
Yang et al. 
Intelligent Marine Technology and Systems            (2024) 2:10  
https://doi.org/10.1007/s44295-024-00024-5

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Intelligent Marine 
Technology and Systems

Remote sensing insights into ocean fronts: 
a literature review
Yuting Yang1,4  , Yakun Ju2*, Ying Gao3, Cong Zhang4 and Kin‑Man Lam4 

Abstract 

By providing valuable data that allow scientists to study various oceanographic characteristics on a global scale, 
remote sensing techniques have considerably advanced our understanding of ocean fronts. Ocean fronts involve 
the interaction of water masses with specific physical properties such as temperature, sea color, salinity, and density. 
In particular, ocean fronts can act as barriers, impeding the movement of water masses and leading to the conver‑
gence or divergence of nutrients and marine species. Research on ocean fronts and their impact on marine biodiver‑
sity and physical environments has recently become popular. This paper introduces ocean front research progress 
based on remote sensing images, including research material, methods, limitations, and possible future research 
directions. The latest research on spatiotemporal variation in ocean fronts has substantially enhanced our understand‑
ing of the interaction of water masses with specific physical properties in the ocean.
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1 Introduction
An ocean front, a typical dynamic feature of the ocean, 
is a region in the ocean where two water masses with 
different physical properties, such as temperature, salin-
ity, and density, come into contact and interact. Ocean 
fronts play an important role in ocean circulation and 
the transport of heat, nutrients, and marine organisms 
(Chapman et al. 2020). Ocean fronts are integral to global 
ocean circulation patterns. Studying these features con-
tributes to our understanding of large-scale ocean move-
ments, which in turn influence climate regulation and 
the transport of heat and nutrients around the planet. In 

addition to their physical importance, fronts have eco-
logical value (Hense et al. 2003; Liu et al. 2018; Allen et al. 
2020; Gangrade and Franks 2023). Ocean fronts play a 
pivotal role in influencing climate and weather patterns. 
Investigating these regions improves the understanding 
of how oceanic processes impact global weather systems. 
This knowledge is vital for predicting climate change 
and extreme weather events. In addition, ocean fronts 
are often biodiversity hotspots, hosting a rich variety of 
marine life. Understanding these dynamic boundaries is 
essential for understanding the intricate ecosystems in 
these regions. By studying ocean fronts, we gain insights 
into the interactions among different marine species and 
their dependencies on specific environmental conditions. 
Identifying and studying these areas can reveal critical 
information about species distribution, migration pat-
terns, and the overall health of marine ecosystems. This 
knowledge is crucial for conservation efforts and sustain-
able management of marine resources. Human activi-
ties such as fishing and shipping are often concentrated 
around ocean fronts. Investigating the impact of these 
activities on the delicate balance of marine ecosystems 
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helps in developing effective management and conser-
vation strategies. This help is particularly important for 
ensuring the sustainability of fisheries and minimizing 
environmental degradation.

Satellite imagery enables the detection and monitor-
ing of ocean dynamic features on a global scale, allows 
scientists to track the movement, size, and character-
istics of these dynamic features, and provides valuable 
insights into their behavior and effect on oceanic pro-
cesses, including the role of oceans in regulating the 
climate, supporting economies through fisheries and 
maritime activities, and highlighting the environmental 
challenges our planet faces. Understanding the complexi-
ties of oceans and their intricate interactions is essential 
for addressing environmental challenges and safeguard-
ing the health and biodiversity of marine environments 
for future generations. This review uncovers a wealth 
of research focused on the application of remote sens-
ing (RS) technologies to study ocean front dynamics and 
their vital role in various oceanic processes. Furthermore, 
this review highlights the advancements in machine 
learning techniques that have enabled the detection and 
analysis of ocean front characteristics.

The contents of this review are illustrated in Fig. 1. In 
Section 2, a brief description of the basic characteristics 
of ocean fronts is provided. In Section 3, we describe the 
data materials used in ocean front research. Section  4 
elucidates recent research progress on ocean front spa-
tial and temporal variation characteristics. These studies 
are crucial for understanding the interactions between 
water masses, including upwelling and downwelling pro-
cesses. These interactions have considerable implications 
for marine ecosystems, fisheries, and climate patterns. 
Furthermore, studies covered in Section  5 demonstrate 
how ocean fronts can influence ocean ecology and the 
environment. Particularly, this review encompasses 
investigations into the influence of ocean fronts on the 
distribution of marine organisms, as they often act as 
primary habitats of biological productivity. In Section 6, 
the review discusses the challenges and limitations asso-
ciated with more in-depth research on ocean fronts. In 

Section  7, we conclude our review by highlighting the 
important contributions of RS technology to oceanog-
raphy and underscore its crucial role in advancing our 
knowledge of ocean front dynamics and their far-reach-
ing implications for marine ecosystems and climate 
systems.

2  General knowledge about ocean fronts
The fronts are regions where water masses with distinct 
characteristics, such as temperature, density, and nutri-
ents, meet and interact. The interaction of these water 
masses forms strong and active fronts, which are often 
accompanied by horizontal shear and baroclinity instabil-
ity. Horizontal shear refers to the change in the velocity 
or direction of ocean currents across a horizontal dis-
tance. In contrast, baroclinic instability is caused by hori-
zontal density gradients between different water masses. 
These factors contribute to the generation of cyclonic 
(clockwise) and anticyclonic (counterclockwise) circula-
tions or eddies on both sides of a strong front, with jets of 
water flowing between them.

2.1  Downwelling and upwelling of ocean fronts
Within a frontal zone are horizontal gradients of temper-
ature, density, and nutrients. The water masses undergo 
deformation as they converge at the front, creating a flow 
with a steeply sloped isopycnic surface (surface of con-
stant density). In geostrophic equilibrium, denser water 
flows downward along these isopycnals from the colder 
side of the front and spreads beneath the lighter water 
on the warmer side, which helps stabilize the front. The 
front characteristics are further shaped by the presence of 
downwelling and upwelling regions (Matano and Palma 
2008). Downwelling occurs on the colder side of the front 
because of the convergence of water masses, leading to 
the sinking of water. On the warmer side, downwelling 
is less pronounced because of the negative divergence of 
the flow, which means that the water is spreading apart. 
These vertical motions are associated with secondary cir-
culation across the isopycnals and are ecologically impor-
tant because they transport nutrients to the sea surface. 

Fig. 1 Summary of the entire article
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Increased nutrient availability facilitates the growth and 
accumulation of plankton (plants and small zooplankton) 
in the front region.

2.2  Formation mechanism of ocean fronts
A strong front is visually represented as an inclined 
interface between waters with different characteristics 
that intersect with the sea surface to form a frontal area. 
These fronts are dynamic zones in which various ocean-
ographic processes, such as nutrient transport, primary 
productivity, and the distribution of marine species, are 
strongly influenced. Particularly, the intensification of the 
horizontal density gradient during frontogenesis acceler-
ates the geostrophic jet, disrupting the balance between 
the density gradient and the Coriolis force. Frontogen-
esis refers to the process by which a front intensifies or 
forms, typically because of the convergence of different 
water masses. In response to frontogenesis and the dis-
ruption of geostrophic balance, vertical nongeostrophic 
secondary circulations occur across the isopycnals (lines 
of constant density). These secondary circulations tend to 
reduce the slope or dip of the isopycnals, restoring equi-
librium. This vertical nongeostrophic circulation plays a 
vital role in the transport of nutrients.

The frontal area is influenced by different types of 
instabilities. Mesoscale baroclinity instability causes the 
frontal jet to meander and form a frontal eddy. Symmet-
ric instability releases the kinetic energy of the frontal jet, 
increasing the small-scale turbulence and vertical mixing 
levels at the frontal level. These instabilities contribute to 
increased biological productivity in the frontal area. In 
the geostrophic approximation, the horizontal density 
gradient is balanced by the Coriolis force, which results 
from the Earth’s rotation. However, during frontogenesis 
and the occurrence of nongeostrophic secondary circula-
tions, this balance is disrupted, leading to complex and 
dynamic processes within the front. Overall, the interac-
tion of different water masses in the frontal area produces 
intricate physical and biological processes. Understand-
ing ocean front dynamics is crucial for studying the inter-
actions between different water masses, their impacts on 
marine ecosystems, and their role in shaping climate pat-
terns and the Earth’s ocean circulation. RS technologies 
have played an important role in advancing our knowl-
edge of these complex features and continue to be instru-
mental in furthering our understanding of the dynamic 
ocean processes.

As shown in Fig.  2, ocean fronts are primarily driven 
by wind, which transports warm and cold waters 
between regions, leading to downwelling and upwelling. 
In addition, the sun’s energy is also an important factor 
for ocean front formation, as it is unevenly distributed 
across the ocean’s surface. This uneven heating results in 

temperature gradients between the water masses. Fur-
thermore, the Earth’s rotation can alter the flow direction 
of water masses, prompting interactions between differ-
ent water masses with varying nutrient levels and light 
availability. In summary, ocean front formation is a com-
plex interplay between wind patterns, temperature gradi-
ents, Earth’s rotation, and water masses.

2.3  Physical characteristics of ocean fronts
Oceanic fronts range in size from a few hundred meters 
to thousands of kilometers and exist in the surface, mid-
dle, and near-bottom layers of an ocean. Permanent 
fronts are associated with planetary circulation and 
strong currents, such as the Gulf Stream and Kuroshio 
Current (Belkin and O’Reilly 2009; Flor 2010; Kida et al. 
2016). According to spatiotemporal scales, ocean fronts 
can be divided into the following types:

Planetary-scale fronts: Planetary-scale fronts, such 
as the Antarctic and subtropical fronts, have horizon-
tal extensions of 10–500 km and are usually associated 
with Ekman transport. Planetary-scale fronts are closely 
related to the division of global climate zones and atmos-
pheric circulation.

Mesoscale fronts (Xing et  al. 2023): Mesoscale fronts 
are characterized by a relatively fixed position and a cer-
tain seasonal variation. For example, the temporal varia-
tion in tidal fronts is related to the tidal cycle and seasons. 
The spatial scale of mesoscale fronts usually ranges from 
tens to hundreds of kilometers and can persist for several 
weeks to months.

Mesoscale fronts contribute to ocean mixing and the 
exchange of materials between different water layers and 
are efficient transporters of water, heat, and nutrients in 
the ocean. They are critical components of the oceanic 
system and have far-reaching implications for ocean cir-
culation, nutrient cycling, and the distribution of marine 
species.

Submesoscale fronts (Cao and Jing 2022): Sub-
mesoscale fronts are generated by the interaction of 
large-scale turbulence and mesoscale eddies (Thomas 

Fig. 2 Possible driving forces for ocean front formation
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et  al. 2008; McWilliams 2016). The spatial scale of sub-
mesoscale fronts ranges from several kilometers to tens 
of kilometers, and its temporal scale ranges from several 
days to tens of days.

Small-scale fronts: Small-scale fronts are very dynamic 
and flickering ocean fronts. The spatial scale of small-
scale fronts ranges from several hundred meters to sev-
eral kilometers, and their temporal scale ranges from 
several hours to several days.

According to the physical properties of water masses, 
ocean fronts can be divided into the following categories:

(1) Thermal fronts are defined by sharp temperature 
contrasts between adjacent water masses. They 
typically occur where warm and cold water masses 
meet, resulting in a substantial temperature gradi-
ent across the front.

(2) Salinity fronts are characterized by differences in 
salinity between the two water masses. They form 
where waters with different salinities mix, creating 
a distinct boundary.

(3) Density fronts are defined by variations in the water 
density. These fronts are influenced by temperature 
and salinity differences and are crucial for under-
standing ocean circulation and mixing processes.

(4) Chlorophyll fronts exhibit an important change in 
the concentration of chlorophyll-a. Chlorophyll 
fronts are of particular interest to oceanographers 
and marine scientists because they often coincide 
with areas of increased biological productivity.

3  Materials acquisition
Temperature, density, salinity, and chlorophyll concen-
tration are basic physical properties of seawater. The 
geophysical characteristics of ocean processes, such as 
ocean circulation, ocean fronts, eddies, and other related 
studies, rely on the physical properties of seawater. The 
observation of these properties can be divided into two 
types: on-site observation and remote observation using 
RS technology. On-site observation is the most direct 
and accurate means of obtaining observation data; 
however, because of the constraints of equipment and 
environmental factors, the spatiotemporal scope of its 
observation is greatly limited. In comparison, satellite RS 
technology can provide long-term observations covering 
the whole world.

Currently available satellite RS data include sea sur-
face temperature (SST), sea surface height (SSH), sea 
surface density (SSD), sea level anomaly (SLA), sea 
surface salinity (SSS), photosynthetically active radia-
tion, surface flow, and chlorophyll concentration. 
SSH data are available from the National Center for 

Environmental Information (NCEI, https:// www. ncei. 
noaa. gov/) of the National Oceanic and Atmospheric 
Administration (NOAA). SSD data are estimated 
based on SST, SSS, and atmospheric pressure data. 
SSS and SSD data were obtained from the Soil Mois-
ture and Ocean Salinity (SMOS) Earth Explorer mis-
sion (https:// www. catds. fr/ Produ cts/ Avail able- produ 
cts- from- CPDC).

SST data are available from the NASA moderate-res-
olution imaging spectroradiometer (MODIS) satellite at 
9 km resolution, from the advanced very-high-resolu-
tion radiometer (AVHRR) at 5 km resolution, and from 
the Physical Oceanography Distributed Active Archive 
Center, which can provide multiscale ultrahigh resolu-
tion SST data with a resolution of 0.01× 0.01 degrees. 
SST data can be acquired using infrared sensors 
(MODIS and AVHRR Pathfinder), such as spectrora-
diometers, and passive microwave sensors, such as the 
advanced microwave scanning radiometer. Generally, 
a spectroradiometer can capture high-resolution data, 
but these data are contaminated by clouds, whereas 
the microwave scanning radiometer can capture data 
with lower resolution, but these data are unaffected by 
clouds. Therefore, microwave scanning radiometers are 
often used to supplement spectroradiometers, particu-
larly in areas where cloud cover is a severe problem, 
such as high latitudes and polar regions.

Nevertheless, current RS observations cannot address 
the need for the study of submesoscale oceanic dynam-
ics and small-scale air-sea interactions. In response 
to this problem, many countries jointly proposed the 
SEASTAR mission, which intends to provide data at a 
resolution of 1 km. In addition, to achieve higher res-
olution SST and ocean color data, hybrid datasets are 
proposed to fuse on-site observations and satellite RS 
observations. The fused data with a temporal resolution 
of one day can be accessed from NOAA, the National 
Environmental Satellite, Data, and Information Service 
(NESDIS), and the NCEI (https:// www. ncei. noaa. gov/).

4  Research progress on ocean front 
spatiotemporal characteristics

Part of the research on ocean front spatiotemporal 
characteristics is classified and illustrated in Table  1. 
The current research directions on ocean front spati-
otemporal characteristics mainly include ocean front 
detection, classification, prediction, and analysis. Pop-
ular ocean front detection methods mainly include 
analysis-based methods and data-driven methods. 
Analysis-based methods, such as microcanonical multi-
fractal formalism (MMF) (Tamim et al. 2015; Yang et al. 

https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
https://www.catds.fr/Products/Available-products-from-CPDC
https://www.catds.fr/Products/Available-products-from-CPDC
https://www.ncei.noaa.gov/
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2016) and the Lagrangian method (Prants 2022), rely 
on analyzing the singular index of RS images.

4.1  Analysis‑based ocean front detection methods
To detect the location and track the evolution of ocean 
fronts in the ocean, Prants et  al. (2014a, b) and  Prants 
(2022) propose computing Lagrangian indicators. 
Lagrangian indicators contain not only information 
about the current characteristics of water masses, such 
as their temperature, salinity, and density but also infor-
mation about their origin. Such information includes the 
trajectory and time of existence of ocean fronts.

The Lagrangian method is based on a singular expan-
sion of the evolution matrix computed by linearized 
advection equations. In contrast to invariant manifolds 
in the theory of dynamical systems, manifolds in ocean 
flows exist for a finite time. They can be approximately 
located using the extrema of the scalar fields of the finite-
time Lyapunov exponent (FTLE) accumulated over a 
certain period, and the finite-size Lyapunov exponent 
(FSLE) accumulated until a certain specified distance 
between pairs of initially proximal particles is reached. 
FSLE and FTLE diagnostics are used to analyze the 
dynamics of a strong front, revealing a fine structure that 
indicates the convergence of different water masses from 
separate sources. In this method, the FTLE is calculated 
as follows:

where σ(t, t0) is the maximum singular value of the evo-
lution matrix, and t − t0 is the integration time. The FSLE 
is calculated as follows:

The values of � are calculated by integrating the advec-
tion equations until time τ , when two particles, initially 

(1)� =
ln σ(t, t0)

t − t0
,

(2)�s =
ln(σf /σ0)

τ
.

separated by a distance σ0 , diverge over a distance σf  
from each other.

Compared with the Lagrangian method, the MMF 
method not only considers the local maximum gradient 
but also comprehensively considers the context informa-
tion of the area. The MMF method can not only obtain 
the global maximum gradient but also avoid local opti-
mal errors. In the MMF algorithm, a Fourier transform 
is used to obtain the frequency domain of the SST image. 
Then, based on the context information of the detection 
area, a wavelet transform is applied to calculate the sin-
gularity index at each pixel of the image. The key point of 
MMF is the accurate computation of the singular expo-
nent (SE) value h(−→x ) at each pixel. The formula for calcu-
lating the SE at each pixel x is as follows:

where N and M are the size of the image, and r0 = 1
N×M 

is used for image normalization. τψµ(., r0) represents the 
wavelet projection. h(−→x ) represents the SE at pixel x that 
is the strongest temperature variation and is used for 
analyzing the ocean front. Figure 3 displays the detection 
results of ocean fronts in major ocean current regions.

4.2  Data‑driven ocean front detection methods
In recent years, data-driven methods have been pro-
posed to detect ocean fronts (Sun et  al. 2019; Li et  al. 
2021; Wang et al. 2023; Zhu et al. 2023). These methods 
are designed to learn the mapping relationship between 
the input and output data so that the detection result can 
meet certain requirements. Several classic deep learning 
models are listed as follows:

(1) The fully convolutional network (FCN) (Long et al. 
2015) represents a convolutional neural network 
architecture that eschews fully connected layers 
in favor of an exclusive reliance on convolutional 

(3)h(
−→
x ) =

log(τψµ(
−→
x ,r0))

<τψµ(.,r0)>

log r0
+ o(

1

log r0
),

Table 1 Methods proposed for analyzing ocean front spatiotemporal characteristics

Detection Classification Prediction Analysis

Ten years ago  Belkin and O’Reilly 2009 —  Griffa et al. 2007  Mahadevan and Tandon 2006; 
Flor 2010; Ferrari 2011; Taylor 
and Ferrari 2011; Lévy et al. 2012

Recent 10 years  Tamim et al. 2015; Yang et al. 2016  Prants et al. 2014b; Lima et al. 2017  Yang et al. 2017; 
Zhang et al. 2017

 Prants et al. 2014a; Baltar 
et al. 2016; Kida et al. 2016; Kahru 
et al. 2018; Lévy et al. 2018; Scales 
et al. 2018

Recent 5 years  Sun et al. 2019; Li et al. 2021; Wang 
et al. 2023; Xing et al. 2023; Zhu 
et al. 2023

 Kim et al. 2022; Yang et al. 2022 —  de Verneil et al. 2019; Archer 
et al. 2020; Belkin 2021; Prants 2022
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operations. The integration of convolutional lay-
ers within the FCN framework augments spatial 
dimensions, thereby amplifying the size of the fea-
ture maps. This augmentation is instrumental in 
producing refined and detailed output, thereby 
enhancing the network’s ability to yield high-resolu-
tion results.

(2) U-Net (Ronneberger et  al. 2015) is a popular con-
volutional neural network (CNN) architecture that 
is commonly used for image segmentation tasks. A 
network based on U-Net is designed and applied to 
identify and delineate front boundaries from satel-
lite images.

(3) SegNet (Badrinarayanan et al. 2017) employs max-
pooling indices as a strategic mechanism for pre-
serving crucial location information about the 
maximum pixels within a network. This innovative 
approach effectively mitigates the issue of informa-
tion loss that may arise during the pooling process, 
ensuring the retention of spatial details critical for 
accurate segmentation tasks.

(4) SPNet (Zhao et  al. 2017) incorporates a pyramid 
pooling module as a pivotal component to aggre-
gate contextual information from varying scales. 
This sophisticated module facilitates the integra-
tion of background knowledge, which proves highly 
instrumental in semantic segmentation. The wide-
spread adoption of PSPNet within academia under-

scores its efficacy and utility in addressing the intri-
cacies associated with semantic segmentation tasks.

(5) DANet (Hu et  al. 2018) demonstrates a notable 
capability in capturing intricate pixel-level correla-
tions by employing two distinctive attention mecha-
nisms: channel correlation and position correlation. 
These sophisticated attention mechanisms serve the 
purpose of dynamically weighting the importance 
of channels and positions within a network, thereby 
enabling enhanced modeling of intricate relation-
ships between pixels. The integration of such atten-
tion mechanisms into DANet exemplifies its adept-
ness in leveraging contextual information to discern 
and exploit pixel-wise correlations, contributing to 
its efficacy in diverse image analysis tasks.

(6) HANet (Fu et al. 2019) introduces a height attention 
mechanism to augment its feature extraction capa-
bilities. This augmentation facilitates the model in 
discerning and incorporating the nuanced relation-
ships between the vertical dimension (height) and 
semantic classes. By integrating this height atten-
tion mechanism, HANet achieves an enhanced 
capacity to capture and exploit vertical contextual 
information, thereby elevating its proficiency in 
understanding the vertical distribution of semantic 
elements within the input data. The strategic incor-
poration of height attention within HANet under-
scores its commitment to refining the modeling of 

Fig. 3 Ocean front detection result, the color bar represents the temperature of sea surface ( 100/◦C ). The central image displays the global SST 
image, and the surrounding images show the ocean front images detected in the corresponding regions
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spatial dependencies across different dimensions, 
contributing to improved performance in tasks 
involving semantic segmentation.

(7) LSENet (Xie et al. 2022) utilizes a channel supervi-
sion unit structure and a location attention mecha-
nism to improve ocean front detection accuracy. 
The data and code are available at https:// github. 
com/ llius ha1155/ LSENET.

An evaluation and comparison of these object detec-
tion methodologies are presented in Table  2. The fun-
damental concept underlying intersection over union 
(IoU) lies in quantifying the relationship between the 
intersection and union of two sets, the ground truth 
and predicted-object boundaries. A widely employed 
derivative of the IoU is the mean intersection over 
union (mIoU), which serves as a prevalent evaluation 
measure. mIoU provides a comprehensive assessment 
of the overall accuracy of detection tasks by averag-
ing the IoU scores of the background and ocean front. 
As shown in Table  2, the ocean front detection accu-
racy requires ongoing refinement and enhancement. 
The results contribute to validating the efficacy of these 
methods, providing valuable insights into their capabil-
ities and suitability for accurate ocean front detection. 
More recently, some researchers have explored the 
use of a feature transformation mechanism for object 
detection (Shi et  al. 2020). These methods show great 
potential for improving ocean front detection accuracy.

4.3  Ocean front classification
Ocean fronts can be conveniently classified into strong 
and weak fronts according to their intensity. Generally, 
the stronger the ocean front, the longer its existence, 
and the higher the possibility of having abundant fish 
resources. Therefore, classifying ocean fronts is of great 
importance for ocean fisheries.

Lima et al. (2017) propose employing a CNN for ocean 
front classification. In detail, they apply a transfer net-
work to classify ocean fronts and fine-tune the network 
structure to further improve the classification perfor-
mance. As shown in Fig.  4, their model can classify 
regions of weak and strong ocean fronts. The classifica-
tion accuracy achieved using their method is higher than 
86%.

Through comprehensive consideration of the position, 
intensity, and lifetime, an ocean front can be divided into 
two evolution stages: the enhancement and attenuation 
stages. To study ocean front evolution, Yang et al. (2022) 
propose a deep neural network that can recognize and 
track ocean front evolution processes. Particularly, their 
method can not only accurately classify the ocean front 
enhancement and attenuation processes but also record 
the position variation in the ocean front. Moreover, 
ocean front evolution includes more than enhancement 
and attenuation processes. Figure 5 displays four typical 
ocean front evolution processes: ocean front enhance-
ment, attenuation, splitting, and merging. Overall, ocean 
front evolution is a new research field with tremendous 
developmental potential.

Table 2 Performance of different ocean front detection methods evaluated by IoU

FCN U‑Net SegNet PSPNet DANet HANet LSENet

Background 97.70 98.56 97.84 97.93 98.57 98.37 98.59

Front 54.23 66.38 54.31 57.84 66.64 62.71 68.76

mIoU 57.85 69.06 57.94 61.18 69.30 65.68 71.25

Fig. 4 Ocean front classification result, the color bar represents the temperature of sea surface ( 100/◦C ). a weak ocean front and b strong ocean 
front

https://github.com/lliusha1155/LSENET
https://github.com/lliusha1155/LSENET


Page 8 of 13Yang et al. Intelligent Marine Technology and Systems            (2024) 2:10 

4.4  Ocean front prediction
Data-driven time-series prediction is an active field (Qiu 
et al. 2019; Wang et al. 2021). Accurate prediction of SST 
can provide a technological foundation for ocean front 
prediction. As shown in Fig. 6, the spatial and temporal 
variation in the SST fronts corresponds to that of the 
SST.

On the basis of historical SST time series and through 
continuous automatic iterative updates of parame-
ters, machine learning methods have been successfully 
applied to predicting the spatial and temporal variations 
in SST. Based on the historical SST in the previous year, 
a CNN and long short-term memory (LSTM) network 
are proposed for SST prediction (Yang et al. 2017; Zhang 
et  al. 2017). In Fig.  7, the first row shows the ground-
truth ocean front images, and the second row shows the 
prediction ocean front images. In summary, the predic-
tion results are consistent with the ground-truth images. 

However, the prediction performance decreases with 
increasing prediction length. As technology advances 
and our understanding of ocean dynamics improves, 
ocean front prediction methods will continue to evolve, 
leading to more accurate and reliable predictions of these 
essential features in the Earth’s oceans.

5  Influence of ocean fronts on marine 
environments and marine life

In addition to ocean front observation and identifica-
tion, recent research has focused on understanding the 
influence of ocean fronts on marine life and environ-
ments (Polovina et al. 2006; Godo et al. 2012; Lévy et al. 
2012, 2018; Lehahn et al. 2017; Scales et al. 2018; Belkin 
2021;  Lu et  al. 2022). Previous studies have linked the 
anomalous warming climate phenomenon in south-
ern California to oceanic winds, surface heat flux, and 
warm advection, but few studies have considered its 

Fig. 5 Typical ocean front evolution processes: a enhancement process, b attenuation process, c splitting process, and d merging process

Fig. 6 Spatial and temporal variation in ocean fronts along the China coast, the color bar represents the intensity of ocean front. The first row shows 
the SST images, and the second row displays the corresponding SST fronts
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link to the atmosphere of the equatorial Pacific Ocean. 
Recent research has revealed that well-connected atmos-
pheric forcing from the equatorial Pacific exacerbates the 
anomalous climate phenomenon in southern California. 
Satellite RS data quantitatively showed that this well-con-
nected climate forcing affects SST, chlorophyll concen-
tration, and ocean front frequency along the California 
coast through El Niño, subsequently affecting the local 
marine fishery industry. A study of the California ocean 
current system during the abnormal warming period 
from 2014 to 2016 revealed that El Niño reduced the fre-
quency of ocean fronts and chlorophyll concentration in 
the region, leading to dramatic changes in phytoplankton 
abundance and community composition. These dramatic 
changes then resulted in changes in the range and num-
ber of fish populations, leading to the closure of sea fish-
eries and reduced production capacity.

In addition to its influence on the marine environment, 
ocean fronts have an important influence on marine eco-
systems. Marine ecosystems are intricate systems shaped 
by the interplay of physical, chemical, and biological pro-
cesses, creating a delicate balance that sustains diverse 
life in the ocean. Ocean fronts, tides, and eddies are phys-
ical processes that transport nutrients and oxygen to sup-
port marine life. Chemical processes promote primary 
productivity and the growth of phytoplankton, whereas 
biological processes convert sunlight into energy and 
produce organic matter for the food web. These interac-
tions create complex marine habitats and contribute to 
biodiversity and resilience.

Phytoplankton is the foundation and key element of the 
marine food chain (Griffa et al. 2007). Phytoplankton are 
microscopic algae that consume sunlight, carbon dioxide, 
and inorganic nutrients. Phytoplankton convert these 
entities into organic molecules during photosynthesis 
(primary production). In addition to primary produc-
tion, phytoplankton produces almost half of the planet’s 
oxygen and is a key player in the carbon cycle, depleting 
atmospheric carbon dioxide and reducing its concentra-
tion (de Verneil et al. 2019). Sunlight penetrates seawater 

to a depth of no more than 150 m, the lower bound-
ary of the photic zone where phytoplankton reside. In 
open oceans away from coastal upwelling zones, plank-
ton abundance depends on the availability of nutrients. 
Many studies (Mahadevan and Tandon 2006; Lévy et al. 
2012, 2018) have noted that chlorophyll can accumulate 
at ocean fronts, thereby delivering additional nutrients 
to areas with sufficient light to support photosynthesis, 
which is particularly important in subtropical waters. At 
high latitudes, primary production growth is limited by 
insufficient light rather than nutrient availability. At these 
latitudes, fronts also contribute to increased primary 
production due to subduction, geostrophic circulation, 
and submesoscale turbulence (Taylor and Ferrari 2011).

Ocean fronts concentrate nutrients and plankton, fos-
tering rich ecosystems and providing important feeding 
grounds for marine predators and other species. Recent 
studies have shown that ocean fronts trigger mesoscale 
eddies and affect the behavior and distribution of marine 
species (Archer et al. 2020; Dai et al. 2021). Particularly, 
horizontal agitation by mesoscale currents was found to 
distort large-scale phytoplankton landscapes into sub-
scale patches delineated by sharp horizontal gradients. 
Mesoscale fronts were found to organize and structure 
phytoplankton communities into groups with distinct 
plankton species separated. The phytoplankton commu-
nities within these groups may move away from areas of 
primary production, potentially changing their commu-
nity structure. These groups have a lifespan comparable 
to the duration of phytoplankton flowering and trans-
form over time into filaments hundreds of kilometers 
long.

Furthermore, changes in the duration and location of 
ocean fronts considerably alter fish community struc-
tures. To study the quantitative correlation between 
ocean fronts and fishing activities, related studies 
adjusted RS images of SST, chlorophyll concentration, 
and fishing data to the same resolution to ensure geo-
graphical consistency (Lehahn et al. 2018). After adjust-
ing the data, the fishing intensity was graded, and weights 

Fig. 7 Ocean front prediction. The first row shows the ground‑truth ocean front images, and the second row displays the corresponding prediction 
results. a one‑day prediction, b three‑day prediction, and c seven‑day prediction
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were assigned according to the spatial distance between 
the fishing ground and the ocean front. The correla-
tion between ocean fronts and fishing activities was cal-
culated on the basis of the graded fishing intensity and 
spatial proximity to the ocean fronts. To verify the cor-
relation, the observed and expected numbers of fishing 
events within each ocean front area were compared. The 
correlation between the frontal areas and fishing effort 
was evaluated in percentages. This quantitative assess-
ment revealed a positive correlation between oceanic 
frontal regions and fishing activities. The correlation 
between ocean front distribution and the frequency of 
fishing events highlights the importance of ocean fronts 
in attracting fish groups. These findings emphasize the 
critical role of ocean fronts in shaping marine ecosystems 
and supporting fisheries.

6  Limitations and future opportunities
The limitations of current research on ocean fronts and 
future research opportunities include the following 
components: 

(1) The vertical movement of fronts has a greater eco-
logical impact than horizontal movement because 
of more pronounced vertical gradients in tem-
perature, salinity, density, nutrient concentration, 
sunlight brightness, etc. However, to our knowl-
edge, little effort has been devoted to mapping the 
vertical structure of temperature in the presence 
of fronts based on satellite SST data. Temperature 
reconstruction techniques estimate the ocean tem-
perature and salinity at different depths. However, 
existing models rarely consider the influence of 
ocean fronts on temperature reconstruction. Recent 
research reveals that regions with large deviations 
between in-situ observations and reconstructed 
data align with regions with ocean fronts. There-
fore, a reasonable strategy is to include frontal fea-
tures in the temperature reconstruction function. 
The useful frontal features include not only the 
intensity of the ocean front and the distance of the 
ocean front to the reconstruction location but also 
the commonly used SST and SLA features. This 
strategy might improve projection performance, 
particularly in areas affected by strong ocean fronts.

(2) The Northeast Pacific Warm Anomaly from 2014 
to 2016 resulted in high SST and low chlorophyll-
a in the California Current System. During the 
same period, the frequencies of SST fronts and 
chlorophyll fronts decreased significantly (Kahru 
et  al. 2018). Studies on ocean anomalous climate 
phenomena, such as El Niño and La Niña, have 
revealed their considerable impacts on the global 

environment (Mezzina et  al. 2022). However, the 
relationship between ocean fronts and abnormal 
climate events has been less explored. Whether 
abnormal climate events represent the beginning 
of a long-term change in frontal frequency merits 
investigation.

(3) Understanding how the behavior of individual 
marine predators is regulated by surrounding struc-
tures is the key to assessing the health of open-
ocean ecosystems (Jacox et  al. 2015; Henson et  al. 
2016). Baltar et  al. (2016) propose using oceanic 
fronts as key features that influence marine micro-
bial distributions. Despite the well-established role 
of ocean fronts in influencing events ranging from 
fisheries productivity to biogeochemical cycles 
(Worm et  al. 2009; Chassot et  al. 2010; Ferrari 
2011), the effects of submesoscale and small-scale 
fronts still need to be measured. Furthermore, more 
interdisciplinary research is required to identify the 
factors driving microbial communities and their 
associated ecosystem services. Linking physical 
oceanography with molecular ecology could fur-
ther demonstrate the importance of oceanographic 
characteristics for the distribution of marine micro-
organisms and contribute to the design of effective 
marine conservation policies in a changing climate.

(4) Surface ocean dynamic processes, such as ocean 
fronts, occur and interact at multiple scales in the 
upper ocean, down to several kilometers or even 
fractions of a kilometer (Mettes et  al. 2015). Sub-
mesoscale fronts are ubiquitous in the ocean and 
are important for tracer velocity and scaled energy 
cascades from large-scale forcing to dissipation. 
However, the low resolution of the available data 
makes the effect of submesoscale fronts on phyto-
plankton productivity difficult to analyze. Current 
observation systems cannot adequately address 
these scale issues (Zhi et  al. 2021), and the effec-
tive resolution of interpolated data is limited to 
several kilometers because of the orbital crossing 
distance of satellites in orbit and the repeatability 
of satellite acquisition. A possible solution for this 
problem is to employ image processing techniques, 
such as superresolution and image enhancement 
techniques (Ju et  al. 2022, 2023a, b), to develop 
innovative neural network architectures specifically 
designed to improve the reconstruction perfor-
mance of surface ocean dynamics. Learning from 
high-resolution satellite observations is a reasona-
ble approach to compensating for interpolation lim-
itations. Further research, such as superresolution 
and image enhancement methods for RS data, is 
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required to improve our understanding of the effect 
of ocean fronts on phytoplankton productivity.

(5) The machine learning method shows tremendous 
potential in analyzing the relationship between dif-
ferent types of ocean fronts. For example, in the 
Yangtze River, machine learning identifies four 
types of ocean fronts: ocean fronts detected based 
on chlorophyll-a concentration (chlorophyll front), 
SSS (salinity front), SST (temperature front), and 
SSD (density front). Recent research reveals that 
chlorophyll fronts are spatially well matched with 
salinity fronts, and density fronts are spatially well 
matched with temperature fronts (Kim et al. 2022), 
suggesting that chlorophyll changes are highly 
correlated with salinity and density changes are 
highly correlated with temperature. In addition, 
the machine learning method can also be applied 
to analyzing ocean structure characteristics (Fran-
zke et al. 2022; Thomas and Müller 2022; Qi et al. 
2023). Particularly, the clustering of ocean struc-
tures shows that each class of ocean structure can 
be associated with a well-known ocean region. For 
example, unsupervised clustering of temperature 
and salinity data reveals the impact of changes in 
the Kuroshio extension on the distribution of verti-
cal structures (Sambe and Suga 2023).

7  Conclusions
The continuous and extensive data provided by RS tech-
niques have enabled researchers to investigate complex 
ocean processes, contributing to our understanding of 
marine ecosystems, climate patterns, and interactions 
between oceans and the atmosphere. Ocean fronts are 
crucial in driving various oceanographic phenomena, 
including upwelling, heat transportation, and the dis-
tribution of marine life. Recent research based on RS 
images has advanced our understanding of the spati-
otemporal variation characteristics of the ocean front 
and revealed the influence of the ocean front on the 
abundance and diversity of phytoplankton, zooplank-
ton, and higher trophic level species. However, limited 
by data resolution, research methods, and related theo-
ries, current research cannot discover all the potential 
variation patterns of ocean fronts, necessitating further 
investigation to uncover new insights into the complex 
dynamics of water masses in the world’s oceans.
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