2

c2
j(X, t)

〈

Φ2
j

〉

(18)

where
〈

Φ2
j

〉

can be calculated in advance.
(5) Determination of the collocation point
When implementing the PCM, an important step is determining the collocation point. For an order-

specified PCE approximation, each collocation point can be selected from the orthogonal polynomial
roots.

For example, the coordinate collocation points for second order Hermit PCEs can be chosen from
the root of the third-order Hermite polynomial, ξ3 − 3ξ (i.e., −

√
3, 0,

√
3). Each collocation point is a

combination of these three roots. Two illustrative collocation points are listed below:

ξ1 = (ξ1
1 , ξ1

2 , ..., ξ1
N )T = (0, 0, ..., 0)T and ξ2 = (ξ2

1 , ξ2
2 , ..., ξ2

N )T = (
√

3, 0, ..., 0)T

The number of collocation points equals the number of coefficients to be determined Eq.(13).
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III. ELASTO-PLASTIC CELLULAR AUTOMATON
The elasto-plastic cellular automaton (EPCA)[19,20] is a numerical model that simulates the failure

process in heterogeneous rocks. This model conveniently considers the heterogeneity of the rock mass.
The completely nonlinear failure process of rocks from a load to failure can be traced. This model is
based on the localisation theory since it uses the cellular automaton technique. The local mechanical
behaviour can be updated within the failure process.

In the EPCA, the rock behaviour is governed by a rotating Mohr-Coulomb fracture model, which is
able to simulate rock fracturing from both tension and compression forces. For the tension, the Rankine
failure criterion is defined as follows:

σi − σt = 0 (i = 1, 2, 3) (19)

where σt is the tensile strength. For the compression, the Mohr-Coulomb failure criterion is defined by
the following:

|τ | = c − σn tanφ = c − σnµ (20)

where c is the cohesion strength, φ is the internal friction angle, and µ is the coefficient of friction. To
model the hardening, perfect plasticity, softening and brittle behaviours in rock (Fig.1(a)), the material
strength parameters were defined as functions of the equivalent plastic strains (Fig.1(b)):

ε̄p =

∫

√

2

3
(dεp

1dεp
1 + dεp

2dεp
2 + dεp

3dεp
3) (21)

Fig. 1. (a) Constitutive relation and (b) parameters for the evolution rule.

The rock heterogeneity, which is a major factor in the complex failure of rocks, is considered by
the EPCA code. The heterogeneity of the material data (such as Young’s modulus, tensile strength,
and cohesion) are used on an elemental level, which allows each element to have an independent value
assigned to each property. The heterogeneity can be characterised using certain statistical approaches.
For example, some researchers use a Weibull distribution to describe the material distribution parameters
of the rocks[19]. In a Weibull distribution, two parameters are used to characterise the rock heterogeneity:
(1) the homogeneous index,m, which represents the degree ofmaterial homogeneity, and (2) the elemental
seed parameter, which controls the spatial variation of the other parameters.

By considering different homogeneous indices (i.e., m =1.1, 3.0, 5.0, 7.0) for rocks (random seed
s = 10, which controls the spatial arrangement of parameters), the failure process of rocks uniaxial
compression was studied to demonstrate the ability of the EPCA system to model the rock failure
process. The size of the rock specimen is 100 mm×50 mm. The model was discretised into 5000 cell
elements. The displacement loading control method was used with a loading speed of 0.005 mm/step.
Table 1 shows the mechanical parameters used by the model.

Figure 2 shows the complete stress-strain curves for heterogeneous rocks with different homogeneous
indices under uniaxial compression conditions. With increasing mechanical load, the heterogeneous rock
specimen experiences several phases, such as a linear phase, a non-linear phase, strain softening, etc.
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Table 1. Rock mechanical parameters

Parameters Value Parameters Value

Young’s modulus 48600 MPa Cohesion 20 MPa
Poisson’s ratio 0.24 Residual cohesion 1 MPa
Friction angle 49◦ Tensile strength 8 MPa

Homogeneous index 1.1, 3.0, 5.0, 7.0 Residual tensile strength 0.1 MPa
Random seed 5, 10, 50, 100

Fig. 2. Complete stress-strain curves for rock specimens with different homogeneous indices.

Figure 3 shows how the fracturing process is affected by different homogeneous indices. It was found
that the failure process is greatly affected by the heterogeneity of the rocks (Fig.3).

The influence of the spatial arrangement of the parameters on the failure process was studied based
on the different random seeds (s =5, 10, 50 and 100) of rocks (m = 2.0). The specimen and its associated
mechanical parameters are the same as above.

Figures 4 and 5 show the complete stress-strain curves with the associated failure process for rocks
with the same homogeneous index but differing spatial arrangements. In this case, the failure patterns
of the rocks differ from one another. Similar stress-strain behaviour was found for each rock specimen.

The numerical results indicate the rock failure behaviour is greatly influenced by its heterogeneity.
Heterogeneous rock specimens have different strengths, failure modes and deformation behaviours.
Therefore, the rock failure behaviour presents a high uncertainty. However, in this section, only a
few rock specimens were considered to represent finite situations in real world. In reality, the failure
behaviour of rocks is more complex. Therefore, it is necessary to conduct uncertainty analysis on the
rock failure behaviour.

IV. UNCERTAINTY ANALYSIS OF ROCK FAILURE BEHAVIOUR

BASED ON PCM AND EPCA
1. Introduction to the integration of PCM and EPCA
PCM and EPCA are integrated to study the uncertainty in the failure processes of rocks. In this

case, the mechanical parameters (e.g., stiffness or strength parameters) form the input random field.
The output field can be the displacement, stress or plastic strain.

The procedure can be summarised as follows and shown in Fig.6:
(1) Let a random domain follow the normal distribution and then determine its mean and variance.
(2) Determine the probabilistic collocation points, P , which indicate how many times the EPCA

will be called to generate the sample.
(3) Generate the first collocation points according to the elemental information and associated centre

coordinates. A random sample of each mechanical property is produced according to the KL expansion.
(4) Call the EPCA system to calculate the mechanical behaviour of each sample with the input

mechanical parameters.
(5) Repeat steps 3-4 until the total calculations are P .
(6) Post procedure. Each coefficient in the PCE can be determined using the data from P calculations.

These results are saved and output.
For this model, parameters such as the unit correlation length (etap), mean value (meany), variance

(vary), number of expansion and running times, etc., are required. The number of expansion items
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Fig. 3. Failure process for rocks with different homogeneous indices.

(nkl) is the number of items reserved in the KL expansion. The relation between the second-order PCM
calculation time (npc) and the expansion is as follows:

npc =
(nkl + 2)(nkl + 1)

2
(22)

Based on the above theories and procedures, a numerical system (i.e., the PCM-EPCA) is developed
to analyse the uncertainty of heterogeneous rocks under a mechanical load involving the elastic analysis,
elasto-plastic analysis and elasto-brittle-plastic analysis.

2. Elastic analysis
First, we consider a rock specimen with a size of 100 mm×50 mm discretised into a system composed

of 200 cell elements. An external force (F = 5× 105 N) is applied to the middle of the upper boundary
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Fig. 4. Complete stress-strain curves for rock specimens with identical homogeneous indices but a different spatial random
seed.

Fig. 5. Failure pattern for rock specimens with identical homogeneous indices but a different spatial random seed.

(Fig.7). In this section, we use Young’s Modulus (E) as the random input field, and the governing
equations are expressed as follows:

E

(1 − µ2)

(

∂2u

∂x2
+

1 − µ

2

∂2u

∂y2
+

1 + µ

2

∂2v

∂x∂y

)

+ X = 0

E

(1 − µ2)

(

∂2v

∂y2
+

1 − µ

2

∂2v

∂x2
+

1 + µ

2

∂2u

∂x∂y

)

+ Y = 0

(23)

The displacement (u) is the estimated output field and is calculated as follows:

u =
√

u2
x + u2

y (24)

The uncertainty analysis for the displacement of spatially heterogeneous rocks under a concentrated
force is conducted using PCM-EPCA. For this model, the mean value of Young’s Modulus is µ = 2.7×108

Pa, the variance is σ2 = 7.29×1014 Pa2, the standard deviation is σ = 2.7×107 Pa, and the coefficient
of variation is C.V. = σ/µ = 10%. Using a second-order PCM, we calculate the cases shown in Table
2.

Table 2. Parameters for the second order PCM

Case etap meany (Pa) vary (Pa)2 nkl npc

1 0.4 2.7×108 7.29×1014 5 21
2 0.4 2.7×108 7.29×1014 10 66
3 0.4 2.7×108 7.29×1014 20 231
4 0.4 2.7×108 7.29×1014 30 496
5 0.4 2.7×108 7.29×1014 40 861

According to Table 2, different second order expansion terms (i.e., nkl =5, 10, 20, 30, and 40,
representing PCM-5, PCM-10,PCM-30, PCM-40 in the analyses, respectively) are considered. The mean
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Fig. 6. Flow chart of the combination of PCM and EPCA.

Fig. 7. Numerical model for (a) elastic analysis and (b) elasto-plastic and elasto-brittle-plastic analysis.

values and standard variances of the displacement fields are shown in Figs.8∼12, where mean represents
the mean value and STD represents the standard variance. It is found that the mean displacement values
obtained from the PCM model using different expansion terms have similar trends. Due to the application
of a force concentrated on the top of the rock, a large displacement gradient is found. In the lower parts
of the rock, the displacement is gentler. When the expansion term is above 20, the magnitude of the
mean displacement remains nearly unchanged, as indicated by the displacement mean value contour.
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The change in displacement of the STD fluctuates greatly at the top because of the concentrated force.
In the lower part, the STD displacement is smaller. The calculation precision is not high enough for a
second order PCM with 5 expansion terms because the number of calculations is only 21. As a result,
the displaced STD is not consistent for the top of the model (Fig.8). Increasing the expansion term and
calculation times causes the standard deviation contour to behave similarly. For random simulations,
a second order PCM (i.e., nkl =20, 231 calculation times) is sufficient to guarantee the precision. The
results change little when the expansion item is larger than 40.

Fig. 8. Second order PCM-5 and its (a) mean value and (b) standard variance (displacement unit: mm).

Fig. 9. Second order PCM-10 and its (a) mean and (b) standard variance (displacement unit: mm).

To observe these results in detail, the displacement variations of different expansion terms for section
x = 0.025 m are plotted in Fig.13. The mean value of the different PCM expansion items is nearly
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Fig. 10. Second order PCM-20 and its (a) mean and (b) standard variance (displacement unit: mm).

Fig. 11. Second order PCM-30 and its (a) mean and (b) standard variance (displacement unit: mm).

identical. The standard deviation increased with increasing numbers of expansion items. When the
expansion item is large enough, the standard deviation is converged.

To show the efficiency of the PCM, the MCS method was used for the same simulations. In the MCS
method, a random number is generated using a Gaussian random method. The KL expansion was used
to generate the samples, which are then assigned to the material parameters of the rock mass. The
numerical EPCA is used to calculate the field variables for each sample. Finally, statistical analysis is
performed to obtain the standard deviation and mean values.

We compare the standard deviation between the PCM and MCS at section x = 0.025 m. Figure 14
shows that the second order PCM models are consistent with the MCS results for 8000 calculations.
For the second order PCE with PCM-20, only 231 (=22!/20!/2!) calculations are needed. However,
the MCS results for 231 calculations deviate greatly from those using 8000 calculations. These results
indicate the superiority of the PCM, which uses a small number of calculations to obtain high precision
for random analysis.



Vol. 28, No. 5 Pengzhi Pan et al.: Uncertainty Analysis of Rock Failure Behaviour · 547 ·

Fig. 12. Second order PCM-40 and its (a) mean and (b) standard variance (displacement unit: mm).

Fig. 13. The (a) mean and (b) standard deviation of the displacement at section x = 0.025 m.

For the different input variations (i.e., different coefficients of variation (C.V.)), in the PCM and MCS
model (case 1, C.V. = 10%, and case 2, C.V. = 50%), all the input parameters are identical except
for case 1 being smaller than case 2. Figure 15 shows the statistics for the displacement at section
x = 0.025 m, which indicates that the standard deviations obtained from the PCM and MCS for case
1 are almost identical. Again, the PCM uses 231 calculations and obtains results similar to the MCS,
which uses 8000 calculations. However, for case 2, the standard deviations differ greatly. The reason for
this difference is because increasing the variance in the input domain increases the error from using a
low-order PCE to represent the output domain. As a result, the model precision decreases. Additionally,
significant deviations may occur. Therefore, the use of a second order PCM can obtain enough precision
for calculations from input parameters with small variances. However, for input parameters with large
variance, a larger number of expansion terms of KL are required (i.e., PCM-60, 1891 calculations) to
be converged with the MCS method, as can be seen from Fig.15(b).

3. Elasto-plastic analysis
The efficiency and reliability of the PCM-EPCA was demonstrated during the elastic analysis.

Based on this methodology, elasto-plastic and elasto-brittle-plastic analyses were conducted to study
the uncertainty of heterogeneous rock failure behaviour.

Assuming the rock is a perfectly elasto-plastic material, the uncertainty analysis is performed by
considering the randomness of the media parameters. The governing equation was expressed using the



· 548 · ACTA MECHANICA SOLIDA SINICA 2015

Fig. 14. Comparison of the standard deviation between the PCM and MCS method at section x = 0.025 m ((a) an overall
view and (b) a close view).

Fig. 15. Comparison between the PCM and MCS models considering the different coefficients of variance. (a) Case 1
C.V = σ/µ = 10% and (b) Case 2 C.V = σ/µ = 50%.

bulk modulus.
3K(1 − 2µ)

(1 − µ2)

(

∂2u

∂x2
+

1 − µ

2

∂2u

∂y2
+

1 + µ

2

∂2v

∂x∂y

)

+ X = 0

3K(1 − 2µ)

(1 − µ2)

(

∂2v

∂y2
+

1 − µ

2

∂2v

∂x2
+

1 + µ

2

∂2u

∂x∂y

)

+ Y = 0

(25)

In this model, we use the Mohr-Coulomb yield criterion, which produces the following equation:

F (σ) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sin φ − c cosφ = 0 (26)

The output field is equivalent to the plastic strain.

ε̄p =

∫

√

2

3
(dεp

1dεp
1 + dεp

2dεp
2 + dεp

3dεp
3) (27)

We use the PCM to evaluate the uncertainty of an equivalent plastic strain at each node. The numerical
model is shown in Fig.7(b).

The bulk modulus is the random input field. The output field is the equivalent plastic strain. The
mechanical parameters are assigned according to Table 3.

Table 3. Mechanical parameters for elasto-plastic analysis

Mechanical Bulk modulus
Shear modulus (GPa) Cohesion (MPa) Friction

parameters Mean value (Pa) Variance (Pa2) angle (◦)

Value 2.0×1011 4.0×1020 9.8 5 18.5

We use a displacement control method for the uniaxial compression of the rock specimens. The
loading rate is 2 × 10−6 m/step. Through a series of trial calculations, the rock specimen exhibits
macro-yield within 35 loading steps. Therefore, all of the EPCA simulations have 35 loading steps.
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In this model, the different PCM expansion items (PCM-10, PCM-20, PCM-30, PCM-40, and PCM-
50) are considered. Figures 16 and 17 show the means and standard deviations of the equivalent plastic
strains for PCM-20 and PCM-50 (1326 calculations). It can be observed that the distribution of the
means are nearly the same for both cases. The red contour represents the zone with a high equivalent
plastic strain. Owing to the heterogeneity of the rock specimen, those places with higher stress or lower
strength will yield first during the loading process. These local yield zones lead to the concentration
of the stress. The effects of stress adjustment and continuous loading form the macro plastic zone.
These results indicate that the red zone has a higher yield probability. Figure 18 shows the statistical
behaviour of equivalent plastic strains at section x = 0.025 m. Increasing the expansion item decreases
the mean value of the equivalent plastic strain, which approaches a convergent value (MCS-8000). The
standard deviation increases upon increasing the expansion item and finally reaches a stable state and
converges to the MCS method.

Fig. 16. Statistical results for equivalent plastic strains considering the (a) mean and (b) standard deviation for PCM-20.

The above results for the elasto-plastic analysis are obtained via the statistical analysis of npc (npc
differs for the different expansion items) samples. As a reference, we present 6 typical elasto-plastic
model samples. The complete stress-strain curves and associated failure modes (equivalent plastic strain
contour) for these samples are shown in Figs.19 and 20, respectively. Although each sample is assigned
ideal elasto-plastic properties, their equivalent plastic strain distributions differ from one another. For
example, a large plastic strain was found opposite the angle belt in sample 1, which produces a shear.
However, sample 5 experiences a split failure. The failure zone of the elasto-plastic materials was not
obvious.

4. Elasto-brittle-plastic analysis
An uncertainty analysis is performed using the PCM-EPCA and assuming the rock is an elasto-

brittle-plastic material. In this case, the control equation is the bulk modulus (Eq.(25)).
The Mohr-Coulomb theory is used as the yield criterion. The initial yield is expressed as follows:

Fi(σ) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sin φi − ci cosφi = 0 (28)

The residual surface is the following:

Fr(σ) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinφr − cr cosφr = 0 (29)

The equivalent plastic strain is selected as the output field (Eq.(27)).
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Fig. 17. Statistical results for equivalent plastic strains considering the (a) mean and (b) standard deviation for PCM-50
(elasto-plastic case).

Fig. 18. The (a) mean value and (b) standard deviation for equivalent plastic strains at section x = 0.025 m.

Fig. 19. The complete stress-strain curves for typical samples (elasto-plastic solution).

The numerical model (Fig.7(b)), loading method, loading rate and loading steps are the same as in
the previous section. The bulk modulus, shear modulus, initial cohesion and initial friction angle are
shown in Table 3. The residual cohesion and residual friction angle are 1 MPa and 6.7◦, respectively.

Figures 21∼23 show the results of considering different expansion items (PCM-30,PCM-40 and PCM-
50). It can be observed that the distributions of the mean and standard deviation are qualitatively
similar. The largest mean and standard deviation for the plastic strain is found in the right lower corner,
where the highest failure probability is expected. Figure 24 shows the mean value and standard deviation
profile at section x = 0.025 m for the different cases. It is found that, increasing the expansion item leads
the mean and standard deviation to approach the convergent value with MCS (MC-8000 in Fig.24). The
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Fig. 20. Distribution of the equivalent plastic strain for typical samples (elasto-plastic solution).

Fig. 21. Statistical results for equivalent plastic strains considering the (a) mean and (b) standard deviation for PCM-30.
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Fig. 22. Statistical results for equivalent plastic strains considering the (a) mean and (b) standard deviation for PCM-40.

Fig. 23. Statistical results for equivalent plastic strains considering the (a) mean and (b) standard deviation for PCM-50
(elasto-brittle plastic case).

Fig. 24. The (a) mean value and (b) standard deviation of the equivalent plastic strain at section x = 0.025 m.
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Fig. 25. The complete stress-strain curves of a typical sample (elasto-brittle-plastic solution).

Fig. 26. The distribution of the equivalent plastic strain for a typical sample (elasto-brittle-plastic solution).

convergence speed of the brittle rock is much slower than the elasto-plastic material shown in Fig.18.
To obtain more accurate results, the expansion items should be increased. This recommendation means
that the failure of brittle rock is less certain, which can be clearly observed from the failure behaviour of
the 6 selected samples shown in Figs.25 and 26. Different strength and stiffness are obtained for samples
with different heterogeneities. This difference is much larger than that of a perfect elasto-plastic analysis.
For the brittle rocks, the localised failure is more serious, and a shear band is clearly found (Fig.26).
Energy is stored in the various rock elements during loading and released upon failure. Due to the
strong interactions induced by stress redistribution and long-range deformation, the failure of a single
important element may cause an avalanche of additional failures in neighbouring elements and lead to a
large release of energy. Therefore, for brittle materials, the onset of elemental failure greatly influences
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the failure behaviour. For rocks with different heterogeneities, the position where the failure initiates
may differ, which directly affects the final failure behaviour of such rocks (Figs.25 and 26).

V. CONCLUSIONS
In this paper, we introduce a method for analysing the uncertainty in the failure behaviour for

heterogeneous rock mass by combining the KL expansion and PCM. The PCM is implemented using
a self-developed numerical code (i.e., the EPCA), and an uncertainty analysis tool, PCM-EPCA, is
developed. This tool is successfully used to analyse the rock failure behaviour considering elastic, elasto-
plastic and elasto-brittle-plastic constituents in the rocks. Similar to the MCS method, the PCM also
involves sampling. The MCS method, which is based on direct sampling, is conceptually straightforward
and easy to implement. Several MCS methods can be very efficient. The main disadvantage of the MCS
method is that it uses the law of large numbers to generate a large number of equally probable situations
and is thus computationally demanding. The PCMbuilds an optimal approximation evaluated at selected
collocation points and hence reduces the required computational effort significantly. The main advantages
of the PCM relative to the MCS method are evident. (1) The random fields are represented by KL
expansions with less expansion items required. (2) Using PCM to solve the PCE coefficients and obtain
independent certainty equations. This capability greatly reduces the required computational resources.
It is convenient to couple this technique with other numerical software for the uncertainty analysis.
However, PCM is not always showing its efficiency. In some cases, when a large number of terms are
needed in KL expansion, or a high order of PCM is needed, it becomes very inefficient (e.g., the case
with high coefficients of variation (C.V.)).

References
[1] Jury,W.A., Simulation of solute transport using a transfer function model. Water Resources Research, 1982,

18(2): 363-368.
[2] Yeh,T.C.J., Gelhar,L.W. and Gutjahr,A.L., Stochastic analysis of unsaturated flow in heterogeneous soils:

1. Statistically isotropic media. Water Resources Research, 1985, 21(4): 447-456.
[3] Mantoglou,A., A theoretical approach for modeling unsaturated flow in spatially variable soils: Effective

flow models in finite domains and nonstationarity. Water Resources Research, 1992, 28(1): 251-267.
[4] Russo,D., Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated

porous formation. Water Resources Research, 1993, 29(2): 383-397.
[5] Tartakovsky,D.M., Neuman,S.P. and Lu,Z., Conditional stochastic averaging of steady state unsaturated

flow by means of Kirchhoff transformation. Water Resources Research, 1999, 35(3): 731-745.
[6] Zhang,D., Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous me-

dia. Water Resources Research, 1999, 35(4): 1127-1141.
[7] Zhang,D., Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. Academic Pr., 2002.
[8] Yang,J., Zhang,D. and Lu,Z., Stochastic analysis of saturated-unsaturated flow in heterogeneous media

by combining Karhunen-Loeve expansion and perturbation method. Journal of Hydrology, 2004, 294(1):
18-38.

[9] Lin,G., Tartakovsky,A.M. and Tartakovsky,D.M., Uncertainty quantification via random domain decom-
position and probabilistic collocation on sparse grids. Journal of Computational Physics, 2010, 229(19):
6995-7012.

[10] Li,D., Chen,Y., Lu,W. and Zhou,C., Stochastic response surface method for reliability analysis of rock
slopes involving correlated non-normal variables. Computers and Geotechnics, 2011, 38(1): 58-68.

[11] Li,D.Q., Jiang,S.H. Cheng,Y.G. and Zhou,C.B. A comparative study of three collocation point methods for
odd order stochastic response surface method. Structural Engineering and Mechanics, 2013, 45(5): 595-611.

[12] Hassan,A.E., Cushman,J.H. and Delleur,J.W., A Monte Carlo assessment of Eulerian flow and transport
perturbation models. Water Resources Research, 1998, 34(5): 1143-1163.

[13] Ballio,F. and Guadagnini,A., Convergence assessment of numerical Monte Carlo simulations in groundwater
hydrology. Water Resources Research, 2004, 40(4): W04603.

[14] Zhang,D. and Lu,Z., An efficient, high-order perturbation approach for flow in random porous media via
Karhunen-Loeve and polynomial expansions. Journal of Computational Physics, 2004, 194(2): 773-794.

[15] Graham,W. and McLaughlin,D., Stochastic analysis of nonstationary subsurface solute transport. Water

Resources Research, 1989, 25(2): 215-232.
[16] Chen,M., Zhang,D., Keller,A.A. and Lu,Z., A stochastic analysis of steady state two-phase flow in hetero-

geneous media. Water Resour. Res, 2005, 41(1): w01006.



Vol. 28, No. 5 Pengzhi Pan et al.: Uncertainty Analysis of Rock Failure Behaviour · 555 ·

[17] Ghanem,R.G. and Spanos,P.D., Stochastic finite elements: a spectral approach. Dover Pubns., 2003.
[18] Tatang,M.A., Pan,W. Prinn,R.G. and McRae,G.J., An efficient method for parametric uncertainty analysis

of numerical geophysical models. Journal of Geophysical Research, 1997. 102(D18): 21925-21932.
[19] Feng,X.T., Pan,P.Z. and Zhou,H., Simulation of the rock microfracturing process under uniaxial com-

pression using an elasto-plastic cellular automaton. International Journal of Rock Mechanics and Mining

Sciences, 2006, 43(7): 1091-1108.
[20] Pan,P.Z., Feng,X.T. and Hudson,J.A., Study of failure and scale effects in rocks under uniaxial compression

using 3D cellular automata. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4):
674-685.

[21] Li,H. and Zhang,D. Probabilistic collocation method for flow in porous media: Comparisons with other
stochastic methods. Water Resour. Res, 2007, 43: 1-13.

[22] Li,H., Accurate and Efficient Uncertainty Quantification of Subsurface Fluid Flow Via the Probabilistic
Collocation Method. University of Southern California, 2010.

[23] Ghanem,R., Scales of fluctuation and the propagation of uncertainty in random porous media. Water

Resources Research, 1998, 34(9): 2123-2136.
[24] Wiener,N., The homogeneous chaos. American Journal of Mathematics, 1938, 60(4): 897-936.


