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Abstract 

Due to its importance in marine engineering and aquatic robotics, underwater image enhancement works as a pre-
processing step to improve the performance of high-level vision tasks such as underwater object detection and rec-
ognition. Although several studies exhibit that underwater image enhancement algorithms can boost the detection 
accuracy of detectors, no work has focused on studying the relationship between these two tasks. This is mainly 
because current underwater datasets lack either bounding box annotations or high-quality reference images, based 
on which detection accuracy or image quality assessment metrics are calculated. To examine how underwater image 
enhancement methods affect underwater object detection tasks, we provide a large-scale underwater object detec-
tion dataset with both bounding box annotations and high-quality reference images, namely, the WaterPairs dataset. 
The WaterPairs dataset offers a platform for researchers to comprehensively study the influence of underwater image 
enhancement algorithms on underwater object detection tasks. We will release our dataset at https:// github. com/ 
IanDr agon/ Water Pairs once this paper is accepted.

Keywords Underwater datasets, Underwater object detection, Underwater image enhancement, Reference image 
generation

1 Introduction
In the past few years, underwater object detection 
(UOD) (Foresti and Gentili 2000) has drawn consid-
erable attention in marine engineering and aquatic 
robotics. Because of the complex underwater environ-
ment and frequently changing illumination conditions, 
object detection in underwater scenes is a demand-
ing task. The underwater images suffer from severe 

wavelength-dependent absorption and scattering, which 
reduces visibility, decreases contrast, and even intro-
duces color casts (Zhang et al. 2022; Zhuang et al. 2022). 
These adverse effects restrict many practical applica-
tions of underwater images and videos in marine biology, 
archaeology, and ecology. Thus, many underwater image 
enhancement (UIE) algorithms are used as a preprocess-
ing step for UOD tasks to enhance the detection accu-
racy of detectors by increasing the quality of underwater 
images (Bazeille et al. 2006; Schettini and Corchs 2010).

Despite the prolific literature, comprehensive stud-
ies and insightful analyses of the relationship between 
UIE and UOD tasks are still scant, mainly because of the 
lack of publicly available underwater image datasets with 
both bounding box annotations and reference images 
(i.e., the underwater images without degradation). Since 
there are no reference images, previous literature (Liu 
et  al. 2020) only investigated how UIE algorithms affect 
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UOD tasks by studying the relationships between non-
reference image quality assessment metrics (Panetta et al. 
2015; Yang and Sowmya 2015) and the detection accu-
racy. However, nonreference image quality evaluation 
metrics can only explain some characteristics of image 
quality and are not always consistent with human subjec-
tive perception (Liu et al. 2020). A comprehensive inves-
tigation of the relationship between the two tasks should 
also focus  on the relationship between detection accu-
racy and full-reference image evaluation metrics (Wang 
et al. 2004, 2015), which can extensively assess the char-
acteristics of image quality with respect to color, texture, 
image content, and structure. However, reference images 
are necessary when conducting full-reference image 
quality evaluations. In recent years, several underwater 
image synthesis (UIS) algorithms (Fabbri et  al. 2018;  Li 
et al. 2020a) have been proposed to synthesize underwa-
ter images from high-quality in-air images. Then another 
UIE model is trained on the image pairs to improve the 
visibility of underwater images. However, the synthetic 
images are not realistic enough and greatly affect the per-
formance of late UIE models. In contrast, Li et al. (2019) 
used 11 different UIE algorithms to improve the under-
water images and selected high-quality reference images 
from the 11 enhanced results using human subjective 
perception, i.e., the perception of the human visual sys-
tem. Nevertheless, subjective perception can be ambigu-
ous and tendentious because different people may have 
different preferences and biases (Pronin 2007). In addi-
tion, human perception cannot perceive minor differ-
ences that are present in two visually similar images. To 
compensate for the deficiency of subjective perception, 
we incorporate objective assessment to select high-qual-
ity reference images, which is more robust and depend-
able than subjective perception alone.

In this work, we construct a paired underwater image 
dataset called WaterPairs, which provides underwa-
ter images and corresponding high-quality reference 
images. More importantly, bounding box annotations 

are also provided for the objects in the underwater 
images. The underwater images come from the real 
underwater dataset OUC-VISION (Jian et  al. 2017), 
which provides only bounding box-level annotations 
without high-quality reference images. To produce 
high-quality reference images, we propose a novel 
hybrid reference image generation algorithm that com-
bines human subjective perception and computational 
objective assessment. Figure  1 exhibits several sam-
pling underwater images and the  corresponding refer-
ence images produced by our hybrid reference image 
generation algorithm. The raw underwater images in 
the  WaterPairs dataset suffer from diverse degrees of 
haze and contrast decrease. On the other hand, the cor-
responding reference images are characterized by natu-
ral color, enhanced visibility, and suitable brightness. 
With this dataset, we perform  a comprehensive quali-
tative and quantitative study of the state-of-the-art 
UIE, UOD, and UIS algorithms. Most importantly, we 
investigate how UIE algorithms influence UOD tasks to 
gain insights into their performance and shed light on 
future research. The main contributions of this study 
are summarized as follows:

(1) We offer a large-scale underwater dataset called 
WaterPairs for training and assessing UIE, UOD, 
and UIS algorithms. To the best of our knowledge, 
this is the first underwater dataset that provides 
both underwater images and corresponding high-
quality reference images together with object-level 
bounding box annotations.

(2) To produce high-quality reference images for the 
underwater images, we propose a novel reference 
image generation method that integrates both sub-
jective human perception and computational objec-
tive assessment.

(3) We perform extensive experiments to examine the 
relationships between UIE and UOD and obtain 
some interesting conclusions that may provide 

Fig. 1 Sampling images from our WaterPairs dataset. The top row shows the raw underwater images taken in various underwater scenes, 
and the bottom row presents the corresponding high-quality reference images and bounding box annotations
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meaningful insights for the future development of 
this research field.

The rest of the paper is structured as follows: Section 2 
summarizes the related works. Section  3 describes the 
proposed channel-weighted skip connection network. 
Section 4 reports and discusses the experimental results.

2  Related work
2.1  Underwater image enhancement
UIE plays an important role in practical applications 
that explore and develop the underwater world, such 
as autonomous underwater vehicle (Clark et  al. 2013), 
unmanned underwater vehicle (Xu et  al. 2015), and 
remotely operated vehicle (Bogue 2015) navigation. Vari-
ous UIE methods have been proposed and can be catego-
rized into three. The first line of research is to modify the 
image pixel values to enhance the image contrast, remove 
haze and correct color casts. It can be divided into spatial 
domain adjustment and transform domain adjustment. 
The spatial domain methods (Ancuti et al. 2012; Fu et al. 
2017) perform adjustment directly in captured underwa-
ter images. The transform domain methods (Singh et al. 
2015) first transform the captured underwater image 
into a specific domain and then perform adjustments for 
haze removal and color correction. These methods can 
enhance the visual quality to some extent, but they may 
degrade details, accentuate noise, introduce artifacts, and 
cause color distortions.

The second line is physical model-based methods 
(Galdran et al. 2015; Li et al. 2017a), which takes UIE as 
the inverse problem of underwater image degradation. It 
first constructs and estimates a physical image degrada-
tion process and then recovers the potential high-quality 
image from the estimated physical degradation model. To 
estimate the parameters of the underwater image degra-
dation model, many UIE algorithms (Drews et  al. 2013; 
Peng et  al. 2018) adapted the classic dark channel prior 
(DCP) (He et al. 2010), which was designed for dehazing 
in natural scenes to underwater scenes. However, these 
priors do not always work in some cases. For instance, 
DCP-based UIE algorithms showed limited improve-
ment in visual quality or even aggravated degradation in 
underwater images containing white objects or regions. 
This is because the DCP is no longer valid in scenes 
where white objects or regions are present.

The third line is deep learning-based UIE algorithms, 
which can be trained using  a large-scale underwater 
dataset. Li et  al. (2022a) proposed a feature pyramid 
attention network to remove motion blur and restore 
blurry underwater images. In the work of Li et  al. 
(2022b), a two-stage generative adversarial network 

was put forward to remove the blur effects. Zhang et al. 
(2023) proposed a weighted wavelet-based UIE frame-
work to address quality degradation issues, while Li et al. 
(2022c) constructed a UIE framework using an adaptive 
color restoration module and a haze-line-based dehazing 
module to restore color distribution and remove the haze 
effects. Due to the lack of training pairs, Li et al. (2017b) 
proposed an underwater image synthesis model called 
WaterGAN to convert high-quality in-air images and cor-
responding depth images into underwater-like images. 
Then, these synthetic image pairs were used to train 
another deep UIE network. Motivated by Cycle-Consist-
ent Adversarial Networks (Zhu et al. 2017), which allows 
learning the mutual mappings between two domains 
from unpaired data, Fabbri et  al. (2018) proposed a 
weakly supervised underwater image synthesis model 
to synthesize underwater images from high-quality in-
air images and then utilized these synthetic image pairs 
to train another deep UIE network. In contrast, Li et al. 
(2020a) generated training data by harnessing a physi-
cally underwater image degradation model and a fixed 
set of predefined parameters. However, the performance 
of the deep UIE network heavily depends on the quality 
of the synthetic images, which cannot be perfectly solved 
by previous underwater image synthesis methods. Thus, 
the availability and volume of training data are major bot-
tlenecks in the development of deep learning-based UIE 
methods. To obtain reliable high-quality training data, 
Li et  al. (2019) collected a real-world underwater data-
set and processed it using multiple image enhancement 
methods. Afterward, they invited volunteers to select sat-
isfactory reference images by conducting pairwise com-
parisons. This method produced, at least to some extent, 
trustworthy reference images by applying human subjec-
tive perception.

2.2  Underwater image quality evaluation
Image quality assessment techniques have impor-
tant applications in UIE tasks and are especially ben-
eficial for the development of UIE algorithms. They can 
be divided into subjective assessment and objective 
assessment. Subjective assessment is the most reliable 
method for quantifying the  perceptual quality of con-
tent because, in most cases, such content is meant to be 
viewed by humans (Seshadrinathan et al. 2010; Moham-
madi et al. 2014). However,  subjective assessment, which 
depends  on human judgment, can be ambiguous and 
tendentious because subjective perceptions of different 
observers are inconsistent.

The objective image quality assessment metrics are uti-
lized to measure some important characteristics of the 
images using statistical numbers, and they can be fur-
ther divided into full-reference image quality assessment 
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metrics (Wang et al. 2004) and nonreference image qual-
ity assessment metrics (Yang and Sowmya 2015). Most 
previous works (Drews et al. 2013; Peng et al. 2018) only 
used the nonreference metrics to assess UIE algorithms 
because underwater datasets do not offer reference 
images. The  underwater color image quality evaluation 
metric (UCIQE) (Yang and Sowmya 2015) and underwa-
ter image quality measure (UIQM) (Panetta et  al. 2015) 
are two widely used nonreference metrics. UCIQE quan-
tifies nonuniform color casts, blurring, and low contrast 
and then integrates these three components in a linear 
manner. UIQM includes three attribute measures: color-
fulness measure, sharpness measure, and contrast meas-
ure. Full-reference metrics are commonly used in cases 
where reference images are present. For instance, the 
peak signal-to-noise ratio (PSNR) measures the similarity 
between the enhanced underwater images and the refer-
ence images in terms of content, and the SSIM measures 
the structure and texture similarity of the enhanced 
images and the reference images.

One major limitation of contemporary objective 
assessment metrics is that they are usually sensitive to 
only one or limited types of distortions while ignoring 
the  evaluation of  distortions of other types, e.g., color 
distortion, blurry appearance, or decreasing contrast 
in the underwater images. Thus, tremendous efforts are 
highly demanded to develop more effective image quality 
assessment methods.

3  Reference image generation
In this section, we construct a large-scale underwa-
ter image dataset called WaterPairs, which provides 
underwater images, corresponding reference images, 
and bounding box annotations. First, we introduce the 
selection of underwater images and then present a novel 
method for producing reference images by integrating 
subjective perception and objective assessment.

3.1  Selection of underwater images
We aim to build a large-scale underwater dataset that 
enables researchers to assess different UIE, UOD, and 
UIS algorithms and, more importantly, explore how UIE 
algorithms affect UOD algorithms. Thus, the underwa-
ter dataset should contain underwater images, high-
quality reference images and bounding box annotations. 
We set three objectives when constructing the under-
water dataset: (1) The number of underwater images 
should be sufficiently  large, and bounding box level 
annotations should be provided. (2) The underwater 
images should suffer from a diversity of degradation. (3) 
The quality of the reference images should be assured 
so that the image pairs allow fair evaluation of different 
UIE and UIS algorithms.

To realize the first two objectives, we choose a large 
real underwater dataset, OUC-VISION (Jian et al. 2017), 
which provides underwater images and bounding box 
annotations. This dataset contains 4400 underwater 
images captured under different illuminations simulated 
by a specially designed lighting system. Moreover, three 
degrees of turbidity variations, i.e., limpidity, medium, 
and turbidity, are simulated by adding soil to the water. 
Thus, the underwater images of OUC-VISION suffer 
from a diversity of illumination variations and turbidity 
variations. The images have a resolution of 486×648 pix-
els. Figure 2 presents some examples of the raw underwa-
ter images in the OUC-VISION dataset. The underwater 
images in the OUC-VISION dataset have different char-
acteristics, such as different color casts, decreased con-
trast, and haze levels. To obtain truth-worthy reference 
images, we propose a novel hybrid reference image gen-
eration method that incorporates both subjective percep-
tion and objective assessment.

3.2  Hybrid reference image generation
Previous work (Liu et al. 2020) first enhanced underwater 
images using different UIE algorithms, and then multiple 
observers were invited to choose high-quality reference 
images from the enhanced results. However, using only 
subjective human perception to choose images can be 
ambiguous and tendentious: (1) In many practical cases, 
the compared images appear to have the same visual 
quality that the observers have difficulties in distinguish-
ing and choosing the best one. For instance, as shown in 
Fig. 3, two observers select the enhanced images of dif-
ferent UIE methods as the final reference images because 
the visual appearance of  the two results is extremely 
similar or presents respective good characteristics. (2) 
The subjective perception is associated with the human 
visual system: different observers may have different pref-
erences and biases, and no universal standards exist. As 
shown in the top row of Fig. 3, the two observers have dif-
ferent preferences and choose different enhanced images 
as the reference images. To solve the ambiguity and bias 
issues, we propose a hybrid reference image generation 
method that combines subjective human perception and 
a novel pairwise objective assessment metric.

The pairwise objective assessment metric. In par-
ticular, when the observers cannot make a decision 
according to their subjective perceptions in the pair-
wise comparison, a novelly designed pairwise objective 
assessment metric is used to help in selecting the better 
one from the two enhanced results. The pairwise objec-
tive assessment metric is calculated on the union scores 
of UIQM and UCIQE. For the  two compared UIE algo-
rithms, their pairwise objective scores P_Score1 and 
P_Score2 are expressed as Eqs. (1) and (2), respectively.
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normUIQM1 and normUIQM2 are the normalized UIQM 
scores of the two UIE algorithms, which are expressed as 
Eqs. (3) and (4).

For the novel objective metric, we suppose UIQM 
and UCIQE as equally important, so we first normal-
ize UIQM as normUIQM and  then combine it with the 

(1)P_Score1 = UCIQE1 + normUIQM1,

(2)P_Score2 = UCIQE2 + normUIQM2,

(3)normUIQM1 =
UCIQE1 +UCIQE2

UIQM1 +UIQM2

∗ UIQM1,

(4)normUIQM2 =
UCIQE1 +UCIQE2

UIQM1 +UIQM2

∗ UIQM2.

UCIQE score to form the final pairwise objective score 
(Table 1).

Process of reference image generation. We first 
enhance the underwater images using 11 image enhance-
ment methods, including 7 physical-model-based UIE 
methods (i.e., DCP (He et  al. 2010), UDCP (Drews 
et  al. 2013), GDCP (Peng et  al. 2018), Blurriness (Peng 
and Cosman 2017), Regression (Li et  al. 2017a), Red-
Channel (Galdran et  al. 2015), and Histogram (Li et  al. 
2016)), 3 model-free UIE methods (i.e., Fusion (Ancuti 
et  al. 2012), Twostep (Fu et  al. 2017), and Retinex (Fu 
et  al. 2014)), and 1 commercial application for enhanc-
ing underwater images (i.e., Dive+). We do not employ 
deep learning-based UIE methods because we have no 
training image pairs. Finally, we totally obtain 11×4400 
enhanced results. With the raw underwater images and 
the enhanced results, we invite 28 observers, all of whom 

Fig. 2 Examples of the raw underwater images in the OUC-VISION dataset. These images have different illuminations and haze degrees 
because they were taken under different underwater environments

Fig. 3 Inconsistencies of the subjective perceptions of different observers
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are students with image processing and computer vision 
experience, to conduct pairwise comparisons. Among 
all the observers, 10 of them have experience in image 
enhancement. The detailed statistics of  the observers are 
summarized in Table  1.  They are allowed to draw sup-
port from the pairwise objective assessment metric when 
they cannot make a decision on two ambiguous images in 
the pairwise comparison. There is no time constraint for 
observers, and zoom-in operation is allowed.

The generation of reference images has three stages: (1) 
the reference image selection by a single observer; (2) check-
ing the reference images again and removing unsatisfactory 
images; and (3) combining the results of all the observers 
to obtain the final reference images. For each raw under-
water image, the observer is shown two randomly selected 
enhanced results for pairwise comparison at one time. The 

observer needs to select the preferred one or press the but-
ton that helps to select the better image using the pairwise 
objective metric. The result that wins the pairwise compari-
son is compared again in the next round until the best one is 
selected. After the observer finishes the selection work, he/
she inspects the reference images set again and removes the 
unsatisfactory images. Afterward, the reference images of all 
observers are combined. For each raw underwater image, 
if more than half the number of observers remove its cor-
responding reference images, this underwater image and 
its reference images will be removed from the final dataset. 
Finally, the enhanced image selected by more than 50% of 
observers is selected as the final reference image.

We achieve 3698 available reference images that have 
higher quality than the results of any individual UIE 
method. To visualize the process of reference image gen-
eration, we present some cases in which the results of 
some methods are shown and indicate which one is the 
final reference image in Fig. 4. Moreover, the percentage 
of reference images from the results of different meth-
ods is presented in Table  2, which reveals that  the best 
method is the Retinex algorithm, whereas the second 
best method is the Fusion algorithm.

4  Evaluation of the UIE and UIS algorithms 
on the WaterPairs dataset

4.1  Evaluation of the UIE algorithms on the WaterPairs 
dataset

We assess different UIE algorithms on the WaterPairs 
dataset. We resize all the images into 512×512 pixels and 

Table 1 Statistics of observers involved in the reference image 
generation process, including age, gender, and experience. 
IE refers to whether the observer has image enhancement 
experiences

Group IE Group Non-IE Group

Age 18-25 2 4

26-30 7 12

>30 1 2

Gender Male 8 16

Female 2 2

IE experiments ≤ 1 year 4 18

> 1 year 6 0

Fig. 4 Results generated by using different methods. The images with red bounding boxes refer to the final selected reference images. From left 
to right are raw underwater images and the results of DCP, UDCP, GDCP, Blurriness, Regression, RedChannel, Histogram, Fusion, TwoStep, Retinex, 
and Dive+. Red boxes refer to the final reference images
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divide the WaterPairs dataset into a training set with 2500 
image pairs and a  testing set with 1198 image pairs. Fig-
ure  5 illustrates the qualitative comparisons of different 
UIE algorithms on underwater images under different light 
conditions. The top image is captured under light condi-
tion 1 and suffers from serious reddish color distortion, the 
middle image incorporates sligh color distortion and haze 
effect due to light condition 2, and the bottom image incor-
porates an evident haze effect and minor color distortion 
due to light condition 3. We observe that none of the physi-
cal model-based methods can solve the reddish color dis-
tortion. This is because the presence of reddish underwater 
images violates the physical prior. In water, red light first 
disappears because it has the longest wavelength, followed 

by green light and then blue light. Such selective attenu-
ation in water leads to greenish and bluish underwater 
images and seldom reddish underwater images. Moreover, 
among all the physical model-based algorithms, Regres-
sion, Histogram, and RedChannel cannot adequately deal 
with underwater images under all kinds of light conditions. 
Regression introduces serious bluish color distortion due to 
its inaccurate color correction algorithm, and Histogram 
introduces greenish color distortion due to its histogram 
distribution prior. RedChannel greatly decreases the bright-
ness, which severely smears the details of images. Moreo-
ver, TwoStep, a nonphysical model-based algorithm, also 
fails under all kinds of light conditions. It over  enhances 
the contrast and generates unnatural images. In contrast, 

Table 2 Percentage of the reference images from the results of different methods

Method DCP UDCP GDCP Blurriness Regression RC Histogram Fusion TwoStep Retinex Dive+

Percentage (%) 3.68 4.50 1.30 4.40 0.00 0.00 0.70 25.10 0.00 41.72 18.60

Fig. 5 Results generated by using different methods. The images with red bounding boxes refer to the final selected reference images. From left 
to right are raw underwater images and the results of UDCP, GDCP, Blurriness, Regression, RedChannel, Histogram, Fusion, TwoStep, and Retinex. 
Red boxes refer to the final reference images
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OurPatch deals well with all kinds of underwater images in 
terms of both color distortion and haze effect, while the rest 
only work in special scenes. For instance, GDCP and Fusion 
remove the haze effects and greatly enhance the visibility of 
underwater images captured under light conditions 2 and 
3. UDCP greatly removes haze; however, it introduces  a 
bluish color tone in the images captured under light con-
dition 2 and a  reddish color tone in the images captured 
under light condition 3. Blurriness greatly removes haze on 
images captured under all three light conditions but fails to 
remit the color casts in images captured under light condi-
tion 1. These physical model-based methods all fail in some 
underwater images captured under specific light condi-
tions because of the limitations of the priors used in them. 
Among the nonphysical model-based methods, Retinex 
greatly removes haze and color cast in all kinds of under-
water images, but its results suffer from limited saturation.

Table 3 summarizes the quantitative scores of the dif-
ferent UIE algorithms in the testing set of WaterPairs. 
Fusion has the best MSE, PSNR, and PCQI scores, 

whereas Retinex has the best SSIM score. Moreover, we 
train multiple SSD frameworks (Liu et al. 2016) using the 
enhanced images of different UIE algorithms and report 
the mean Average Precision (mAP). In terms of mAP, 
Retinex has the best detection accuracy of 87.2 mAP.

To examine whether all the UIE methods enhance the 
performance of the detection network, we train multiple 
detection networks using the enhanced images gener-
ated from different UIE methods and test them on the 
enhanced images. We also train two detection networks 
using the raw underwater images (denoted as ’Baseline’) 
and high-quality images (denoted as ’OurWaterPairs’) in 
the WaterPairs dataset. Figure 6 shows the performance 
of detection networks trained using the enhanced images 
generated from different UIE methods. The detection 
network trained using our high-quality reference images 
has the best detection performance because the quality 
of the reference images is much better than that of the 
enhanced images produced by other UIE algorithms. Not 
all UIE algorithms enhance the detection performance. 

Table 3 Full-reference image quality and detection accuracy evaluations of different UIE algorithms on the WaterPairs dataset

Methods UDCP GDCP Blurriness Regression RedChannel Histogram Fusion TwoStep Retinex

MSE 3.3769 2.2945 0.6279 0.4150 7.2612 0.5640 0.2508 1.5833 0.4083

PSNR 13.3206 15.9326 20.8400 22.2458 9.6755 20.9896 28.4754 16.2539 26.5359

SSIM 0.5130 0.6407 0.7472 0.5691 0.1696 0.7602 0.8905 0.6002 0.8789

PCQI 0.4259 0.5968 0.6678 0.6741 0.1524 0.8102 0.9270 0.4898 0.8337

mAP 87.1 86.9 86.4 81.6 41.6 81.5 83.9 74.8 87.2

Fig. 6 Performance of detection networks trained using images enhanced by using different UIE methods. ’Baseline’ means that the detection 
network is trained and tested using raw underwater images without enhancement. ’OurWaterPairs’ means that the detection network is trained 
and tested using high-quality reference images in the WaterPairs dataset
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For example, RedChannel and TwoStep greatly decrease 
the detection performance because these two methods 
degrade the visual quality of the raw underwater images, 
as depicted in Fig. 5.

4.2  Evaluation of the UIS algorithms on the WaterPairs 
dataset

We also evaluate different synthesis models on the 
WaterPairs dataset, namely, Physical (Li et  al. 2020b), 
CycleGAN (Li et  al. 2017b), and WaterGAN (Wang 
et  al. 2015). Physical is a physical-based UIS method, 
whereas the other two are deep learning-based models. 
Physical (Li et al. 2020b) applies the physical underwa-
ter image formation model and 10 groups of predefined 
parameters to synthesize 10 Jerlov-type underwater 
images from RGB-D in-air images. The synthetic data-
set contains 10 types of underwater images with various 
color distortions and haze effects. Because the Water-
Pairs dataset does  not provide a  depth map, we apply 
the depth estimation method used in Fu et al. (2014) to 
obtain the depth maps for all the reference images.

Table  4 lists the average MSE, PSNR, SSIM, and 
PCQI scores of the three UIS methods, from which we 
observe that CycleGAN performs better than the other 
two methods in terms of four full-reference metrics. 
Thus, we select CycleGAN as the baseline UIS algo-
rithm on the WaterPairs dataset.

5  Conclusions
In this work, we propose a novel reference image gen-
eration method that combines subjective perception and 
objective assessment. With the generated high-quality 
reference images for underwater images, we are able 
to construct a large-scale underwater dataset, named 
WaterPairs, which offers underwater images, corre-
sponding high-quality reference images, and object-level 
bounding box annotations. This dataset provides a public 
platform for researchers to comprehensively compare dif-
ferent UIE and UIS algorithms and to explore  the effect 
of UIE algorithms on underwater object detection tasks.
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