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ABSTRACT Conventional orthogonal polynomial approach can solve the multilayered plate only
when the material properties of two adjacent layers do not change significantly. This paper de-
veloped an improved orthogonal polynomial approach to solve wave propagation in multilayered
plates with very dissimilar material properties. Through numerical comparisons among the exact
solution, the results from the conventional polynomial approach and from the improved poly-
nomial approach, the validity of the improved polynomial approach is illustrated. Finally, it is
shown that the conventional polynomial approach can not yield correct continuous normal stress
profiles. The improved orthogonal polynomial approach has overcome this drawback.
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I. INTRODUCTION
As early as 1972, orthogonal polynomial approach was developed to solve line acoustic waves in

homogeneous semi-infinite wedges[1]. After that, this approach has been used to solve various wave
and vibrational problems, from acoustic waves in wedges and ridges[1–3] to surface acoustic waves
in layered[4,5] and inhomogeneous[6] semi-infinite structures. Later on, it was extended to investigate
Lamb-like guided acoustic waves in multilayered[7] and functionally graded[8] finite-thickness plates.

The polynomial approach has one specificity. It directly incorporates the boundary conditions into
the equations of motion by assuming position-dependent material physical constants. The motion
equations are then converted into a matrix eigenvalue problem thanks to an expansion of the independent
mechanical variables in an appropriate series of orthonormal functions; leading to semi-variational
determination of the frequencies of modes and associated profiles. This orthogonal polynomial approach
with automatically satisfied boundary conditions is not confined to only flat surfaces but is capable of
calculating the vibration modes of curved waveguides. It has been used to calculate axial waves[9,10] and
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circumferential waves[11] in anisotropic functionally graded cylinders. It has also been applied to calculate
toroidal waves on the surface of homogeneous[12] and functionally graded[13] spherical curved plates.
This polynomial approach is not limited to only either anisotropic elastic media or piezoelectric elastic
media. It has also been applied to piezoelectric-piezomagnetic composites to study the magneto-electric
coupling effect both in plates[14] and cylinders[15]. Very recently, it has been extended to investigate the
generalized thermoelastic waves[16–18] and viscoelastic waves[19,20] in multilayered and graded plates.

From the above simple review, we can see that the orthogonal polynomial approach is highly effective
in calculating free guided waves in multilayered plates and functionally graded structures. However,
when it is used to solve multilayered plates, there is no significant change in the material properties of
two adjacent layers, otherwise the approach would not work satisfactorily. Moreover, to be complete
and reliable, the approach must retrieve not only the dispersion curves but also the field profiles. More
than anything else, it must, whatever the layer material properties, very similar or not, reliably restitute
continuity or discontinuity of any field profile in accordance with the requirements of physical boundary
and continuity conditions. The conventional orthogonal polynomial method uses a single polynomial
expansion which is continuous in level and in slope over the entire structure even at the frontier between
two adjacent layers. This results in level and sloping continuous mechanical displacement distributions
and therefore discontinuous stress distributions because of different elastic constants of two adjacent
layers. But for such a real structure, the true or physico-mechanical displacement is continuous at the
interface between two adjacent layers, but its derivatives are not. These discontinuous derivatives with
different elastic constants allow the normal stress components to be continuous.

Considering these points, this paper proposes an improved orthogonal polynomial approach to make
it suitable to accurately solve motion equations in multilayered plates whatever the layer material
properties, very similar or not. Through numerical comparisons between the exact solution obtained
from the transfer matrix method, and the results obtained from the conventional polynomial approach
and the improved polynomial approach, the validity of the improved polynomial approach is illustrated.
It is also shown that the conventional orthogonal polynomial approach cannot calculate accurately the
continuous distribution of the normal stress field, even in multilayered plates with similar layer material
properties while the proposed improved polynomial approach has overcome these major drawbacks. In
this paper, traction-free boundary conditions are assumed.

II. MATHEMATICS AND FORMULATION OF THE PROBLEM
Consider an orthotropic N -layered plate which is infinitely horizontal with a total thickness hN . We

place the horizontal (x, y)-plane of a cartesian coordinate system on the bottom surface and let the
plate be in the positive z-region, as shown in Fig.1, where the medium occupies the region 0 ≤ z ≤ hN .

For the wave propagation considered in this paper, the body forces are assumed to be zero. Thus,
the dynamic equation for the plate is governed by

∂Txx

∂x
+

∂Txy

∂y
+

∂Txz

∂z
= ρ

∂2ux

∂t2

∂Txy

∂x
+

∂Tyy

∂y
+

∂Tyz

∂z
= ρ

∂2uy

∂t2

∂Txz

∂x
+

∂Tyz

∂y
+

∂Tzz

∂z
= ρ

∂2uz

∂t2

(1)

where Tij , ui are the stress and elastic displacements, respectively; ρ is the density of the material.
The relationship between the general strain and general displacement can be expressed as
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where εij is the strain.
The traction-free boundary conditions for a multilayered structure require that: (1) the mechanical

displacement and the normal component of stress should be continuous at the interfaces; (2) the normal
component of the stress should be zero at the upper and bottom surfaces.
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Fig. 1. Schematic diagram of a multilayered plate showing the coordinate system.

By introducing the rectangular window function π0,hN
(z)

π0,hN
(z) =

{

1, 0 ≤ z ≤ hN

0, elsewhere
(3)

the stress-free boundary (Tzz = Txz = Tyz = 0 at z = 0, z = hN ) are automatically incorporated in
the constitutive relations of the plate[4]

Txx = C11εxx + C12εyy + C13εzz

Tyy = C12εxx + C22εyy + C23εzz

Tzz = (C13εxx + C23εyy + C33εzz)π0,hN
(z)

Tyz = 2C44εyzπ0,hN
(z)

Txz = 2C55εxzπ0,hN
(z)

Txy = 2C66εxy

(4)

where Cij are the elastic coefficients.
For the layered plate they are expressed as

Cij =

N
∑

n=1

Cn
ijπhn−1,hn

(z) (5a)

where N is the number of the layers and Cn
ij is the elastic constant of the Nth material. Similarly, the

mass density can be expressed as

ρ =

N
∑

n=1

ρnπhn−1,hn
(z) (5b)

For a free harmonic plane wave propagating in the x direction in a plate, we assume the displacement
components, to be of the form

ux(x, y, z, t) = exp(ikx − iωt)U(z) (6a)

uy(x, y, z, t) = exp(ikx − iωt)V (z) (6b)

uz(x, y, z, t) = exp(ikx − iωt)W (z) (6c)

U(z), V (z), W (z) represent the amplitude of vibration in the x, y, z directions, respectively. k is
the magnitude of the wave vector in the propagation direction, and ω is the angular frequency.

By substituting Eqs.(2), (4), (5), (6) into Eq.(1), the governing differential equations in terms of
displacement components can be obtained
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where the superscript ( )′ is the partial derivative for z. Obviously, Eq.(7b) is independent of the other
two equations. It represents the propagating SH wave. The other two Eqs.(7a) and (7c) control the
propagating Lamb-like wave.

To solve the coupled multilayered plate wave equations (7), the conventional orthogonal polynomial
approach expands the U(z), V (z), W (z) to three Legendre orthogonal polynomial series[7]

U(z) =

∞
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where pi
m(i = 1, 2 , 3 ) are the expansion coefficients and
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with Pm being the mth Legendre polynomial. Theoretically, m runs from 0 to ∞. In practice, the
summation over the polynomials in Eq.(8) can be halted at some finite value m = M , when higher
order terms become essentially negligible.

As is mentioned above, because of truncation, the conventional orthogonal polynomial approach
can only solve the multilayered plate when material properties of two adjacent layers do not change
significantly. Here, we improved the orthogonal polynomial approach so as to make it suitable for the
multilayered plate with very dissimilar materials. We expand field quantities of each layer to one specific
Legendre polynomial
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for the Nth layer : QN
m (z) =

√

2m + 1

hN − hN−1
Pm

(

2

hN − hN−1
z − hN + hN−1

hN − hN−1

)

(10c)

Therefore,ua(a = 1, 2, 3)(ux, uy, uz) are expanded as follows (the form is chosen in order to automatically
incorporate in the calculation the continuity conditions at the interfaces relative to the components of
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the mechanical displacement):
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and so on . . . .
Substituting Eqs.(10) and (11) into Eqs.(7), then multiplied by Q1∗

j
(z), Q2∗

j
(z) · · · · · ·QN∗

j
(z), with

j running from 0 to M , respectively, integrating over z from 0 to hN , and taking advantage of the
orthonormality of the Legendre polynomial gives the following systems:
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where nAj,m
αβ (α, β = 1, 2, 3) and nM j

m are the elements of a non-symmetric matrix. They can be obtained
according to Eqs.(7).

Equations (12) can be written as
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So, Eqs.(13) yields a form of the eigenvalue problem. The eigenvalue ω2 gives the angular frequency
of the guided wave; eigenvectors pi

m,n(i = 1, 2 , 3 ) allow the components of the particle displacement
to be calculated. According to Vph = ω/k and Vg = dω/dk, the phase velocity and group velocity can
be obtained. The complex matrix Eq.(13) can be solved numerically making use of standard computer
programs for the diagonalizationof non-symmetric squarematrices. 3N(M+1) eigenmodes are generated
from the order M of the expansion. Acceptable solutions are those eigenmodes for which convergence
is obtained as M is increased. It is asserted that the eigenvalues obtained are converged solutions when
further increase in the matrix dimension does not result in a significant change in the eigenvalue.

III. NUMERICAL RESULTS
Based on the foregoing formulations, computer programs in terms of both the conventional polynomial

approach and the improved polynomial approach have been written using Mathematica to calculate
the dispersion curves for the layered plates.

Table 1. The material properties of the bilayer plate

Property C11 C13 C33 C55 ρ

steel 282 113 282 84 7.932
brass 162.6 81.3 162.6 40.7 8.4

Units: Cij(10
9 N/m2), ρ ( 103 kg/m3).
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Table 2. The material properties of the sandwich plate

Property C11 C22 C33 C12 C13 C23 C44 C55 C66 ρ

Middle layer 281 349 294 126 84 88 108 132 131 3.59
Top/bottom layer 28.1 34.9 29.4 18.9 12.6 13.2 12.96 15.84 15.72 1.795

Units: Cij(10
9 N/m2), ρ ( 103 kg/m3).

3.1. Comparison with the Exact Solution from the Transfer Matrix Method

Firstly, for validation, we calculated a two-layered metal plate to make a comparison between the
exact solution obtained from the transfer matrix method and both the conventional and improved
polynomial approaches’ results. The plate is composed of stainless steel (1 mm thick) and brass (1 mm
thick). Their material constants are shown in Table 1. Figure 2(a) shows the exact solution Lamb-like
wave dispersion curves from the transfer matrix method. Figure 2(b) is obtained from the conventional
polynomial approach. The solution of the improved polynomial approach is the same as in Fig.2(b). In
order to save space, it is not shown here. As can be seen, for the two-layered metal plate, the conventional
and improved polynomial approaches can yield correct dispersion curves.

Fig. 2. Phase velocity dispersion curves for the stainless steel-brass two-layer plate.

Next, we show an example of an equal thickness (1 m) three-layer sandwich plate with very dissimilar
materials. The material constants of the three-layer materials are shown in Table 2. Figure 3 shows the
dispersion curves of the exact solutions from the transfer matrix method using solid lines, the solutions
from the improved polynomial approach using dotted lines, and the solutions from the conventional
polynomial approach using dashed lines. It can be seen that solid lines and dotted lines agree very well.
Dashed lines exhibit differences from solid lines and dotted lines. This illuminates the validity of the

Fig. 3. Phase velocity dispersion curves for the three layer sandwich plate with very dissimilar material: solid lines, from
the transfer matrix method; dotted lines, from the improved polynomial method; dashed lines, from the conventional
polynomial method.
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improved polynomial approach.

3.2. Stress Profiles

This section shows stress profiles for the above two-layered structures. Figures 4 and 5 give the stress
profiles of the first two Lamb-like wave modes for the two layer metal plate and the sandwich plate,
respectively. The first and second modes are given respectively on the left- and right-hand sides of the
figures. From these figures we can see that even for the two-layer metal plate with similar materials,
the conventional polynomial approach can not give correct results. The normal stress components Txz

and Tzz obtained are discontinuous at the interfaces and not zero at the bottom and top surfaces. The
computational discontinuity obtained, theoretically non expected from the physical point of view, is
the result, as mentioned at the beginning of the paper, of a combination of the following two factors
(i) the use, for each mechanical displacement component, of a single truncated polynomial expansion
which applies all over the multilayered structure and is unconditionally continuous both in level and in
slope and (ii) dissimilar layer material properties with, for any property, a jump at every interface which
ends up, in the transition from one layer to the next, in a jump in normal stress components. It can

Fig. 4. Stress profiles for the steel-brass two-layer plate at kh = 6.6; (a) from the conventional polynomial method, (b)
from the improved polynomial method, (c) from the transfer matrix method.
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Fig. 5. Stress profiles for the sandwich plate at kh = 3.3. (a) from the conventional polynomial method, (b) from the
improved polynomial method, (c) from the transfer matrix method.

be seen from Figs.4(b) and 5(b) that the improved polynomial approach has completely overcome this
drawback of the conventional polynomial approach. Figures 4(c) and 5(c) also give the exact solutions
from the transfer matrix method, which are consistent with the results of the improved method.

IV. CONCLUSIONS
Considering the drawbacks of the conventional orthogonal polynomial approach to solving multi-

layer plates, this paper improved the orthogonal polynomial approach to make it suitable to solve the
multilayered plate whatever the dissimilarities of the layer material properties. Dispersion curves and
field profiles, continuous or not, are accurately restituted.

To sum up, we can anticipate three prospects for the proposed approach:
(a) The improved approach can be extended to solve various multi-field coupled multilayered struc-

tures, such as piezoelectric multilayered structures, magneto-electro-elastic ones, and so on.
(b) The improvement of the Legendre orthogonal polynomial approach can be transposed to the

Laguerre orthogonal polynomial for solving semi-infinite structures.
(c) The improved approach can be extended to deal with curved multilayered structures, such as

hollow cylinders, spherical curved plates, and so on.
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