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ABSTRACT The first-passage failure of a single-degree-of-freedom hysteretic system with non-
local memory is investigated. The hysteretic behavior is described through a Preisach model with
excitation selected as Gaussian white noise. First, the equivalent nonlinear non-hysteretic sys-
tem with amplitude-dependent damping and stiffness coefficients is derived through generalized
harmonic balance technique. Then, equivalent damping and stiffness coefficients are expressed as
functions of system energy by using the relation of amplitude to system energy. The stochastic aver-
aging of energy envelope is adopted to accept the averaged Itô stochastic differential equation with
respect to system energy. The establishing and solving of the associated backward Kolmogorov
equation yields the reliability function and probability density of first-passage time. The effects of
system parameters on first-passage failure are investigated concisely and validated through Monte
Carlo simulation.

KEY WORDS first-passage failure, Preisach hysteretic systems, stochastic averaging of energy
envelope, generalized harmonic balance technique

I. INTRODUCTION
In the wake of developments in advanced technology, the amount of devices including non-traditional

materials and smart structures incorporating smart materials, such as piezo-ceramics, shape memory
alloys and electro-/magneto-rheological fluids, is dramatically increasing. The requirement on preci-
sion spurs rigorous description of non-traditional materials and smart materials. Unlike traditional
elastic materials, non-traditional materials and smart materials always represent prominent hysteretic
behaviors. Hysteretic force depends on both the instantaneous deformation and the past history of
deformation, and a hysteretic loop can be created between hysteretic restoring force and displacement
in periodic motion. Various analytical models have been proposed for representing the hysteretic consti-
tutive relationship, including the bi-linear model, Ramberg-Osgood model, Iwan’s distributed element
model, Bouc-Wen model, Ozdemir’s model, Masing model, and so on[1–5]. Almost all hysteretic models,
however, can only represent hysteresis with local memory. The Preisach model[6], which is extensively
used in the field of ferromagnetism, has been adopted in mechanical description of non-traditional
materials and smart materials. The main advantage of the Preisach model is its capability of describing
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hysteretic nonlinearity with nonlocal memory and capturing the crossing of minor loops that can arise
in many real materials[7].

In structural and mechanical engineering, the dynamic loading to which hysteretic systems are sub-
jected are sometimes random in nature, such as wind, earthquake ground motion and noise[8,9]. The
random response of hysteretic systems has been investigated systematically by using several approxi-
mate solving techniques, such as the equivalent linearization technique[10] and the stochastic averaging
method[11,12]. In the aspect of random response analysis of hysteretic systems described by Preisach
model, second-order statistics of random response have been obtained through the covariance and switch-
ing probability analysis of a non-local memory hysteretic constitutive model[13,14]. Recently, standard
stochastic averaging and stochastic averaging of energy envelope for Preisach hysteretic systems have
been established by Spanos et al.[15] and Wang et al.[16]. These approximate techniques provide a
complete methodology to evaluate the random responses. Another important research on the random
dynamical behaviors of hysteretic systems is the determination of the probability of the structure in
the safety domain, which is the so-called the first-passage failure problem. The first-passage failure
problem is of crucial significance for reliability analysis, but unfortunately, it is one of the most difficult
problems in the field of random vibration. It is only for very special one-dimensional diffusion processes
that the exact solution of the first-passage failure problem can be obtained analytically. And so, the
approximate solution techniques used in random response analysis of hysteretic systems have been
considered to simplify the first-passage failure analysis. In all of the approximate techniques, stochastic
averaging is a powerful one for the first-passage failure of hysteretic systems as it is able to reduce the
system dimension while retaining the essential behavior. The first-passage failure of hysteretic systems
described by Bouc-Wen model has been investigated through stochastic averaging[17]. Research on the
first-passage failure of Preisach hysteretic systems is of great significance for the reliability evaluation of
devices and structures including non-traditional materials and smart materials owing to the rationality
and accuracy of the Preisach model. The complexity of the Preisach hysteretic model, however, limits
the corresponding research on Preisach systems.

In this manuscript, the first-passage failure of Preisach hysteretic systems with non-local memory
under stationary Gaussian excitation is investigated through the generalized harmonic balance technique
and stochastic averaging of energy envelope. First, an equivalent non-hysteretic nonlinear system with
amplitude- envelope-dependent damping and stiffness coefficients is obtained by using the generalized
harmonic balance technique. Equivalent damping and stiffness coefficients are expressed as functions of
system total energy by establishing the relation between amplitude envelope and system total energy.
Then, the averaged Itô stochastic differential equation with respect to system total energy, which is a
one-dimensional diffusion process, is derived. Establishing and solving the related backward Kolmogorov
equation yields the conditional reliability function and the conditional probability density of first-passage
time. The approximate solutions are validated by Monte Carlo simulation.

II. PREISACH HYSTERETIC MODEL
The Preisach hysteretic model is expressed in terms of the following integral[7,18]:

f (t) =

∫ ∫

α≥β

µ (α, β)γαβ (x (t)) dαdβ (1)

where x(t) and f(t) denote the displacement and hysteretic restoring force, respectively. µ (α, β) is a
weighting function, called Preisach function, with support on a limiting triangle D of the (α, β)-plane
with line α = β as the hypotenuse and point (αP , βP = −αP ) as the vertex. The triangle D in the half-
plane α ≥ β is called Preisach plane as shown in Fig.1. µ (α, β) is equal to zero outside the triangle D.
γαβ (x) is the relay hysteretic operator as shown in Fig.2. It is a two-position relay with only two values
+1 and −1 corresponding to ‘up’ and ‘down’ positions, respectively, and is given by the equation[15,16]

γαβ (x) =

{

+1 x > α or x > β and decreasing

−1 x < β or x < α and increasing
(2)

The Preisach model, expressed as the superposition of a continuous family of elementary rectangular
loops, can be interpreted in terms of the spectral decomposition of a complicated hysteretic constitutive
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Fig. 1. Preisach plane.
Fig. 2. Relay hysteretic operator.

law that has nonlocal memory in the simplest relay hysteretic operator γαβ (x) with local memory.
The Preisach hysteretic behavior is completely characterized by the weighting function µ (α, β). For
an arbitrary input x(t), the hysteretic restoring force f(t) can be determined by the weighting function
in conjunction with a staircase line L(t), as shown in Fig.1. And the staircase line divides the Preisach
plane into two parts, the domain S+ (t) encompassing the set of relay in the +1 status, and the domain
S− (t) encompassing the set of relay in the −1 status. Each vertex of the staircase line is associated with
dominant maxima Mk and minima mk of the displacement x(t). And the nonlocal selective memory is
stored in these vertexes. The hysteretic restoring force f(t) can be equivalently expressed as[15,16]

f (t) =

∫ ∫

S+(t)

µ (α, β)dαdβ −
∫ ∫

S−(t)

µ (α, β)dαdβ (3)

The Preisach function can be determined through the first-order transition curves[7], and for cer-
tain classical rheological models the closed form of Preisach function has been derived through this
procedure[4]. For the Iwan-Jenkins model, it can be expressed as

µ (α, β) =
kJ

2

{

δ (α− β) − kJ

2

1

fy,max − fy,min

[

H

(

α− β − 2
fy,min

kJ

)

−H

(

α− β − 2
fy,max

kJ

)]}

(4)
where δ (·) and H (·) are the Dirac delta and the Heaviside functions, respectively; kJ represents the
linear stiffness of the individual Jenkins element; fy is the yielding force, and fy,min ≤ fy ≤ fy,max.
The weighting function is defined in the domain A shown in Fig.3, and the corresponding hysteretic
restoring force can be obtained as follows:

f (t) =
kJ

2

[
∫ αP

−αP

γα,α (x) dα− kJ

2

1

fy,max − fy,min

∫ ∫

A

γαβ (x)dαdβ

]

(5)

Combining Eq.(5) and Eq.(3) yields the following formula of the restoring force

f (t) = kJx (t) − k2
J

4

1

fy,max − fy,min

(

2

∫ ∫

S+

A
(t)

dαdβ −
∫ ∫

A

dαdβ

)

(6)

By setting αP = −βP = fy,max/kJ
[15,16] and fy,min = 0, then the shaded area A is a triangle defined

by α = αP , β = βP and α − β = 0. According to Lubarda et al.[4], the domain A is initially divided
into two equal parts and thus f (0) = 0. Introduce a new function F (αi, βi) = (βj − αj)

2
/2 which

represents the area of the triangle within the equations α = αi, β = βi and α− β = 0. The hysteretic
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Fig. 3. Domain of the weighing function for the Iwan-Jenkins model.

restoring force for the ascending status is given by[15,16]

f (t) = kJx (t) − k2
J

4

1

fy,max
{4 [F (0, βP ) − F (0, β1)]

+2H [x (t) − βn−1]F (x (t) , βn−1) + 2

n−1
∑

j=2

[F (αj , βj−1) − F (αj , βj)] − F (αP , βP )} (7)

and that for the descending status is described as

f (t) = kJx (t) − k2
J

4

1

fy,max
{4 [F (0, βP ) − F (0, β1)] + 2F (αn, βn−1)

−2H [αn − x (t)]F (αn, x (t)) + 2

n−1
∑

j=2

[F (αj , βj−1) − F (αj , βj)] − F (αP , βP )} (8)

In Eqs.(7) and (8), αi, βi are dominant maxima and minima of the displacement x(t), respectively.
Summation terms in these two equations show the nonlocal memory property of Preisach model.

III. EQUIVALENT NON-HYSTERETIC NONLINEAR STOCHASTIC SYSTEM
Consider a single-degree-of-freedom(SDOF) nonlinear hysteretic system with the hysteretic behavior

described by Preisach model. The motion of the system is governed by the following equation:

mẍ (t) + cẋ (t) + kx (t) + f (t) = w (t) (9)

where x(t) is the system displacement; m, c, and k represent mass, damping and stiffness coefficients,
respectively;w(t) is zero-mean Gaussian white noise with spectral density Sw; f(t) denotes the nonlinear
hysteretic restoring force governed by the Preisach model Eqs.(7) and (8).

The Preisach hysteretic restoring force contains nonlinear elastic restoring components and nonlinear
dissipative components that are intensively coupled. According to the generalized harmonic balance
technique, these components can be decoupled and the original Eq.(9) can be replaced by the following
equivalent nonlinear non-hysteretic equation (for details, please refer to Refs.[15] and [16]):

ÿ (t) + [2ζω̄ + ψC (a)] ẏ (t) +
[

ω̄2 + ψD (a)
]

y (t) = ŵ(t) (10)

where, ω̄ = ωJ

√
1 + ϕ, ϕ = k/kJ , ωJ =

√

kJ/m, 2ζω̄ = c/m, y = x
√

2ζω̄3m2/
√
πSw, ψ = 2ω̄2

√
πSw/

(f∗

y,max

√

2ζω̄3), ŵ(t) = w(t)
√

2ζω̄3/
√
πSw with Sŵ(t) = 2ζω̄3/π. The amplitude-dependent coefficients
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yielded by the generalized harmonic balance technique are expressed as[15,16]

C(a) =
aω̄2

3π (1 + ϕ)
2
ω (a)

(11)

D(a) = − aω̄2

4(1 + ϕ)2
(12)

Equation (10) implies that the response is governed by an equivalent nonlinear non-hysteretic equation
with amplitude-dependent damping and stiffness coefficients.

The energy envelope of the system can be expressed as

H =
1

2
ẏ2 +

1

2

[

ω̄2 − ψ
aω̄2

4 (1 + ϕ)
2

]

y2 (13)

So the relation of displacement amplitude a to system energy H , a = a(H), can be obtained by
analytically solving the cubic equation H =

{

ω̄2 − ψaω̄2/[4(1 + ϕ)2]
}

a2/2. Thus, Eq.(10) can be
rewritten in the following form:

ÿ (t) +
[

2ζω̄ + ψC̄ (H)
]

ẏ (t) +
[

ω̄2 + ψD̄ (H)
]

y (t) = ŵ (t) (14)

in which, C̄ (H) = C (a (H)), D̄ (H) = D (a (H)). So far, the original hysteretic Eq.(9) is equivalently
replaced by a nonlinear non-hysteretic Eq.(14) with energy-dependent damping and stiffness coefficients,
and it is this equivalent replacement that paves the way for the adoption of stochastic averaging of
energy envelope.

IV. FIRST-PASSAGE FAILURE
In order to use the stochastic averaging of energy envelope[19], the nonlinear non-hysteretic Eq.(14)

are rearranged as state equations

Ẏ1 = Y2 (15a)

Ẏ2 = −
[

2ζω̄ + ψC̄ (H)
]

Y2 −
[

ω̄2 + ψD̄ (H)
]

Y1 + ŵ(t) (15b)

where Y1 = y, Y2 = ẏ are the system displacement and velocity, respectively, the intensity of excitation
ŵ(t) is denoted as 2D. The associated Itô stochastic differential equation is

dY1 = Y2dt (16a)

dY2 =
{

−
[

2ζω̄ + ψC̄ (H)
]

Y2 −
[

ω̄2 + ψD̄ (H)
]

Y1

}

dt+
√

2DdW (t) (16b)

in which W (t) is the unit Wiener process.
The system energy is expressed as

H =
1

2
Y 2

2 +
1

2

[

ω̄2 + ψD̄ (H)
]

Y 2
1 = H (Y1, Y2) (17)

By introducing the following transformation:

Y1 = Y1, H = H (Y1, Y2) (18)

Eq.(16) can be transformed into the Itô equations with respect to displacement Y1 and the energy
envelope H via the Itô differential rule

dY1 = ±
√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1 dt (19a)

dH =

{

−
[

2ζω̄ + ψC̄(H)
] 2H −

[

ω̄2 + ψD̄(H)
]

Y 2
1

1 − ψD̄′Y 2
1 /2

+
D

1 − ψD̄′Y 2
1 /2

+

(

ψD̄′Y 2
1

2

)−3
D

2
ψD̄′′Y 2

1

[

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

]

}

dt

+
√

2D
±
√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

1 − ψD̄′Y 2
1 /2

dW (t) (19b)
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where, the prime means the derivative with respect to system energy H . For the case in which the
difference between energy input by excitation and energy dissipated by damping in one vibrating period
is smaller than total system energy, system energy H is a slowly varying process replaceable in the
first approximation by a one-dimensional diffusion process. The same symbol H is used to denote this
diffusion process for simplicity. The Itô differential equation for this diffusion process is obtained through
time averaging to Eq.(19b). Making use of Eq.(19a), time averaging can be replaced by space averaging
with respect to system displacement Y1 under the condition that H remains constant. Then,

dH = U (H) dt+ V (H) dW (t) (20)

where,

T (H) = 2

∫ a(H)

−a(H)

dY1
√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

(21)

U (H) =
1

T (H)
2

∫ a(H)

a(H)







−

[

2ζω̄ + ψC̄ (H)
]

√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

1 − ψD̄′Y 2
1 /2

+
D

(

1 − ψD̄′Y 2
1 /2

)

√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

+
D

2

ψD̄′′Y 2
1

√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

(

1 − ψD̄′Y 2
1 /2

)3







dY1 (22)

V 2 (H) =
4D

T (H)

∫ a(H)

−a(H)

√

2H −
[

ω̄2 + ψD̄ (H)
]

Y 2
1

(

1 − ψD̄′Y 2
1 /2

)2 dY1 (23)

T (H) is the energy-dependent period of system (14) and can be used to determine the circular frequency
through the formula ω (a (H)) = 2π/T (H). Once the circular frequency ω (a) is expressed through
system energy, C̄ (H) and then the drift coefficient U(H) and diffusive coefficient V 2(H) can be derived
through Eq.(11) and Eqs.(21)-(23).

So far, the total energy of Preisach hysteretic system has been proved to be a one-dimensional
diffusion process and the Itô stochastic differential equation describing this approximate process has
also been derived. Based on these conclusions, we will investigate the first-passage failure of Preisach
hysteretic system through system energy rather than system state such as displacement and velocity
as suggested by conventional opinions.

First, the safety domain Ωs is chosen via engineering practice, and in one-dimensional system the
safety domain is always a given close interval 0 ≤ H(t) ≤ Hc. The conditional reliability function
R (t |H0 ) is defined as the probability of system energy H (t) in the safety domain Ωs within time
interval (0, t], in which H (0) = H0 is a given initial energy in the safety domain. The mathematical
description of the conditional reliability function is R (t |H0 ) = P {H (τ) ∈ Ωs, τ ∈ (0, t] |H0 ∈ Ωs }.

The governing equation for the conditional reliability function is the well-known backward Kol-
mogorov equation[20] expressed as follows:

∂R (t|H0)

∂t
= U (H0)

∂R (t|H0)

∂H0
+
V 2 (H0)

2

∂2R (t|H0)

∂H2
0

(24)

where U (H0) and V 2 (H0) is similar to the drift coefficient and diffusive coefficient in Eqs.(22) and
(23) with H replaced by H0. The initial condition of backward Kolmogorov Eq.(24) is

R (0|H0) = 1, H0 ∈ Ωs (25)

and the boundary conditions are

R (t|H0) = 0, H0 = Hc

R (t|H0) = finity, H0 = 0
(26)
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The governingEq.(24) as well as associated initial condition (25) and boundary conditions (26) constitute
the complete description with respect to the conditional reliability function. Solving these equations
by using numerical technique gives the conditional reliability function.

The conditional probability density of the first-passage time T can be derived from the conditional
reliability function as follows:

p (T |H0) = −∂R
∂t

∣

∣

∣

∣

t=T

(27)

Similarly, the mean first-passage time (MFPT) µ1 (H0) of system (20), defined as µ1 (H0) =
∫

∞

0

Tp (T |H0) dT can be obtained by solving the following Pontryagin equation:

U (H0)
∂µ1 (H0)

∂H0
+
V 2 (H0)

2

∂2µ1 (H0)

∂H2
0

= −1 (28)

with boundary conditions

µ1 (Hc) = 0 (29a)

µ1 (0) = finite (29b)

where U (H0) and V 2 (H0) have been illustrated in Eq.(24). Solving Eqs.(28), (29a) and (29b) by using
numerical technique gives the mean first-passage time (MFPT) µ1 (H0).

Then, the variance of first-passage time (VFPT) and arbitrary statistic quantity can be directly
derived from p (T |H0) through integral calculus

VFPT (H0) =

∫

∞

0

[t− µ1 (H0)]
2
p (t|H0) dt (30)

The MFPT µ1 (H0) describes the mean of failure time, while the VFPT scales the dispersive extent
of the failure time. These two indexes give a detailed description of the first-passage failure.

V. NUMERICAL RESULTS AND DISCUSSION
Using the proposed procedure in the last section, the conditional reliability function and the condi-

tional probability density of the first-passage time are calculated numerically. The consistency of the
conditional reliability function and the conditional probability density yielded by the present method
(denoted by curves) and the Monte Carlo simulation (denoted by symbols •, H and ⋆) proves the
effectiveness of the proposed procedure, as shown in each figure. System parameters are selected as
ζ = 0.01, ω̄ = 0.5 and excitation intensity as D = 0.2. The energy boundary is set as Hc = 2.5 and the
initial energy is H0 = 0.0. The other parameter values used in calculation, such as ϕ and ψ, are given
in figure captions. The numerical results concerning the conditional reliability function R (t|H0) and
conditional probability density of the first-passage time T for different ψ values and different ϕ values
are shown in Figs.4 and 5, respectively. Larger ψ value represents stronger nonlinearity influence since
parameter ψ is an additional factor of equivalent damping and stiffness coefficients C (a) and D (a), as
shown in Eq.(14). Decreasing ϕ value induces a decrease of linear damping coefficient 2ζω̄ and linear
stiffness coefficient ω̄2 but an increase of nonlinear damping coefficient ψC (a) and nonlinear stiffness
ψD (a) (as shown in Eqs.(11)-(12)). So, a smaller ϕ value is tantamount to a stronger nonlinearity. It
is rational that the present results are more accurate for smaller ψ values and larger ϕ values. Plotted
in Figs.6 and 7 are the effects of the initial value H0 on the MFPT µ1 (H0). It can be seen that as the
initial value H0 increases, the MFPT µ1 (H0) decreases. The influences of the parameters ψ and ϕ on
the MFPT µ1 (H0) are also compared in Figs.4 and 5. It is obvious that the effects of parameters ψ
and ϕ on the MFPT µ1 (H0) are independent of the initial value H0.

VI. CONCLUSIONS
The first-passage failure of hysteretic Preisach system with nonlocal memory under stationary Gaus-

sian excitation has been investigated. The equivalent non-hysteretic nonlinear system with amplitude-
dependent damping and stiffness coefficients is obtained by employing the generalized harmonic balance
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Fig. 4. The conditional reliability function R (t|H0) and the conditional probability density p (T |H0)of system (9). (ϕ =
1.0). (a) Conditional reliability function; (b) Conditional probability density of first-passage time.

Fig. 5. The conditional reliability function R (t|H0) and the conditional probability density p (T |H0) of system (9). (ψ =
1.0). (a) Conditional reliability function; (b) Conditional probability density of first-passage time.

Fig. 6. The dependence of the mean first-passage time
µ (H0) on the initial value H0. (ϕ = 1.0). Solid lines:
the present results; Circles: results from MCS.

Fig. 7. The dependence of the mean first-passage time
µ (H0) on the initial value H0. (ψ = 1.0). Solid lines:
the present results; Circles: results from MCS.

technique. Then, the relationship between displacement amplitude and system energy is formed with
the equivalent damping and stiffness coefficients expressed as functions of system energy. An averaged
Itô stochastic differential equation for system energy is derived using stochastic averaging of the energy
envelope. The establishing and solving of associated backward Kolmogorov and Pontryagin equations
yield the conditional reliability function and mean first-passage time. The effects of hysteresis parameters
ψ and ϕ on the first-passage failure are also investigated.

Revealing the effects of non-dimensional parameters on system reliability, the present results will
guide parameter design to enhance the reliability of Preisach hysteretic systems. Another fact that should
be mentioned is that traditional reliability analysis is based on the system state such as displacement
and velocity, while the present analysis is on the basis of system energy. This is rational since system
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energy is able to properly evaluate system response and at times more suitable than system state.
Different descriptions of system response through system state or system energy can be analogized to
strength criterions of material through maximum strain and distortion strain energy.
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