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Abscission in plants: from mechanism 
to applications
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Abstract 

Abscission refers to the natural separation of plant structures from their parent plants, regulated by external environ-
mental signals or internal factors such as stress and aging. It is an advantageous process as it enables plants to shed 
unwanted organs, thereby regulating nutrient allocation and ensuring the dispersal of fruits and seeds from the par-
ent. However, in agriculture and horticulture, abscission can severely reduce crop quality and yield. In this review, we 
summarize the recent advances in plant abscission from the perspectives of developmental and molecular biology, 
emphasizing the diverse regulatory networks across different plant lineages, from model plants to crops. The sophis-
ticated process of plant abscission involves several overlapping steps, including the differentiation of the abscission 
zone, activation of abscission, tissue detachment, and formation of a protective layer. Finally, we discuss the potential 
applications of physiological modifications and genetic manipulations of plant abscission in sustainable agriculture 
in the future.
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1  Introduction
The word “abscission” refers to “removal or cutting away”, 
derived from the Latin “abscissionem”. In botany, it refers 
to the separation of plant structures, such as leaves, 
branches, flowers, or fruits, away from the parent plant 
owing to environmental changes (Estornell et  al. 2013). 
These changes can be induced by a series of develop-
mental (i.e., aging or maturation) or external environ-
mental signals, including abiotic (drought, dark, hypoxia, 
extreme temperature, and nutrition limitation) and biotic 
stresses (mainly diseases or pests) (Reichardt et al. 2020; 
Li et  al. 2021a; Goto et  al. 2022; Meng et  al. 2023; Ruiz 
et al. 2001; Patharkar et al. 2017).

From the perspectives of ecology and evolution, abscis-
sion is a beneficial process as it helps the parent plant 
discard unwanted parts such as wilted flowers or leaves, 

and hence regulates nutrient allocation. For example, leaf 
abscission can be triggered by drought, which may ena-
ble the plant to prepare well for subsequent occurrences 
of drought by reducing the leaf area for transpiration. 
Mobile nutrients, including those belonging to the three 
main nutrients classes (nitrogen, phosphorus, and potas-
sium), are drawn out of the unhealthy old leaves before 
abscission to facilitate the continued growth of healthy 
young tissues (Patharkar and Walker 2016). In addition, 
leaf abscission can be triggered by pathogens in Arabi-
dopsis thaliana, enabling the plants to shed infected 
leaves and eliminate the spread of the disease to healthy 
tissues (Patharkar et al. 2017). In forest and savanna eco-
systems, abscised leaf litter plays key roles in nutrient and 
carbon cycling and forms a protective layer on the soil 
surface, thereby regulating the soil microclimate (Villalo-
bos-Vega et al. 2011; Zhou et al. 2019). Abscission is also 
a key strategy for plant reproductive success, as it ensures 
the separation of fruits, which further crack to disperse 
the seeds. The seed abscission process largely relies on 
the wind, an important dispersal vector (Ferrándiz 2002; 
Schippers and Jongejans 2005).
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However, in agriculture and horticulture, abnormal 
abscission is closely associated with severe reduction in 
crop quality and yield. In wild species of domesticated 
crops, seed shattering is an essential characteristic to 
ensure the survival of the next generation, whereas it 
causes major yield loss in crops harvested by humans. 
Therefore, our ancient farmers domesticated these wild 
species by collecting seeds from plants with favorable 
traits, including the loss of shattering, and produced non-
shattering cultivated crops (Alam and Purugganan 2024). 
In addition, many fruit trees such as apple, pear, litchi, 
and citrus, suffer from flower and fruit abscission, which 
functions as a double-edged sword: excessive abscission 
leads to yield loss, while rational control of shedding may 
increase yield and improve fruit quality (Kon et al. 2023; 
Webster 2002; Zhao and Li 2020; Dutta et al. 2023).

Here, we review the recent advances in plant abscission 
from the perspectives of developmental and molecular 
biology, with an emphasis on the diverse regulatory net-
works in different plant lineages, from model plants to 
crops (Fig. 1; Table 1). The abscission process consists of 
several overlapping steps, including differentiation of the 

abscission zone, activation of abscission, tissue detach-
ment, and formation of a protective layer (Fig. 1a). In the 
final part, we discuss the potential applications of physi-
ological modifications and genetic manipulations of plant 
abscission for crop breeding. This review aims to enrich 
our understanding of the molecular regulatory networks 
involved in plant abscission and provide guidance for 
sustainable agriculture in the future.

1.1 � Where to drop: the abscission zone
The location where abscission occurs, known as the 
abscission zone (AZ), is determined in the early devel-
opmental stages. AZs are present in various plant struc-
tures, including petioles, pedicels, and floral organs. Cell 
morphology in the AZ typically exhibits characteristics 
such as a smaller size compared to neighboring non-
abscessed cells, denser protoplasm, increased cell density, 
and more complex plasmodesmata (Sexton and Roberts 
1982). The number of cell layers in the AZ varies signifi-
cantly across tissues and species. The floral organs of A. 
thaliana have 4-6 layers of cells in their AZ (McKim et al. 
2008), tomato pedicels have 5-10 layers (Roberts et  al. 

Fig. 1  The process and molecular control of plant abscission. a Three overlapped steps during floral organ abscission in Arabidopsis. Abscission 
zone: AZ; se: sepal; pe: petal; st: stamen; green circles: other cells; red circles: differentiated cells in AZ; yellow circles: activated cells in AZ; blue circles: 
transdifferentiated cells on the surface of receptacle. (b-d) Molecular control of plant abscission in Arabidopsis thaliana (b), Solanum lycopersicum (c) 
and Oryza sativa (d). Dashed green lines: hypothetical pathways
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Table 1  Summary of key regulators of plant abscission in Arabidopsis thaliana, Solanum lycopersicum and Oryza spp 

Species Gene Gene family Functions in plant abscission Reference

Arabidopsis thaliana ATH1 BELL Promote the development of AZ; 
Promote the separation step of organ 
abscission

Gomez-Mena and Sablowski 2008

AS1 MYB Regulates the position of AZ Gubert et al. 2014b

AS2 LOB Regulates the position of AZ Jun et al. 2010

BOP1 NPR1 Promote the development of AZ McKim et al. 2008

BOP2 NPR1 Promote the development of AZ McKim et al. 2008

KNAT1/BP KNOX Promote the development of AZ; 
Inhibit the separation step of organ 
abscission

Shi et al. 2011; Butenko et al. 2012

AGL42/FYF MADS-box Inhibit the development of AZ; 
Inhibit the separation step of organ 
abscission

Chen et al. 2011

TGA1 bZIP Promote the development of AZ Wang et al. 2019b

TGA4 bZIP Promote the development of AZ Wang et al. 2019b

PNY BELL Inhibit the development of AZ Andrés et al. 2015

OFP1 OFP Promote the development of AZ Zhang et al. 2018

STM KNOX Promote the development of sepal AZ Song et al. 2020

AGL15 MADS-box Inhibit the separation step of organ 
abscission

Patharkar and Walker 2015

AGL71/FYL1 MADS-box Inhibit the separation step of organ 
abscission

Chen et al. 2022

AtDOF2.3/CDF4 DOF Promote the separation step of organ 
abscission

Xu et al. 2020

AtDOF4.7 DOF Inhibit the degradation of the abscis-
sion layer

Wang et al. 2016

AtZFP2 ZFP Inhibit the degradation of the abscis-
sion layer

Wei et al. 2010

BIR1 RLK Inhibit the separation step of organ 
abscission

Taylor et al. 2019

CST RLCK Inhibit the separation step of organ 
abscission

Burr et al. 2011

EVR/SOBIR1 LRR-RLK Inhibit the separation step of organ 
abscission

Leslie et al. 2010; Gubert et al. 2014a

HAE LRR-RLK Promote the separation step of organ 
abscission

Jinn et al. 2000

HSL2 LRR-RLK Promote the separation step of organ 
abscission

Cho et al. 2008

IDA IDL Promote the separation step of organ 
abscission

Cho et al. 2008

IDL IDL Promote the separation step of organ 
abscission

Stenvik et al. 2008

KNAT2 KNOX Promote the separation step of organ 
abscission

Ragni et al. 2008

KNAT6 KNOX Promote the separation step of organ 
abscission

Belles-Boix et al. 2006

BSK1 BR-signaling kinase Promote the separation step of organ 
abscission

Galindo-Trigo et al. 2024a

BSK2 BR-signaling kinase Promote the separation step of organ 
abscission

Galindo-Trigo et al. 2024a

YDA/MAPKKK4 MAPKKK Promote the separation step of organ 
abscission

Galindo-Trigo et al. 2024a
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Table 1  (continued)

Species Gene Gene family Functions in plant abscission Reference

MKK4 MAPKK Promote the separation step of organ 
abscission

Cho et al. 2008

MKK5 MAPKK Promote the separation step of organ 
abscission

Cho et al. 2008

MPK3 MAPK Promote the separation step of organ 
abscission

Cho et al. 2008

MPK6 MAPK Promote the separation step of organ 
abscission

Cho et al. 2008

NEV ARF GAPs Promote the separation step of organ 
abscission

Gubert et al. 2014a

SERK1 LRR-RLK Promote the separation step of organ 
abscission

Meng et al. 2016

SERK2 LRR-RLK Promote the separation step of organ 
abscission

Meng et al. 2016

SERK3 LRR-RLK Promote the separation step of organ 
abscission

Meng et al. 2016

SERK4 LRR-RLK Promote the separation step of organ 
abscission

Meng et al. 2016

WRKY57 WRKY Promote the separation step of organ 
abscission

Galindo-Trigo et al. 2024b

ADPG1 PG Promote the degradation 
of the abscission layer cell wall

Ogawa et al. 2009

ADPG2/PGAZAT PG Promote the degradation 
of the abscission layer cell wall

Ogawa et al. 2009

QRT2 PG Promote the degradation 
of the abscission layer cell wall

Ogawa et al. 2009

Solanum lycopersicum Bl MYB Promote the development of AZ Nakano et al. 2013

GOB NAC Promote the development of AZ Nakano et al. 2013

J-2 MADS-box Promote the development of AZ Roldan et al. 2017

LeWUS WOX Inhibit the development of AZ Nakano et al. 2013

Ls GRAS Inhibit the development of AZ Nakano et al. 2013

MC MADS-box Promote the development of AZ Nakano et al. 2012

SlBL4 BELL Promote the development of AZ Yan et al.2021

SlERF52 AP2/ERF Promote the development 
of AZ;Promote the separation step 
of abscission

Nakano et al. 2014

SlIDA IDL Promote the separation step 
of abscission

Lu et al. 2023

SlIDL2 IDL Promote the separation step 
of abscission

Lu et al. 2023

SlIDL3 IDL Promote the separation step 
of abscission

Lu et al. 2023

SlIDL4 IDL Promote the separation step 
of abscission

Lu et al. 2023

SlIDL5 IDL Promote the separation step 
of abscission

Lu et al. 2023

SlHSL6 LRR-RLK Promote the separation step 
of abscission

Lu et al. 2023

SlHSL7 LRR-RLK Promote the separation step 
of abscission

Lu et al. 2023

SlKD1 KNOX Promote the separation step 
of abscission

Lu et al. 2023

SlPhyt2 phytaspase Promote the separation step 
of abscission

Reichardt et al. 2020

PSK Phytosulfokines Promote the separation step 
of abscission

Reichardt et al. 2020
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Table 1  (continued)

Species Gene Gene family Functions in plant abscission Reference

SlARF10A ARF Inhibit the separation step of abscis-
sion

Damodharan et al. 2016

SlBEL11 BELL Inhibit the separation step of abscis-
sion

Dong et al. 2024

SlHXK1 HXK Inhibit the separation step of abscis-
sion

Li et al. 2020

SlHB15A HD-Zip Inhibit the separation step of abscis-
sion

Liu et al. 2022

SlPIN1 PIN Inhibit the separation step of abscis-
sion

Shi et al. 2017

SlFYFL MADS-box Inhibit the separation step of abscis-
sion

Xie et al. 2014

SlCEL1 CEL Promote the degradation 
of the abscission layer cell wall

Campillo and Bennett 1996

SlCEL2 CEL Promote the degradation 
of the abscission layer cell wall

Campillo and Bennett 1996

SlCEL3 CEL Promote the degradation 
of the abscission layer cell wall

Campillo and Bennett 1996

SlCEL4 CEL Promote the degradation 
of the abscission layer cell wall

Campillo and Bennett 1996

SlCEL5 CEL Promote the degradation 
of the abscission layer cell wall

Campillo and Bennett 1996

SlCEL6 CEL Promote the degradation 
of the abscission layer cell wall

Campillo and Bennett 1996

TAPG1 PG Promote the degradation 
of the abscission layer cell wall

Kalaitzis et al. 1997

TAPG2 PG Promote the degradation 
of the abscission layer cell wall

Kalaitzis et al. 1997

TAPG4 PG Promote the degradation 
of the abscission layer cell wall

Kalaitzis et al. 1997

TAPG5 PG Promote the degradation 
of the abscission layer cell wall

Kalaitzis et al. 1997

Oryza spp. GL4 MYB Promote the development of AZ Wu et al. 2023b

ObSH3 YABBY Promote the development of AZ Lv et al. 2018

OsSh1 YABBY Promote the development of AZ Lin et al. 2012

qCSS3 - Promote the development of AZ Tsujimura et al.2019

qSH1 BELL Promote the development of AZ Konishi et al. 2006

qSH3 - Promote the development of AZ Inoue et al. 2015

SH4/SHA1 trihelix Promote the development of AZ Li et al. 2006

SH5 BELL Promote AZ development; Inhibiting 
lignin biosynthesis

Yoon et al. 2014

SHAT1 AP2/ERF Promote the development of AZ Zhou et al. 2012

OsSNB/SSH1 AP2/ERF Promote the development of AZ 
and vascular bundle

Jiang et al. 2019

OsCPL1 CTD phosphatase-like gene Inhibit the differentiation of abscis-
sion layer

Ji et al. 2010

OsGRF4 armadillo/beta-catenin repeat Inhibit the differentiation of abscis-
sion layer

Sun et al. 2016

4CL3 CoA ligase Promote lignin deposition in the AZ Wu et al. 2023a

OsCAD2/GH2 CAD Promote lignin deposition in the AZ Ning et al. 2023; Yoon et al. 2017

OgSH11 MYB Inhibiting lignin biosynthesis Ning et al. 2023

OsCel9D CEL Promote the degradation of;the 
abscission layer cell wall

Nunes et al. 2014
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1984), and the AZ at the leafstalks of Sambucus nigra 
consists of 50 layers of cells (Taylor and Whitelaw 2001). 
However, actual cell separation does not occur uniformly 
across the AZ but is typically limited to several distal 
cell layers, referred to as the abscission layer (Roberts 
et  al. 1984). The abscission process has been described 
as a multistage process: (1) differentiation of the AZ, (2) 
activation of the abscission process in response to devel-
opmental and environmental signals, and (3) cell wall 
modification, followed by cell detachment and the forma-
tion of a rigid protective layer (Patterson 2001; Estornell 
et al. 2013).

1.2 � Differentiation of the AZ
Many genes involved in the formation of AZ within flo-
ral organs, such as petals, sepals, and stamens, have been 
identified in Arabidopsis (Fig.  1a, b). BLADE-ON-PETI-
OLE 1/2 (BOP1/2) are NONEXPRESSOR OF PATHO-
GENESIS RELATED GENES 1 (NPR1)-like genes that 
redundantly regulate plants developmental patterning 
and facilitate the formation of AZ (Hepworth et al. 2005; 
Su et  al. 2023). The bop1 bop2 double mutant fails to 
develop the anatomical structures of the AZ at the flo-
ral organ boundaries, leading to defects in organ abscis-
sion (McKim et al. 2008). In tobacco, a homolog of BOP, 
NtBOP2, regulates corolla abscission by inhibiting the 
longitudinal elongation of cells in the corolla AZ (Wu 
et  al. 2012). Similarly, in tomatoes, CRISPR mutants of 
three BOP genes result in the failure of petal abscission 
(Xu et al. 2016). In legume species, Medicago truncatula, 
Pisum sativum and Lotus japonicus, BOP orthologs are 
necessary for the abscission of vegetative and reproduc-
tive structures (Couzigou et  al. 2016). These findings 
support the important, conserved function of BOP in 
promoting AZ differentiation in eudicots.

Arabidopsis BOP1 and BOP2 form homodimers or 
heterodimers that enable them to activate the transcrip-
tion of ASYMMETRIC LEAVES 2 (AS2) during leaf 
development (Jun et al. 2010). AS2 encodes an LBD tran-
scription factor that acts in conjunction with the MYB 
transcription factor AS1. AS1 is also involved in the 

proper placement of the floral organ AZs and, together 
with AS2, forms a transcriptional complex that specifi-
cally binds to the CWGTTD motifs in the promoters of 
KNOTTED1-LIKE HOMEODOMAIN (KNOX) genes, 
such as KNOTTED-LIKE FROM ARABIDOPSIS THALI-
ANA 1/2/6 (KNAT1/2/6, KNAT1 is also known as BREV-
IPEDICELLUS (BP)), resulting in the repression of their 
expression (Guo et al. 2008). KNAT1 inhibits floral organ 
abscission by limiting AZ cell size and number (Shi et al. 
2011). In tomatoes, the KNOX gene KD1 is involved in 
the regulation of tomato flower pedicel abscission via the 
modulation of auxin concentration and response in the 
AZ (Ma et  al. 2015). In Litchi chinensis, a tropical fruit 
originating from south China, LcKNAT1 is expressed 
in the fruitlet AZ, and ectopic expression of LcKNAT1 
in tomatoes leads to delayed pedicel abscission (Zhao 
et al. 2020). These results reveal a shared role of KNOX 
proteins as negative abscission regulators. In addition, 
BOP1/2 can form complexes with the transcription fac-
tors TGACG-BINDING FACTOR 1/4 (TGA1/4), lead-
ing to the direct activation of the BEL1-LIKE (BELL) 
gene, ARABIDOPSIS THALIANA HOMEOBOX GENE1 
(ATH1) (Khan et  al. 2015). Both BELL and KNOX pro-
teins belong to the three-amino-acid loop extension 
(TALE) protein family and share similar structures and 
functions in diverse developmental processes. ATH1 
positively regulates stamen abscission and, together with 
its partners KNAT2/6, contribute to the differentiation of 
floral organ AZs (Crick et  al. 2022). Additionally, TALE 
homeodomain transcription factors (ATH1, KNAT2/6) 
and BOP1/2 work together during lignin deposition to 
promote the expression of hydrolytic enzymes involved 
in cell separation (Crick et al. 2022). BOP1/2 contribute 
to cell separation via activation of ATH1 and KNAT2/6 or 
independently through the promotion of genes involved 
in cell separation (Crick et al. 2022).

Abscission occurs not only within floral organs but 
also in whole flowers, fruits, and branches. The tomato 
has been used as a model to study the mechanisms of AZ 
formation within the pedicel, where aborted flowers or 
ripe fruits are shed (Fig. 1c). Formation of the pedicel AZ 

Table 1  (continued)

Species Gene Gene family Functions in plant abscission Reference

OSH15 KNOX Inhibiting lignin biosynthesis Yoon et al.2017

OsXTH8 XTH Promote the degradation 
of the abscission layer cell wall

Nunes et al. 2014

SHA1 Trihelix Promote the degradation 
of the abscission layer cell wall

Lin et al. 2007

ZlqSH1a BELL Promote the development of AZ Xie et al. 2022

ZlqSH1b BELL Promote the development of AZ Xie et al. 2022
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in tomato requires the presence of at least three MADS-
box transcription factors: JOINTLESS (J), JOINTLESS-2 
(J-2, also known as SlMBP21), and MACROCALYX 
(MC) (Nakano et al. 2012; Roldan et al. 2017). Loss-of-
function mutations in any of these genes result in the 
failure of pedicel AZ development. As MADS-box tran-
scription factors assemble into core tetrameric protein 
complexes in the floral quartet model, J, J-2, and MC 
may also form tetramers with other MADS-box pro-
teins, thereby serving as transcriptional activators that 
promote the development of the pedicel AZ (Liu et  al. 
2014). J, J-2, and MC activate the expression of pre-
abscission-related genes, such as BLIND (Bl), GOBLET 
(GOB), Lateral suppressor (Ls), and a WUSCHEL homo-
logue in tomato (LeWUS) (Nakano et  al. 2012; Roldan 
et al. 2017; Nakano et al. 2013). The transcription of J is 
activated by BEL1-LIKE HOMEODOMAIN 4 (SlBL4) 
in vitro, supporting SlBL4’s role in fruit pedicel organo-
genesis and abscission (Yan et  al.2021). However, the 
orthologs of these three MADS proteins in Arabidop-
sis are not related to pedicel abscission, and it remains 
unclear whether the functions of MADS transcription 
factors in the regulation of pedicel AZ development 
are conserved in other species or if they are specific to 
tomato and its relatives.

Preharvest fruit shattering occurs in many wild rela-
tives of Poaceous crops, causing reduced yield and seed 
quality. Therefore, natural mutants with non-shattering 
trait were often selected during crop domestication (Yu 
et  al. 2024). Although shattering positions vary among 
different Poaceous crops, they are often related to 
structures such as floral bracts and stem segments (Yu 
et  al. 2024). In rice, the AZ consists of a layer of non-
lignified cells surrounded by thick lignified cells (Wu 
et  al. 2023b), and numerous shattering factors  have 
been identified, including eight major factors: SUPER-
NUMERARY BRACT (SNB), QTL OF SEED SHAT-
TERING IN CHROMOSOME 1 (qSH1), GRAIN 
SHATTERING QUANTITATIVE TRAIT LOCUS 
ON CHROMOSOME 4 (SH4), SH5, SHATTERING 
ABORTION1 (SHAT1), ORYZA SATIVA CTD PHOS-
PHATASE-LIKE 1 (OsCPL1), ORYZA BARTHII SEED 
SHATTERING 3 (ObSH3), and OgSH11 (Fig.  1d). 
These factors form a complicated network that regu-
lates the expression of key lignin biosynthesis genes: 
GOLD HULL AND INTERNODE2 (GH2)/CINNAMYL-
ALCOHOL DEHYDROGENASE 2 (CAD2) and 4-COU-
MARATE: COENZYME A LIGASE 3  (4CL3) (Wu et al. 
2023a; Wu et  al. 2023b). Notably, differential lignifica-
tion that occurs in rice AZ formation may not be essen-
tial for shattering in many other Poaceae crops, such as 
sorghum and wheat, suggesting divergent genetic con-
trol of cereal shattering.

1.3 � Activation of the abscission process
In A. thaliana, the IDA-HAE/HSL2 signaling pathway 
regulates the initiation of floral organ abscission (Fig. 1b). 
HEASA (HAE) and HEASA-LIKE2 (HSL2) encode two 
closely related leucine-rich repeating receptor-like 
kinases (LRR-RLKs) that redundantly regulate the pro-
cess. INFLORESCENCE DEFICIENT IN ABSCISSION 
(IDA) and IDA-LIKE (IDL) are small peptides that posi-
tively regulate floral organ abscission process (Jinn et al. 
2000; Stenvik et  al. 2008). The ida mutants, despite 
possessing the ability to form AZ, fail to abscise floral 
organs, whereas ectopic expression of IDA results in ear-
lier abscission (Butenko et al. 2003). IDA functions as a 
ligand to activate the heterodimerization and transpho-
sphorylation of HAE/HSL2, together with SOMATIC 
EMBRYOGENESIS RECEPTOR KINASE (SERK) fam-
ily members that function as co-receptors (Meng et  al. 
2016). The IDA-HAE/HSL2 signaling module has been 
identified in different species, including tomato, tobacco, 
soybean, citrus, rose, and litchi, indicating its conserva-
tion across eudicots (Lu et al. 2023; Ventimilla et al. 2021; 
Tucker and Yang 2012; Estornell et al. 2015; Singh et al. 
2023; Ma et al. 2024; Wang et al. 2019a; Ying et al. 2016). 
Future studies should focus on the crosstalk between the 
IDA-HAE/HSL2 signaling module and plant abscission 
hormones (i.e., ethylene/ET) to fully understand the ET-
dependent and -independent abscission pathways (Meir 
et al. 2019).

The activated HAE/HSL2-SERK complex subsequently 
induces the downstream mitogen-activated protein 
kinase (MAPK) signaling cascade through brassinoster-
oid signaling kinases (BSKs) and the MAPKKK, YODA 
(YDA, also known as MAPKKK4) (Galindo-Trigo et  al. 
2024a). The activated MAPK cascade further phospho-
rylates the downstream transcription factors and ulti-
mately enhances hydrolase activity, thereby facilitating 
floral organ abscission (Cho et  al. 2008). The MADS-
box transcription factor AGAMOUS-LIKE15 (AGL15) 
is a direct target of MAPK. AGL15 acts as a negative 
regulator of HAE before phosphorylation but becomes 
a positive regulator when phosphorylated, thereby 
establishing a feedback loop for the regulation of floral 
organ abscission (Patharkar and Walker 2015). Another 
DNA binding with one finger (DOF) transcription fac-
tor, AtDOF4.7, is also a direct target of the MAPK cas-
cade, which enables AtDOF4.7 to directly repress the 
expression of the abscission-related polygalacturonase 
(PG) gene, PGAZAT (Wang et  al. 2016). In addition, 
ZINC FINGER PROTEIN2 (AtZFP2), a zinc-finger pro-
tein, is specifically expressed in the floral AZ, and its 
overexpression leads to delayed abscission. AtDOF4.7, 
which forms a transcriptional complex with AtZFP2, 
enhances the repression of PGAZAT (Wei et  al. 2010). 
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Moreover, HAE/HSL2 and other RLKs must be trans-
ported through the intracellular membrane system, an 
ADP-ribosylation factor, The GTPase-activating protein 
NEVERSHED (NEV), located in the trans-Golgi network 
(TGN), is required. Mutations in nev disrupt the TGN 
structure of the cells within the AZ, leading to organ 
abscission failure (Liljegren et al. 2009).

1.4 � Cell detachment and protective layer formation
In response to an abscission signal, the cells in the AZ 
secrete enzymes, including cellulases (CELs), polygalac-
turonases (PGs), and xyloglucan endotransglucosylase/
hydrolases (XTHs), that modify and hydrolyze the cell 
wall (Wu et al. 2024). These enzymes degrade cell walls 
between adjacent cell layers, ultimately resulting in cell 
detachment.

CEL is responsible for cellulose degradation. In Arabi-
dopsis, AtCEL6 promotes silique dehiscence by facilitat-
ing cell separation in the abscission layer (He et al. 2018). 
Six cellulase genes (SlCEL1-6) have been identified in 
tomato, all of which are associated with ET-dependent 
floral abscission (Del Campillo and Bennett 1996). In 
litchi, the HD-Zip transcription factor LcHB2 acts as a 
positive regulator of fruit abscission by directly activating 
the cellulase genes LcCEL2 and LcCEL8 (Li et al. 2019).

PG catalyzes the degradation of pectin. Floral organ 
abscission in Arabidopsis depends on the presence of 
PGs, and mutations in PGAZAT, ARABIDOPSIS DEHIS-
CENCE ZONE POLYGALACTURONASE1 (ADPG1) 
and QUARTET2 (QRT2) lead to delayed fruit dehiscence 
(Ogawa et  al. 2009). Hence, both PGAZAT and QRT2 
have been used as abscission markers (González-Car-
ranza et al. 2007). Organ abscission is regulated by a com-
bination of jasmonic acid (JA), ET, and abscission acid 
(ABA), which, in part, promotes the expression of QRT2 
(Ogawa et al. 2009). Tomato PGs, such as TAPG1/2/4/5, 
are specifically expressed during the ET-induced abscis-
sion of leaves and flowers. Their expression is promoted 
by the APETALA2/ethylene responsive factor (AP2/ERF) 
transcription factor SlERF52, which acts downstream of J 
and MC (Kalaitzis et al. 1997; Nakano et al. 2014). Under 
drought stress, the small signaling peptide hormone, 
phytosulfokine (PSK) can induce an elevated expression 
of TAPG4, thereby promoting the abscission of tomato 
flowers and fruits (Reichardt et al. 2020).

XTH disrupts the xyloglucan chains and remodels the 
cellulose-xyloglucan complex structure. Accumulation of 
XTH in the AZ has been observed during abscission in 
various species, such as Arabidopsis, tomato, rose, litchi, 
cherry, and soybean, indicating the potential impor-
tance of XTH in organ abscission (Lashbrook et al. 2008; 
Tsuchiya et  al. 2015; Singh et  al. 2013; Ma et  al. 2021a; 
Qiu et  al. 2021; Tucker et  al.  2007). Studies have also 

demonstrated the ET-responsiveness of the transcrip-
tion of XTHs during abscission. In litchi, two ETHYL-
ENE INSENSITIVE 3-LIKE (EIL) homologs, LcEIL2 and 
LcEIL3, which function as core transcription factors that 
activate various ET responses, directly activate the XTH 
genes LcXTH4/7/19, and mediate fruit abscission (Ma 
et al. 2021b). In the petal AZ of rose, RbXTH3/5/6/12 can 
be rapidly induced by ET within hours (Singh et al. 2013). 
Similarly, in citrus leaves, CitXTH1-3 levels are upregu-
lated in the AZ after ET treatment (Agustí et al. 2009).

Apart from cell detachment, a protective layer is also 
formed on the surface of the distal end of the abscission 
layer to protect the plant from pathogen entry and water 
loss. Single-cell transcriptomics demonstrates that the 
Arabidopsis floral organ AZ is composed of two neigh-
boring cell types with distinct cellular activities: the 
secession cells (SEC) of the separated organs produce a 
honeycomb structure of lignin, that serves as a mechani-
cal brace to localize cell wall breakdown and spatially 
restrict the detachment of cells; While the residuum cells 
(REC) of the receptacle undergo a de novo specification 
of epidermal cells by recruiting two wall-hydrolyzing 
proteins, QRT2 and XTH28, thereby leading to the for-
mation of a protective cuticle (Lee et al. 2018; Kim et al. 
2019). Although the biochemical reactions catalyzed by 
these enzymes are relatively well understood, their regu-
lation and coordination during abscission requires fur-
ther investigation.

1.5 � Manipulation of plant abscission in agriculture
The percentage of flower and fruitlet abscission is closely 
related to yield, therefore, the artificial regulation of plant 
abscission is an important way to ensure production. 
Hexanal, a natural compound produced in plants after 
injury, has been shown to be effective in preventing pre-
harvest fruit drop of many fruits. For example, in apples, 
the application of hexanal can effectively reduce ET bio-
synthesis and perception in the AZ, preventing cell wall 
degradation, and consequently minimizing fruit drop 
(Sriskantharajah et al. 2021). However, in tea production, 
an ET-releasing molecule, ethephon, is used to stimulate 
flower abscission and decrease the overall number of 
flowers, thereby improving tea yield and quality (Zhang 
et al. 2022a).

Post-harvest storage and transportation of fruits and 
vegetables often involve issues of fruit or leaf abscis-
sion, which negatively affects their commercial value. 
Preharvest spraying of calcium nanoparticles on 
grapes results in an increased calcium pectinate con-
tent in the AZ, leading to delayed pectin degradation, 
suppressed ET synthesis, and inhibition of grape berry 
abscission (Zhu et  al. 2024). Post-harvest application 
of nordihydroguaiaretic acid (NDGA) or chitosan can 
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effectively inhibit the activity of cell wall-degrading 
enzymes, thereby delaying the cellular detachment of 
the AZ (Zhu et al. 2022; Wu et al. 2021). In cut flow-
ers, petal abscission is profoundly promoted by ET, 
and the application of ET inhibitors such as silver 
thiosulfate (STS) and 1-methylcyclopropene (1-MCP) 
significantly extends the vase life of flowers. STS effec-
tively reduces the activity of the enzymes involved in 
cell wall hydrolysis in the AZ, whereas 1-MCP inhibits 
ET perception by suppressing ET receptor genes and 
enhancing antioxidant activity (Zhang et  al. 2022b; 
Naing et al. 2022).

Mechanical harvesting is the future of modern agri-
culture practices. To improve harvest productivity, it is 
necessary to cultivate varieties suitable for mechanical 
harvesting. During the processing of vegetables such 
as canned tomato and pepper, removing the pedicels 
and calyx depends on farm labor and time. Moreover, 
the presence of stems may cause mechanical damage 
to the fruits during transportation. In tomato, muta-
tions in J, J-2, and MC disrupt AZ formation, allowing 
for mechanical harvesting without physical wound-
ing during transportation (Ito and Nakano 2015). In 
Capsicum annuum cultivation, the Mexican landrace 
UCD-14 presents an easy-destemming trait, possibly 
due to the presence and activation of the pedicel/fruit 
AZ. Multiple quantitative trait locus (QTLs) known to 
control Arabidopsis abscission are found to co-segre-
gate with the stem removal traits in UCD-14 (Hill et al. 
2023). In Brassica napus, premature silique dehiscence 
results in devastating yield loss during mechanical 
harvesting (Li et  al. 2021). Recently, modulating the 
expression of the hemicellulase gene BnMAN7A07 or 
knock-out of two IDA homologs, BnaIDA-A07 and 
BnaIDA-C06, suppressed silique dehiscence, improved 
yield, and facilitated mechanical harvesting in Bras-
sica napus (Li et  al. 2021b; Geng et  al. 2022). Since 
rapeseed flower fields serve as significant rural tour-
ist attractions, CRISPR-mediated BnaIDA gene edit-
ing extends the flowering period and enhances their 
resistance to Sclerotinia sclerotiorum, thereby boosting 
tourism income (Wu et al. 2022).

1.6 � Future perspectives
Plant hormones play a crucial role in regulating plant 
abscission and their crosstalk has long been a subject of 
research interest. A widely acknowledged hypothesis sug-
gests that ET promotes abscission, whereas auxins inhibit 
this process. For example, litchi AUXIN RESPONSE FAC-
TOR 5 (LcARF5) and LcEIL3 are upregulated by ET and 
downregulated by auxins, which promote fruit abscis-
sion through the expression of LcIDL1 and LcHSL2 (Ma 

et al. 2024). Auxins plays various roles at different stages 
of abscission. A recent study indicated that JA induces 
autophagy to promote petal abscission (Furuta et  al. 
2024). In addition, gibberellins, ABA, and brassinoster-
oids have been reported to participate in the regulation of 
abscission (Marciniak et al. 2018; Wu et al. 2023a; Kućko 
et al. 2023; Ma et al. 2021a, b). However, the interactions 
between plant hormones remain unclear. Therefore, fur-
ther research on the crosstalk among the hormones that 
participate during abscission is warranted.

1.7 � Concluding remarks
In recent decades, notable progress has been made 
in the study of abscission in model plants, which has 
paved the way for translational research in crops and 
other non-model plants. The utilization of single-cell 
sequencing or spatially enhanced-resolution omics-
sequencing (Stereo-seq) will enable the study of plant 
abscission at single-cell resolutions (Baysoy et al. 2023). 
Such technologies will facilitate the elucidation of het-
erogeneity within different AZ cell populations and 
provide novel insights into the developmental process 
of AZ, thereby establishing a genetic toolkit for the 
genetic manipulation of plant abscission in future agri-
culture. In the future, understanding the developmental 
timing of plant abscission will enable precise human-
regulation of the process of abscission. Combined with 
precise plant genome editing tools (Xiong et al. 2023), 
it will be possible to optimize harvestability traits and 
design novel crop cultivars suitable for mechanized 
harvesting in the future.
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