
Published by AMSS Press, Wuhan, China
Acta Mechanica Solida Sinica, Vol. 27, No. 5, October, 2014 ISSN 0894-9166

NONLINEAR TRANSIENT RESPONSE OF
FUNCTIONALLY GRADED SHALLOW SPHERICAL
SHELLS SUBJECTED TO MECHANICAL LOAD AND

UNSTEADY TEMPERATURE FIELD⋆⋆

Y iming Fu Sumin Hu⋆ Yiqi Mao

(College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

Received 20 November 2012, revision received 5 March 2014

ABSTRACT This paper is concerned with the transient deformation of functionally graded (FG)
shallow spherical shells subjected to time-dependent thermomechanical load. Based on Timoshenko-
Mindlin hypothesis and von Karman nonlinear theory, a set of nonlinear governing equations of
motion for FG shallow spherical shells in regard to transverse shear deformation and all the inertia
terms are established using Hamilton’s principle. The collocation point method and Newmark-
beta scheme in conjunction with the finite difference method are adopted to solve the governing
equations of motion and the unsteady heat conduction equation numerically. In the numerical
examples, the transient deflection and stresses of FG shallow spherical shells with various material
properties under different loading conditions are presented.

KEY WORDS functionally graded materials, unsteady temperature field, transient deflection and
stresses

I. INTRODUCTION
The concept of functionally graded materials (FGMs) was first introduced in 1984 by materials scien-

tists in the Sendai area of Japan[1]. FGMs refer to heterogeneous composite materials. The composition
of FGMs varies continuously from one surface of the materials to the other, resulting in continuously
varying material properties. FGMs are usually made from a mixture of metal and ceramic that com-
bines the advantages of toughness, machinability of metal and high strength, temperature resistance
of ceramic. Therefore, FGMs have found potential applications in aerospace, biomedical, and energy
engineering. And FGMs structures are not merely under mechanical load, but also frequently in a
temperature field.

In recent years, a lot of research have been performed on the analysis of FG structures subjected to
mechanical load in a steady temperature field. Shen[2] employed a mixed Galerkin-perturbation technique
to study the bending response of FG plates in thermal environment. Pelletier et al.[3] obtained an exact
solution for the thermoelastic response of FG orthotropic cylindrical shells. A FG anisotropic cylinder
in different thermomechanical states was studied via Fourier series by Tarn[4]. Woo et al.[5] presented
an analytical solution for the postbuckling of FG moderately thick plates and shallow shells under the
condition of compressive loads and steady temperature fields. The thermomechanical postbuckling of
a FG circular plate was investigated by Ma et al.[6]. Using the higher-order shear deformation theory,
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Alijani et al.[7] employed the pseudo-arclength continuation and collocation scheme to study the thermal
effects on the vibrations of FG doubly curved shells. Shahsiah et al.[8] studied thermal instability of
FG shallow spherical shells, and the critical buckling temperatures were discussed for three types of
thermal loads, respectively. Praveen and Reddy[9] investigated the nonlinear thermoelastic response of
FG plates using the finite element method (FEM).

The transient behaviours of FGMs in unsteady temperature fields have not drawn much attention.
Wang et al.[10] investigated the thermal shock behaviours of FG plates. Using the AEH and finite element
methods, Goupee et al.[11] studied the transient thermoelastic response of FGMs. Kim and Noda[12]

investigated the deflection and transient temperature distribution of FG plates using a Green’s function
approach. Introducing a laminated plate model, Tanigawa et al.[13] analyzed the thermal stresses of
FG plates. Jin and Paulino[14] studied an edge crack in a strip of FGM under transient thermal load
conditions. Asgari and Akhlaghi[15] investigated the temperature, displacements and stresses of a FG
thick hollow cylinder of finite length using the FEM. Vel and Batra[16] presented an analytical solution
for analyzing the transient temperature, displacements and thermal stresses of FG plates subjected to
time-dependent thermal loads. Qian and Batra[17] obtained the transient temperature distribution in a
thick FG plate using meshless local Petrov-Galerkin method (MLPG). Mahmoud et al.[18] studied the
elasto-plastic behaviours of FGMs under thermal loads by adopting a stress-strain power law hardening
model.

To the best of the authors’ knowledge, open literature in this field were limited to the analysis of
FG structures in either a steady temperature field or unsteady temperature field without mechanical
load. To date, no research is reported on the transient behaviours of FG shallow spherical shells sub-
jected to mechanical loads in an unsteady temperature field. In the present paper, a model for a FG
shallow spherical shell subjected to time-dependent thermomechanical loads is presented. The transient
temperature is determined from the heat conduction equation using the finite difference method. The
displacement functions are divided between space and time domains with the collocation point method
and Newmark-beta method, respectively. By combining the governing equations of motion, boundary
conditions and initial conditions, the whole problem is solved with the iterative method.

II. BASIC EQUATIONS
Consider a FG shallow spherical shell shown in Fig.1, in which R, h, a are the curvature radius of

the middle curved surface, the thickness of the shell and the radius of the base circle, respectively. An
arbitrary point in the shell can be determined by the orthogonal curvilinear coordinates (ϕ, θ) on the
middle curved surface and z coordinate along the inner normal direction of the middle curved surface.
The complementary angle of latitude ϕ is measured from the axisymmetric axis, and the longitude θ is
measured from any radius of a parallel circle. z = 0 denotes the middle curved surface, and z = ±h/2
denotes inner and outer surfaces of the shell, respectively. In the given orthogonal curvilinear coordinates,
the principal radii of curvature are R1 = R2 = R, the Lamé coefficients of the middle curved surface
are A = R and B = R sin ϕ and the principal curvatures are κ1 = κ2 = −1/R.

Fig. 1. Geometrical configuration of FG shallow spherical shell.
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2.1. Geometric Relations

In the case of the axisymmetric deformations of a FG shallow spherical shell, the circumferential
displacement u2 = 0, and all the variables are independent of θ. Based on the Timoshenko-Mindlin
hypothesis, the displacement components (u1, u2, u3) of an arbitrary point in the shallow spherical
shell along the coordinate (ϕ, θ, z) at any time t are expressed as

u1 (r, θ, z, t) = u (r, t) + zφ (r, t)

u2 (r, θ, z, t) = 0

u3 (r, θ, z, t) = w (r, t)

(1)

where (u, w) are the displacement components of the corresponding point on the middle curved surface
along the (ϕ, z) directions, respectively. φ is the rotation angles of the normal to middle surface along
the ϕ direction.

According to von Karman nonlinear theory, the strain components (εϕ, εθ, εϕz) of an arbitrary point
in the shallow spherical shell can be expressed as

εϕ = εϕ,0 + zκϕ, εθ = εθ,0 + zκθ, εϕz = φ +
∂w

R∂ϕ
(2)

in which εϕ, 0, εθ,0 are the strain components on the middle curved surface and κϕ, κθ are the changed
values of the curvatures on the middle curved surface, and

εϕ,0 =
∂u

R∂ϕ
− w

R
+

1

2

(

∂w

R∂ϕ

)2

, εθ,0 =
u

R
cotϕ − w

R
, κϕ =

∂φ

R∂ϕ
, κθ =

φ

R
cotϕ (3)

In the analysis of the shallow spherical shell, introducing a new coordinate r along the direction of
the radius of the base circle, using the following approximate relations r ≈ Rϕ, sin ϕ ≈ ϕ, cosϕ ≈ 1,
and substituting those approximate relations into Eqs.(2) and (3), we have

εϕ,0 =
∂u

∂r
− w

R
+

1

2

(

∂w

∂r

)2

, εθ,0 =
u

r
− w

R
, κϕ =

∂φ

∂r
, κθ =

φ

r
, εϕz = φ +

∂w

∂r
(4)

2.2. Constitutive Relations

Consider the influence of a one-dimensional unsteady state temperature field on the transient be-
haviours of a FG shallow spherical shell. The temperature of the shell on the top surface (z = −h/2) is
assumed to be different from that on the bottom surface (z = h/2), but constant in-plane. The temper-
ature distribution along the thickness direction can be determined from the following one-dimensional
unsteady state heat transfer equation[19]:

∂

∂z

[

k(z)
∂T (z, t)

∂z

]

− ρ(z)c(z)
∂T (z, t)

∂t
= 0 (5)

in which k(z), ρ(z) and c(z) are thermal conductivity , mass density and specific heat of the shallow
spherical shell, respectively. The temperature on the top and that on the bottom surfaces of the shell
are Tt and Tb, respectively. The stress free temperature is assumed to be zero. Then the temperature
increment ∆T (z, t) of any point in the shell is equal to T (z, t).

For FG shallow spherical shells, the material properties, such as elastic stiffness E(z), thermal
conductivity k(z), coefficient of thermal expansion α(z), specific heat c(z) and mass density ρ(z) vary
through the thickness of the shell as a simple power function[20] as follows:

P (z) = Pc + (Pm − Pc)

(

2z + h

2h

)n

(6)

where n is the volume fraction index, and Pm and Pc are corresponding properties of the metal and
ceramic, respectively.
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Therefore, with the temperature effect and the material properties varying along the thickness
direction as a simple power function, the thermoelastic constitutive relations of FG shallow spherical
shell can be expressed as
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in which σϕ, σθ, σϕz are the stress components of any point in the shell, and

C11 = C22 =
E(z)

1 − ν2
, C12 = C21 = νC11, C44 =

E(z)

2 (1 + ν)

2.3. Nonlinear Governing Equations of Motion

The Lamé coefficients of any point in the shallow spherical shell are H1 = A1(1 − z/R1), H2 =
A2(1− z/R2). And there exists the following appropriate relations 1− z/R1 ≈ 1, 1− z/R2 ≈ 1 for the
shallow spherical shell. By taking all the inertia terms into account, the nonlinear governing equations of
motion for FG shallow spherical shell under thermomechanical loads can be derived from the Hamilton’s
principle as[21]

∂rNϕ

r∂r
− Nθ

r
= I0

∂2u

∂t2
+ I1

∂2φ

∂t2
(8)

1

R
(Nϕ + Nθ) +

∂

r∂r

(

rNϕ
∂w

∂r

)

+
∂

r∂r
(rQϕz) + q = I0

∂2w

∂t2
(9)

∂rMϕ

r∂r
− Mθ

r
− Qϕz = I0

∂2u

∂t2
+ I2

∂2φ

∂t2
(10)

where (Nϕ, Nθ) and (Mϕ, Mθ) are the membrane stress resultants and membrane stress couples, re-
spectively, and Qϕz are the transverse shear stress resultant, which are calculated from the following
integral expressions:

(Nϕ, Mϕ) =

∫ h/2

−h/2

σϕ (1, z)dz, (Nθ, Mθ) =

∫ h/2

−h/2

σθ (1, z)dz, Qϕz = K

∫ h/2

−h/2

σϕzdz (11)

where K is the shear correction factor and the inertia coefficients Ii (i = 0, 1, 2) are defined as

(I0, I1, I2) =

∫ h/2

−h/2

ρ (z)
(

1, z, z2
)

dz

Then from Eqs.(2), (7) and (11), one can get

Nϕ = A11εϕ,0 + B11κϕ + A12εθ,0 + B12κθ −
∫ h/2

−h/2

(C11 + C12)αTdz

Nθ = A21εϕ,0 + B21κϕ + A22εθ,0 + B22κθ −
∫ h/2

−h/2

(C21 + C22)αTdz

Mϕ = B11εϕ,0 + D11κϕ + B12εθ,0 + D12κθ −
∫ h/2

−h/2

z (C11 + C12)αTdz

Mθ = B21εϕ,0 + D21κϕ + B22εθ,0 + D22κθ −
∫ h/2

−h/2

z (C21 + C22)αTdz

Qϕz = Gεϕz

(12)

where Aij , Bij , Dij and G are the shell stiffness coefficients, which are given by

(Aij , Bij , Dij) =

∫ h/2

−h/2

Cij(1, z, z2)dz (i, j = 1, 2) , G =

∫ h/2

−h/2

C44dz (13)
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Introduce the following dimensionless parameters:

r̄ =
r

a
, ū =

a

h2
u, φ̄ =

a

h
φ, w̄ =

w

h
, λ1 =

h

a
, λ2 =

a

R
, z̄ =

z

h
, Āij =

Aij

Emh

B̄ij =
Bij

Emh2
, D̄ij =

Dij

Emh3
, Ḡ =

G

Emh
, Ī0 =

I0

ρmh
, Ī1 =

I1

ρmh2
, Ī2 =

I2

ρmh3
(14)

q̄ =
q

Emλ4
1

, τ = t

√

Em

ρma2
, C̄11 =

C11

Em
, C̄12 =

C12

Em
, C̄21 =

C21

Em
, C̄22 =

C22

Em

By substituting Eq.(12) into Eqs.(8), (9) and (10), and using the Eqs.(4) and (14), the dimensionless
nonlinear governing equations of motion for FG shallow spherical shell can be expressed as

(

Ā11 − Ā21

)

[

∂ū

∂r̄
− λ2

λ1
w̄ +

1

2

(

∂w̄

∂r̄

)2
]

+
(

B̄11 − B̄21

) ∂φ̄

∂r̄
+

(

Ā12 − Ā22

)

(

ū

r̄
− λ2

λ1
w̄

)

+
(

B̄12 − B̄22

) φ̄

r̄

+r̄

[

Ā11

(

∂2ū

∂r̄2
− λ2∂w̄

λ1∂r̄
+

∂w̄

∂r̄

∂2w̄

∂r̄2

)

+ B̄11
∂2φ̄

∂r̄2
+ Ā12

(

∂ū

r̄∂r̄
− ū

r̄2
− λ2∂w̄

λ1∂r̄

)

+ B̄12

(

∂φ̄

r̄∂r̄
− φ̄

r̄2

)]

− 1

λ2
1

[

∫ 1/2

−1/2

(

C̄11 + C̄12

)

αTdz̄ −
∫ 1/2

−1/2

(

C̄21 + C̄22

)

αTdz̄

]

= Ī0r̄
∂2ū

∂τ2
+ Ī1r̄

∂2φ̄

∂τ2
(15)

λ2r̄

λ1

{

(

Ā11 + Ā21

)

[

∂ū

∂r̄
− λ2

λ1
w̄ +

1

2

(

∂w̄

∂r̄

)2
]

+
(

B̄11 + B̄21

) ∂φ̄

∂r̄
+

(

Ā12 + Ā22

)

(

ū

r̄
− λ2

λ1
w̄

)

+
(

B̄12 + B̄22

) φ̄

r̄
− 1

λ2
1

[

∫ 1/2

−1/2

(

C̄11 + C̄12

)

αTdz̄ +

∫ 1/2

−1/2

(

C̄21 + C̄22

)

αTdz̄

]}

+r̄
∂w̄

∂r̄

[

Ā11

(

∂2ū

∂r̄2
− λ2∂w̄

λ1∂r̄
+

∂w̄

∂r̄

∂2w̄

∂r̄2

)

+ B̄11
∂2φ̄

∂r̄2
+ Ā12

(

∂ū

r̄∂r̄
− ū

r̄2
− λ2∂w̄

λ1∂r̄

)

+B̄12

(

∂φ̄

r̄∂r̄
− φ̄

r̄2

)]

+

(

r̄
∂2w̄

∂r̄2
+

∂w̄

∂r̄

)

{

Ā11

[

∂ū

∂r̄
− λ2

λ1
w̄ +

1

2

(

∂w̄

∂r̄

)2
]

+ B̄11
∂φ̄

∂r̄

+Ā12

(

ū

r̄
− λ2

λ1
w̄

)

+ B̄12
φ̄

r̄
− 1

λ2
1

∫ 1/2

−1/2

(

C̄11 + C̄12

)

αTdz̄

}

+
1

λ2
1

Ḡr̄

(

∂φ̄

∂r̄
+

∂2w̄

∂r̄2

)

+
1

λ2
1

Ḡ

(

φ̄ +
∂w̄

∂r̄

)

+ r̄q̄ =
Ī0r̄

λ2
1

∂2w̄

∂τ
(16)

(

B̄11 − B̄21

)

[

∂ū

∂r̄
− λ2

λ1
w̄ +

1

2

(

∂w̄

∂r̄

)2
]

+
(

D̄11 − D̄21

) ∂φ̄

∂r̄
+

(

B̄12 − B̄22

)

(

ū

r̄
− λ2

λ1
w̄

)

+
(

D̄12 − D̄22

) φ̄

r̄
+ r̄

[

B̄11

(

∂2ū

∂r̄2
− λ2∂w̄

λ1∂r̄
+

∂w̄

∂r̄

∂2w̄

∂r̄2

)

+ D̄11
∂2φ̄

∂r̄2
+ B̄12

(

∂ū

r̄∂r̄
− ū

r̄2
− λ2∂w̄

λ1∂r̄

)

+D̄12

(

∂φ̄

r̄∂r̄
− φ̄

r̄2

)]

− 1

λ2
1

[

∫ 1/2

−1/2

(

C̄11 + C̄12

)

αTdz̄ −
∫ 1/2

−1/2

(

C̄21 + C̄22

)

αTdz̄

]

− r̄Ḡ

λ2
1

(

φ̄ +
∂w̄

∂r̄

)

= Ī1r̄
∂2ū

∂τ2
+ Ī2r̄

∂2φ̄

∂τ2
(17)

The dimensionless initial conditions (τ = 0) are

w̄ = 0,
∂w̄

∂τ
= 0, ū = 0,

∂ū

∂τ
= 0, φ̄ = 0,

∂φ̄

∂τ
= 0 (18)

Four types of boundary conditions for the shallow spherical shell are expressed as
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(1) Clamped shallow spherical shell with immovable in-plane boundary conditions at r̄ = 1:

r̄ = 0 : ū = 0,
∂w̄

∂r̄
= 0, φ̄ = 0 (19)

r̄ = 1 : ū = 0, w̄ = 0, φ̄ = 0 (20)

(2) Clamped shallow spherical shell with movable in-plane boundary conditions at r̄ = 1:

r̄ = 0 : ū = 0,
∂w̄

∂r̄
= 0, φ̄ = 0 (21)

r̄ = 1 : Nϕ = 0, w̄ = 0, φ̄ = 0 (22)

(3) Simply supported shallow spherical shell with immovable in-plane boundary conditions at r̄ = 1:

r̄ = 0 : ū = 0,
∂w̄

∂r̄
= 0, φ̄ = 0 (23)

r̄ = 1 : ū = 0, w̄ = 0, Mϕ = 0 (24)

(4) Simply supported shallow spherical shell with movable in-plane boundary conditions at r̄ = 1:

r̄ = 0 : ū = 0,
∂w̄

∂r̄
= 0, φ̄ = 0 (25)

r̄ = 1 : Nϕ = 0, w̄ = 0, Mϕ = 0 (26)

III. METHOD OF SOLUTION
The unsteady heat transfer equation and nonlinear governing equations of motion for the FG shal-

low spherical shell are complicated, so approximate methods are employed to numerically solve the
complicated problems.

The finite difference method is used here to discretize the unsteady heat transfer equation. The
thickness is subdivided into L sections of equal thickness ∆z = h/L, and the time increment is ∆τ .
According to Eq.(5), at each time incremental interval, the temperature at any nodal location l (0 ≤
l ≤ L) can be derived as

T (l, τ + ∆τ ) = T (l, τ) +
∆τ

ρ (l, τ) c (l, τ)

{

1

2∆z

∂k (l, τ)

∂z
[T (l + 1, τ) − T (l − 1, τ)]

+
k (l, τ)

(∆z)
2 [T (l + 1, τ) + T (l − 1, τ) − 2T (l, τ)]

}

(27)

The dimensionless unknown displacement functions ū, w̄ and φ̄ are divided between space and time,
respectively. A set of finite degree polynomials in r̄ are used to discretize the displacement functions
in the space domain, that is

ū (r̄) =

M+2
∑

m=1

r̄m−1am, w̄ (r̄) =

M+2
∑

p=1

r̄p−1bp, φ̄ (r̄) =

M+2
∑

s=1

r̄s−1cs (28)

where M is the number of the discrete points r̄i which, in the internal [0, 1], are taken at the zeros of
a Chebyshev polynomial given by

r̄i =
1

2

{

1 + cos

[

(2i − 1) π

2M

]}

(i = 1, 2, ..., M) (29)

The inertia terms are discretized using the Newmark-beta method, for instance, the transverse inertia
term can be expressed as

(

∂2w̄

∂τ2

)

J

=
4 (w̄J − w̄J−1)

(∆τ )
2 − 4

∆τ

(

∂w̄

∂τ

)

J−1

−
(

∂2w̄

∂τ2

)

J−1
(

∂w̄

∂τ

)

J

=

(

∂w̄

∂τ

)

J−1

+
1

2

[

(

∂2w̄

∂τ2

)

J−1

+

(

∂2w̄

∂τ2

)

J

]

(∆τ )

(30)



· 502 · ACTA MECHANICA SOLIDA SINICA 2014

The whole equations are solved iteratively. In each iterative step J , the nonlinear terms in Eqs.(15),
(16), (17) and boundary conditions are linearized and transformed into

(x · y)J = (x)J · (y)JP
(31)

where (y)JP
is the average value of those obtained in the previous two iterations. For the initial iterative

step, it can be determined by using quadratic extrapolation, that is

(y)JP
= A (y)J−1 + B (y)J−2 + C (y)J−3 (32)

For different iterative steps, the coefficients A, B and C are

J = 1 : A = 1, B = 0, C = 0

J = 2 : A = 2, B = −1, C = 0

J = 3 : A = 3, B = −3, C = 1

(33)

Substituting Eqs.(27), (29), (30) and (31) into the nonlinear governing equations of motion (15),
(16), (17) and boundary conditions, and using the initial conditions (18), we can get 3M + 6 linear
algebraic equations. For every iterative step, the iteration lasts until the difference between the present
value and the former is smaller than 0.01%. After the convergent values of am, bp and cs are obtained
at the J th step, the displacements can be determined, the current iteration step stops and the next
iteration step begins.

IV. NUMERICAL EXAMPLES
In order to verify the present analysis, firstly, the central temperature distribution through the

thickness of FG shell is compared with the results obtained by Qian et al.[17] in Fig.2. It is observed
that the two results are in good agreement at different time. Secondly, the radius of curvature of a FG
shallow spherical shell is taken as infinite, and the volume fraction index n is taken as zero. Then the
FG shallow spherical shell degenerates to a homogeneous and isotropic circular plate. Considering the
dynamic response of a circular plate with clamped boundary conditions subjected to a uniform load,
Fig.3 presents the comparisons of the central deflection w0 obtained by current analysis with reference
to Ref.[22]. From the figure, it can be seen that the two results agree well with each other except for a
slight difference, showing that the present analysis yields acceptable results.

Fig. 2. Comparison of central temperature through the
thickness of the structure at different time.

Fig. 3. Comparison of central deflection versus time for
a circular plate under a uniform load.

In the following numerical calculations, a FG shallow spherical shell clamped with in-plane immovable
composed of aluminiumandalumina is considered.Thematerial properties of the aluminiumandalumina
are listed in Table 1. The shear correction factor is 5/6. And the curvature radius of the middle curved
surface, the thickness of the shell and the radius of the base circle for the shell are taken as R = 4,
h = 0.06, and a = 0.3, respectively. The prescribed temperature on the bottom surface of the shell is
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maintained at the stress free temperature, while the prescribed temperature on the top surface of the
shell increases exponentially from the stress-free temperature given by

Tt = T0(1 − e−γt) (34)

where T0 denotes the characteristic temperature, and γ denotes the rate of temperature change on the
top surface and is defined as a temperature coefficient. The dimensionless temperature can be expressed
as T̄ = T/T0. All the results below are presented with respect to the dimensional parameters.

Table 1. Materials properties of aluminium and alumina in FG shallow spherical shell

Materials Poisson’s Young’s Mass Thermal Specific Coefficient of
ratio ν modulus density conductivity heat thermal expansion

E (GPa) ρ (kg/m3) k (W/mK) c (J/kgK) α(/K)

Aluminium 0.3 70 2700 204 880 0.000023
Alumina 0.3 380 3800 10.4 205 0.0000074

The effects of geometric nonlinearity on the nonlinear dynamic response of FG shallow spherical
shells subjected to a thermal or mechanical load are studied. Figure 4 shows the comparison of dynamic
response of FG shallow spherical shells with different volume fraction index subjected to thermal load
obtained by the nonlinear analysis to linear analysis. The characteristic temperature and temperature
coefficient are T0 = 1500 K and γ = 10, respectively. Figure 5 shows the comparison of dynamic response
of FG shallow spherical shells with different volume fraction indices subjected to a mechanical load
obtained by nonlinear analysis and linear analysis. The dimensionless uniform load q̄ = 1. From Figs.4
and 5, one can see the linear analysis underestimates the deflection of shallow spherical shells subjected
to thermal loads or mechanical loads. And from the available literature [23,24], one can find that the
linear analysis also underestimates the deflection by the static and dynamic analysis of spherical shell
subjected to mechanical loads. This result of the spherical shell is different from that of the plate whose
deflection the linear analysis always overestimates[23,24].

Fig. 4. Comparison of central deflection versus time for
FG shallow spherical shells subjected to thermal load
obtained by the nonlinear analysis to linear analysis.

Fig. 5. Comparison of central deflection versus time for
FG shallow spherical shells subjected to uniform load
obtained by the nonlinear analysis to linear analysis.

For the FG shallow spherical shell with the volume fraction index n = 1, Fig.6(a) shows the time
histories of the temperature on the middle plane for different temperature coefficients γ = 0.1, 0.5,
10 and ∞. T0 is taken as 200 K. It can be seen that the temperature rises from 0 to a steady-state
value as do different γ s. And the temperature reaches the steady state faster with an increase in γ.
Note that for γ = 10 and ∞, the temperature changes have the same trend. Figure 6(b) illustrates the
temperature distribution through thickness at time τ = 0.02×106, 0.08×106, 0.24×106, 0.6×106 and
1.2× 106 for γ = 10. The temperature distribution through thickness remains the same when the time
is 0.6× 106 and 1.2× 106, showing that the temperature has reached the steady state at τ = 0.6× 106.
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Fig. 6. (a) Temperature on the middle plane versus time for FG shallow spherical shell with different temperature coefficients
γ = 0.1, 0.5, 10 and ∞; (b) Temperature through the thickness of the shell with at various time τ = 0.02 × 106, τ =
0.08 × 106, τ = 0.24 × 106, τ = 0.6 × 106 and τ = 1.2 × 106.

The time histories of the central deflection w̄0, the axial stress σ̄r, the circumferential stress σ̄θ and
the transverse shear stress σ̄rz in the center of the middle plane for FG shallow spherical shell with the
volume fraction index n = 1 for different temperature coefficients γ = 0.1, 0.5, 10 and ∞ are exhibited
in Fig.7. It is clear that the central deflection and stresses are virtually the same for γ = 10 and ∞.
Moreover, it can be seen from the figures that the magnitude of the central deflection, the axial stress,
the circumferential stress and the transverse shear stress rises with time to the steady-state values,
which takes a shorter time with an increase of the temperature coefficient γ.

Fig. 7. (a) Central deflection, (b) axial stress, (c) circumferential stress and (d) transverse shear stress versus time for FG
shallow spherical shell with the volume fraction index n = 1 for different temperature coefficients γ = 0.1, 0.5, 10 and ∞.
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Fig. 8. (a) Temperature on the middle plane versus time for FG shallow spherical shell with different volume fraction
indices n = 0.5, 1, and 2, (b) temperature through the thickness of the shell with n = 0.5, 1, and 2 for γ = 10 at various
time τ = 0.02 × 106, 0.08 × 106, 0.6 × 106 and τ = 1.2 × 106 under the unsteady temperature field condition with the
temperature coefficient γ = 10.

Fig. 9. (a) Central deflection, (b) axial stress, (c) circumferential stress and (d) transverse shear stress versus time for
FG shallow spherical shell with different volume fraction index n = 0.5, 1, and 2 under the unsteady temperature field
condition with the temperature coefficient γ = 10.

In the unsteady temperature field with the temperature coefficient γ = 10 and T0 taken as 200 K, the
influence of the volume fraction index n on the temperature in the center of the middle plane and through
the thickness for the FG shallow spherical shell are shown in Fig.8(a) and Fig.8(b), respectively. The
temperature decreases and reaches a steady-state value faster with an increase in the volume fraction
index. The reason is that the shell is richer in ceramic with the volume fraction index increase, which
leads to the thermal load lower in the shell. Therefore, as shown in Fig.9, the magnitude of the central
deflection w̄0, the axial stress σ̄r , the circumferential stress σ̄θ and the transverse shear stress σ̄rz
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decreases as the volume fraction index is increased. From Fig.9(b) and (c), note that the axial stress
and the circumferential stress are almost equal and have a similar variation tendency with time. And it
can be seen from Fig.9(a) and (d) that the transverse shear stress has a similar evolution with the central
deflection during the variation of volume fraction index, which shows that the transverse shear stress
plays a dominant role in the nonlinear dynamic response of the FG shell in the unsteady temperature
field.

For a study of nonlinear dynamic response of the FG shallow spherical shell subjected to uniform
load under an unsteady temperature field, the uniform mechanical load applied on the top surface of the
shell is taken as q̄ = q0 sin(0.02πτ), where q0 is the dimensional load amplitude. And the characteristic
temperature, temperature coefficient and the volume fraction index are T0 = 200 K, γ = 10 and
n = 1, respectively. Figure 10 shows the time histories of the central deflection w̄0, the axial stress
σ̄r, the circumferential stress σ̄θ and the transverse shear stress σ̄rz in the center of the middle plane
for q0 = 0.05, 0.1 and 0.2. Obviously, as shown in Fig.10(a), the central deflection increases with an
increase in mechanical load, but the response cycle is the same. And the transverse shear stress has a
similar tendency as shown in Fig.10(d). It can be seen from Fig.10(b) and (c) that the axial stress and
the circumferential stress increase at the time interval [0, 0.4× 106] before the temperature reaches the
steady state. After that, the axial stress and the circumferential stress vary with time periodically. But
the magnitude of the axial stress and the circumferential stress have risen slightly compared with the
axial stress and the circumferential stress produced by the temperature field shown in Fig.7(b) and (c),
which indicates the thermal load plays a domination role in the axial stress and the circumferential
stress.

The effects of the volume fraction index on the central deflection w̄0, the axial stress σ̄r, the cir-
cumferential stress σ̄θ and the transverse shear stress σ̄rz in the center of the middle plane for the FG
shallow spherical shell are shown in Fig.11. The characteristic temperature, temperature coefficient and

Fig. 10. (a) Central deflection, (b) axial stress, (c) circumferential stress and (d) transverse shear stress versus time for
FG shallow spherical shell with volume fraction index n = 1 subjected to different mechanical load with dimensional load
amplitude q0 = 0.05, 0.1, and 0.2 under unsteady temperature field condition with the temperature coefficient γ = 10.
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the dimensional load amplitude are T0 = 200 K, γ = 10 and q0 = 0.1, respectively. For a variety of
volume fraction indices n = 0.5, 1 and 2, the response cycles for the central deflection and the stresses
are the same. The magnitude of maximum central deflection decreases sharply with an increase in
the volume fraction index shown in Fig.11(a). The reason is that the thermal load decreases whilst
the stiffness of the shell increases as the volume fraction index is increased. And the upward central
deflection is larger and lasts longer than the downward central deflection. Figure 11(b) and (c) illustrate
the magnitude of axial stress and circumferential stress also declines with the volume fraction index
increasing. However, as shown in Fig.11(d) the magnitude of negative transverse shear stress increases
while positive transverse shear stress nearly remains stable with the volume fraction index increasing
throughout the procedure.

Fig. 11. (a) Central deflection, (b) axial stress, (c) circumferential stress and (d) transverse shear stress versus time for FG
shallow spherical shell with different volume fraction indicees n = 0.5, 1, 2. The shell is subjected to thermomechanical
load with the dimensional load amplitude q0 = 0.1 and the temperature coefficient γ = 10.

V. CONCLUSIONS
In this paper, nonlinear governing equations of motion including transverse shear deformation and

rotary inertia are presented for FG shallow shells subjected to time- dependent thermomechanical
loads. The nonlinear governing equations of motion are numerically solved along with the unsteady
heat transfer equation. And the transient deflection and stresses of the FG shallow spherical shell are
analyzed. The main conclusions can be drawn as follows: The geometric nonlinearity of FG shallow
spherical shells contributes to overestimating the deflection in contrast to the linear analysis. When the
shell is assigned a certain temperature on the top surface and one on the bottom surface is maintained
at the stress free temperature, the temperature on an arbitrary point in the shell increases from 0 to
a steady-state value. And the increasedvolume fraction index of the shell contributes to reducing the
temperature in the shell, which makes the shell more resistant to the external temperature. The upward
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central deflection of FG shallow spherical shell under the thermomechanical load is greater and lasts
longer than the downward central deflection. And the increase of the volume fraction index for the FG
shallow spherical shell is able to effectively decrease the stresses whilst the central deflection markedly
declines.
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