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Abstract
This study integrates seismic inversion and rock physics techniques to evaluate the hydrocarbon potential of an offshore 
field in the Niger Delta. Five wells revealed three reservoir sands with favourable reservoir properties, including gross 
thickness (49.2–81.4 m), porosity (0.18–0.2), permeability (565–1481 mD), and water saturation (0.16–0.54). A robust 
wavelet extraction process was implemented to guide seismic inversion, and a well log-centric approach was employed 
to validate the resulting acoustic impedance data. Rock physics analysis established correlations between acoustic imped-
ance (Zp), porosity, fluid content, and lithology, enabling the identification of hydrocarbon-filled sands, brine-saturated 
sands, and shales. These relationships enabled the discrimination of hydrocarbon-filled sands [5000–8000 (m/s)(g/cc)], 
from brine-saturated sands [5600–8400 (m/s)(g/cc)], and shales [5000–9000 (m/s)(g/cc)] within the inverted seismic data. 
The inverted acoustic impedance section showed a general increase with depth, reflecting the typical compaction effects 
in the Niger Delta. Analysis of the impedance distribution across horizon time slices revealed prospective zones with 
low impedance values [below 6300 (m/s)(g/cc)], particularly in horizons 1 and 2. These newly identified zones exhibit 
the strongest potential for hydrocarbon accumulation and warrant further investigation. This study demonstrates the 
effectiveness of using well log and rock physics constrained seismic inversion for hydrocarbon exploration in an offshore 
field in the Niger Delta.
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1 Introduction

The demand for oil and gas continues to rise annually, necessitating the maximization of hydrocarbon production from 
all potential sources due to the depletion of proven reserves. The Organization of the Petroleum Exporting Countries 
(OPEC) forecasts a significant rise in global energy demand by 2035, with fossil fuels, remaining the primary source [1]. 
Consequently, the petroleum industry is constantly seeking innovative approaches to optimize hydrocarbon produc-
tion and improve reservoir characterization [1–4]. A key challenge in reservoir exploration lies in accurately assessing 
reservoir heterogeneity which refers to the variation in reservoir properties across a reservoir. Conventional exploration 
methods often lack the resolution necessary to fully capture this complexity. Therefore, the industry demands models 
with improved resolution capable of effectively measuring and predicting these crucial reservoir properties [5, 6]. 3D 
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reservoir modeling has proven effective in delineating the geometry of sand bodies, offering a solution to the challenge 
of subsurface heterogeneity [7, 8]. Additionally, it has been successfully applied in the Niger Delta basin to assess and 
detect hydrocarbon prospects [7]. Furthermore, geostatistical techniques can be integrated to populate and distribute 
various reservoir properties across an oilfield, aiding in the identification of prospective zones within the Niger Delta [7, 8].

Seismic amplitude inversion, offers a detailed and reliable view of the subsurface, playing a crucial role in estimating 
critical reservoir properties like net pay and porosity [9–12]. This technique is widely used in the petroleum industry due 
to its ability to enhance data resolution and reliability. Information derived from the elastic properties of rocks is essential 
for characterizing reservoirs and relating them to quantifiable properties. This approach has the potential to discriminate 
between reservoirs based on their fluid content and composition, with prospective hydrocarbon-saturated areas typically 
exhibiting low acoustic impedance, lambda-rho, and density [9, 13, 14]. Model-based inversion techniques have proven 
valuable for prospect mapping and reservoir property estimation [9, 15–19]. However, the reliability of seismic inversion 
processes is crucial and should be carefully assessed before implementation. Key factors influencing the accuracy of seis-
mic inversion include the choice of wavelet and the correlation between seismic impedance and well log impedance [20, 
21]. Notably, researchers often overlook the importance of comparing seismic impedance with impedance from multiple 
well logs within a field to ensure consistency and accuracy before conducting seismic inversion [22–25]. By performing 
thorough comparisons using multiple wells, the inversion process can be significantly improved, yielding more reliable 
petrophysical properties for robust reservoir characterization and development.

Rock physics is key in hydrocarbon prospecting as it offers the basis for understanding the fundamental relationships 
between rock elastic parameters and reservoir properties. These relationships provide valuable insights into the lithology, 
porosity, and pore fluid content of reservoirs by analyzing their seismic response [26]. Rock physics workflows typically 
involve correlating reservoir properties with elastic parameters using characterization models to differentiate reservoirs 
based on fluid content and lithology [27, 28]. Elastic parameters like impedance, seismic velocity, velocity ratio, Poisson’s 
ratio, mu-rho, and lambda-rho play crucial roles in reservoir studies, with their sensitivity to reservoir properties varying 
based on the rock type and seismic data quality. Researchers have successfully utilized rock physics models for sensitivity 
analysis and quantitative seismic inversion interpretation [29–31]. By integrating seismic inversion data with rock physics 
models, it becomes feasible to predict lithology and fluid content distribution within a reservoir, enhancing the effective-
ness of reservoir characterization and exploration efforts [32]. This approach allows for a comprehensive understanding 
of reservoir properties and facilitates the identification of favourable zones for oil extraction within the studied area.

The prediction and detection of the efficiency of hydrocarbon reservoirs has been greatly increased through seismic 
inversion and other analyses involving rock physics [33, 34]. This is based on proven relationships between reservoir 
properties and several elastic parameters at well locations using rock physics principles. This study presents an approach 
that integrates well log analysis and rock physics constrained seismic inversion for hydrocarbon prospectivity study in 
an offshore field located in the Niger Delta Basin as most work done using seismic inversion methods have been in the 
onshore fields. A comprehensive understanding of the subsurface reservoir and its potential for hydrocarbon production 
will be achieved through this study.

2  Location and geology of study area

This study area is ‘OS’ field which is located in the near offshore area of the Niger Delta positioned on the Gulf of Guinea 
basin (Fig. 1). The Niger Delta forms one of the largest hydrocarbon provinces in the world along the West Coast of Central 
Africa. It covers an area that falls within longitude 5° E–7° 36′ E and latitudes 4° 12′ N–6° 36′ N [35].

The Niger Delta basin is composed of a clastic sequence formed during regression in the Tertiary age [36]. Within the 
Niger Delta petroleum province, three major stratigraphic units have been identified: Benin, Agbada and Akata Forma-
tions [37]. These formations were created through the deposition in the Niger Delta during the Tertiary Epoch. These 
formations delineate prograding depositional facies established on lithology (i.e. the ratio of sand to shale). The Akata 
Formation which is found at the base of the delta originates from marine conditions, encompassing a substantial quantity 
of shale sequences (having source rock potential), turbidite sand (could act as reservoirs in deep water environment), 
and small amounts of other fine grained sediments (silt and clay). During lowstands, the Akata Formation amassed 
organic matter and clays of terrestrial origin in deep-water regions marked by low-energy conditions and an absence 
of oxygen [38].

The Agbada Formation, constituting the primary hydrocarbon-bearing unit, initiated deposition throughout the 
Eocene epoch and extends into Recent. It comprises paralic siliciclastics with a thickness of over 3700 m, representing 
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the real deltaic segment of the sequence (Fig. 2). Identical proportions of shale and sandstone beds is witnessed 
at the lower portion of this Formation, while the upper section is primarily composed of sand interbedded with 
minor shale layers. The Miocene and Pliocene Agbada Formation has been the subject of extensive research on its 

Fig. 1  Niger Delta map showing the study area

Fig. 2  The stratigraphy of 
Niger Delta from late creta-
ceous to quaternary [42, 43]
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sequence stratigraphy and sedimentary facies, revealing a complex depositional system characterized by delta front, 
gravity flow channel, and turbidite fan deposits [39, 40]. These facies are critical for understanding the formation’s 
hydrocarbon potential and guiding exploration efforts.

Above the Agbada Formation lies the Benin Formation, composed of deposits from the continental environment 
spanning from the Eocene epoch to Recent. Its deposits comprise alluvial and upper coastal plain sands, reaching 
thicknesses of up to 2000 m [41]. This stratigraphic overview provides a foundation for understanding the geological 
evolution and petroleum potential of the Niger Delta Basin. The geological significance of these formations con-
tributes to the region’s proficiency in hydrocarbon production, solidifying its position as a key sedimentary basin in 
Nigeria (Fig. 2).

3  Research methodology

The data used in this research was obtained from the ‘OS’ field, situated in the offshore region of the Niger Delta basin 
in Southern Nigeria. A suite of well logs [Gamma-Ray (GR), resistivity, sonic and density logs] and check shot data for 
five wells (OS-1, -2, -3, -4 and -5) and post-stack seismic data from the ‘OS’ offshore field, Niger Delta were used for 
this study (Fig. 3). The research methodology includes synthetic seismogram generation, well to seismic tie, wavelet 
extraction, impedance correlation, rock physics and seismic inversion. This study was carried out using Techlog and 
Hampson Russel software and the workflow is shown in Fig. 4.

Fig. 3  Base map of the ‘OS’ field showing the well locations with the inlines and xlines
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3.1  Well log analysis

Intervals corresponding to the reservoirs of interest were delineated from each well log and the wells were correlated 
using the Gamma-Ray log and resistivity log (Fig. 5). The following petrophysical properties were determined from 
the well logs after the delineation of reservoirs and correlation across the wells:

(1)i. Volume of shale
(

Vsh
)

∶ Vsh = 0.083 ∗
[

2(3.7∗IGR) − 1
]

,

Fig. 4  Generalized flow chart 
for seismic inversion

Fig. 5  Well log correlation panel for visual comparison of log responses showcasing the lithological and petrophysical similarities across the 
available five wells
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where Vsh is Volume of shale [44], IGR is Gamma-Ray index,  GRlog is Gamma-Ray reading from log,  GRmin is the Gamma-
Ray reading from the cleaniest sandstone and  GRmax is the Gamma-Ray reading from the most shaliest part of the 
reservoir.

where net pay is the portion of the delineated reservoirs with presence of hydrocarbon [45].

where ρma is matrix density, ρb is the density from the well log and ρfl is the fluid density [45].

where Rw is water resistivity, Rt is true resistivity, n is saturation exponent and a is cementation constant.
v. Permeability (k) was estimated using the empirical formula according to Timur [46],

where Swirr is irreducible water saturation.

3.2  Seismic to well tie

Tying seismic data to the well log forms the basis for the process of any form of seismic interpretation in which the seis-
mic data is properly converted from the time domain to the depth domain. A seismic-to-well tie was established using 
check shot data, which revealed the relationship between depth and time for the formation (Fig. 6). This tie enabled the 
conversion of depth values to seismic times, allowing for the accurate mapping of the top of the delineated reservoirs. 
Well OS-5 was successfully tied to the seismic volume, and the corresponding horizons were mapped (Fig. 7).

3.3  Estimation of inversion parameters

Following the initial petrophysical analysis, synthetic seismogram generation, and seismic-to-well tie, a crucial step 
is to generate acoustic impedance from well logs and cross-plot it with rock properties derived from well logs, prior 

(2)Where IGR =
GRlog − GRmin

GRmax − GRmin

.

(3)ii. Net to Gross =
Net Pay

Gross Thickness
,

(4)iii. Porosity∶ � =
�ma − �b

�ma − �f
,

(5)iv. Water Saturation∶ Sn
w
=

a × Rw

�nRt
,

(6)k1∕2 =
250�2

Swirr
,

Fig. 6  Time to depth graph 
showing the relationship 
between seismic travel times 
and corresponding depths 
thereby allowing the integra-
tion of seismic and well log 
data
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to conducting seismic inversion. The equations applied in the estimation of inversion parameters (Vp, Vs, Zp and 
Zs) from well logs are shown in Eqs. (7–10) [47–49].

The secondary velocity (Vs) was estimated according to the relationship by Greenberg and Castagna [50] for 
siliciclastic rocks.

where Vp is primary velocity, Vs is secondary velocity, Zp is P-impedance, Zs is S-impedance, DTc is compressional sonic 
log, �b is density from bulk density log.

3.4  Rock physics

A cross plot of Zp and Zs (Fig. 8) was used to validate the applicability of the empirical formula by Greenberg and 
Castagna [50] in Eq. (9), revealing a direct relationship that confirms the usability of the equation for estimating Zs. 
The estimated inversion parameters were then utilized to establish their relationship with other reservoir proper-
ties through rock physics analysis in a 3D space. This rock physics analysis involved generating two key cross-plots. 
The first cross-plot displays acoustic impedance versus porosity, coloured by Gamma-Ray values for lithological 
identification and water saturation for fluid content. The second cross-plot shows Vp/Vs versus P-impedance (Zp), 
coloured by water saturation. These cross-plots enabled the quantitative interpretation of the inversion method, 
allowing for the extraction of impedance values corresponding to hydrocarbon-bearing sands. This integrated 
analysis facilitated the identification of reservoir properties and fluid content, enhancing the understanding of 
the subsurface geology.

(7)Vp = (1000000∕DTc) × 0.3281,

(8)Zp = Vp × �b.

(9)Vs = 0.8042Vp − 0.8559,

(10)Zs = Vs × �b,

Fig. 7  Seismic to well tie using well OS-5, with the depth of the top and base of the reservoirs displayed
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3.5  Seismic inversion

Wavelet extraction was performed to deconvolve the seismic data, yielding the subsurface’s reflectivity series via 
the seismic inversion convolution model (Eq. 11). This crucial step enabled the retrieval of the underlying reflectivity 
series from the seismic data, providing valuable insights into the subsurface’s geological structure.

S(t) is the recorded seismic trace, W(t) is the seismic wavelet, R is the Earth’s reflectivity series, and N is the added 
noise [47, 48, 51].

This study utilized extracted statistical wavelet, W(t), representing the source and recording system’s filtering effect, 
to correlate both reflectivity (extracted and inverted) derived at all wells. A cross-correlation analysis was employed 
for wavelet extraction from seismic data by assessing the similarity between the data and potential wavelets. This 
involved calculating the cross-correlation coefficient between the seismic trace and each possible wavelet. The extrac-
tion process utilized a zero-degree phase rotation, with a lag time of 100 ms and a variable window length range per 
well, optimized in the time domain to achieve the maximum cross-correlation coefficient. This process was repeated 
for all wells, and the wavelet with the highest coefficient was selected for each well. Maintaining a minimum-phase 
wavelet is crucial for reliable seismic interpretation and inversion, so, a low-phase wavelet (29°) was used in this study. 
This is because significant phase shifts in the input wavelet can significantly impact the inversion results, leading to 
higher errors in the final impedance data [52].

Quality control was conducted after seismic to well tie and wavelet extraction was carried out to check the consist-
ency of the seismic impedance and the well log impedance from well location path. An initial P-impedance model was 
created using well logs and mapped horizons to enable model-based seismic inversion to be applied (Fig. 9a). This 
crucial step enabled the inversion of seismic data into a 3D volume of impedance values, providing a more accurate 
and geologically consistent representation of the subsurface properties (Fig. 9b).

(11)S(t) = W(t) ∗ R + N.

Fig. 8  Cross plot showing the relationship of the estimated Zp and Zs as a quality control for the estimation of Vs from well logs
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4  Results and discussion

4.1  Well log analysis

Three reservoir sands were delineated from the five available wells in the study area. The average estimated reservoir 

Fig. 9  a Seismogram analysis and estimation of wavelet using selected seismic traces for OS-3 well showing the extraction and valuable 
information from seismic data b synthetic seismogram of OS-3
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properties of all reservoirs across all wells are summarized in Table 1. The gross thickness (GT) of the reservoirs 
ranges from 49.2 to 81.4 m, while the net pay thickness varies from 26.4 to 73.8 m. The net pay to gross ratio (NTG) 
spans from 0.54 to 0.91, indicating the proportion of the reservoir that contributes to hydrocarbon production. The 
volume of shale (Vsh) content ranges from 0.12 to 0.31, reflecting the extent of non-reservoir material within the 
sands. Porosity values, crucial for assessing the storage capacity of the reservoirs, range from 0.18 to 0.20. Perme-
ability, which indicates the ability of fluids to flow through the reservoir rocks, varies significantly between 565 to 
1481 mD. Water saturation levels, an indicator of the amount of water present in the pore space, range from 0.16 
to 0.54. The well log analysis revealed that all delineated reservoirs generally exhibit good reservoir properties, 
indicating their viability for hydrocarbon production. Among the reservoirs, Reservoir 1 was identified as having 
the least favorable properties. Despite this, the overall quality of the reservoirs suggests a promising hydrocarbon 
potential within the study area.

4.2  Wavelet extraction

A statistical technique called cross-correlation analysis was applied to extract the seismic wavelet from the seismic 
data volume, utilizing the available wells in the study area. This extracted wavelet serves as the fundamental build-
ing block of the seismic response and is crucial for accurate seismic inversion. Cross-correlation analysis revealed 
that the statistical wavelet with OS-3 exhibited the highest correlation coefficient (0.737) with the seismic data 
within a time window of 2200–2500 ms (Fig. 9a, b). This window represents the optimal wavelet that best character-
izes the seismic data, essential for accurate seismic inversion. Following this identification, the wavelet was further 
characterized by a 29° phase shift and a dominant frequency range of 0–50 Hz (Fig. 10). The extracted wavelet with 
these properties was then employed for acoustic impedance estimation from the seismic data.

Table 1  Average estimated 
reservoir parameters for 
delineated reservoirs

Reservoir Gross thick-
ness (m)

Net pay (m) NTG Vsh Porosity Permeabil-
ity (mD)

Sw Sh

1 49.2 26.4 0.54 0.12 0.2 1481 0.54 0.46
2 58.8 47.2 0.80 0.15 0.19 1404 0.16 0.84
3 81.4 73.8 0.91 0.31 0.18 565 0.17 0.83

Fig. 10  Wavelet extracted in the time domain (top) and frequency domain (down) representing the seismic character of the source
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4.3  Quality control

A prior analysis was conducted to establish a robust correlation between the impedance values derived from seismic 
data and well logs by correlating impedance from seismic and well logs before applying seismic inversion to the 
seismic volume. Figure 11a–e illustrates this correlation at all well location, covering different time interval per well. 
A strong correlation is evident, with low error values ranging from 385.225 to 520.235 across all wells, indicating 
excellent consistency between the seismic response and well log data. Moreover, the relative error values fall within 
an acceptable range, further validating the accuracy of the inversion process for the post-stack seismic data [53–55]. 
This ensures that the derived impedance profiles accurately represent the subsurface geology, providing a reliable 
basis for reservoir characterization and decision-making.

Furthermore, a synthetic seismic trace generated from the inverted impedance (shown in red in Fig. 11) exhibits 
an exceptionally high correlation coefficient (0.992808) with the actual seismic trace (black) around the potential 
reservoir intervals in well OS-3. This strong correlation provides added confidence in the reliability of the inverted 
acoustic impedance data used for subsequent hydrocarbon prospectivity analysis. Having established the robustness 
of the correlation and the accuracy of the inversion process through these quality control measures, we proceeded 
with full seismic inversion to generate the final acoustic impedance models for the study area.

4.4  Rock physics

The analysis of rock properties in 3D space revealed significant correlations with reservoir characteristics, particularly 
fluid content and lithology. These connections are crucial for the quantitative interpretation of seismic inversion 
results for reservoir characterization in the ‘OS’ offshore field. A cross-plot of Zp versus porosity, colour-coded with 
Gamma-Ray (GR) for lithology discrimination (Fig. 12a), exhibited a linear trend. Sand bodies identified through this 
cross-plot are characterized by Zp values ranging from 5000 to 8000 (m/s)(g/cc), porosity values greater than 0.13, 
and Gamma-Ray readings below 75 API. In contrast, shales exhibit Zp values from 5000 to 9000 (m/s)(g/cc), porosity 
values less than 0.13, and Gamma-Ray readings over 75 API. When colour-coded with water saturation, this cross-plot 
enabled the differentiation of reservoirs into hydrocarbon-filled sands, brine-saturated sands, and shales (Fig. 12b). 
Hydrocarbon-bearing sands are delineated by Zp values ranging from 5000 to 7800 (m/s)(g/cc) and lower water 
saturation values. Brine-filled sands show Zp values between 7400 and 8400 (m/s)(g/cc) and higher water saturation, 
while shales have Zp values from 5000 to 8800 (m/s)(g/cc) across varying water saturation levels.

Similarly, a cross-plot of the velocity ratio (Vp/Vs) and P-impedance (Zp), colour-coded with Gamma ray and water 
saturation, were used to distinguish lithology and fluid content respectively (Fig. 13a, b). Hydrocarbon sands are 
characterized by P-impedance values ranging from 5000 to 7000 (m/s)(g/cc) and a velocity ratio between 1.9 and 2.3, 
Brine filled sands has a P-impedance value range of 5600 to 7000 (m/s)(g/cc) while the P-impedance (Zp) of shale is 
between 5000 and 7500 (m/s)(g/cc) and a velocity ratio range of 2.0–3.1. Based on the analysis from the cross-plots, 
the P-impedance range for hydrocarbon-bearing sands is 5000 to 7800 (m/s)(g/cc), brine-filled sands is 5600 to 7000 
(m/s)(g/cc), and shale is 5000 to 9000 (m/s)(g/cc). These findings are consistent with the unconsolidated nature of 
Niger Delta reservoirs, as noted in previous studies [53, 56, 57].

4.5  Model‑based seismic inversion

Figure 14 presents the inverted acoustic impedance section for the ‘OS’ field, along with the mapped horizons. The 
results display a general increase in impedance with depth, consistent with the typical compaction effects observed 
in Niger Delta geology. The inverted impedance values are categorized into distinct classes, ranging from very low 
[3601–4563 (m/s)(g/cc)] to extremely high (8650–9372 (m/s)(g/cc)], as shown in Table 2. These impedance catego-
ries are visually represented by a colour bar in Fig. 15, where purple indicates extremely high impedance and green 
indicates very low impedance. Rock physics analysis suggests that sand zones correspond to impedance values 
between 5000 and 8000 (m/s)(g/cc), water-bearing sands exhibit impedance values between 6800 and 8000 (m/s)
(g/cc), and shales have an impedance range of 5000–9000 (m/s)(g/cc). This variation is primarily driven by den-
sity differences, with shales having higher densities and consequently higher impedance values compared to sand 
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Fig. 11  Seismic inversion quality control analysis comparing the impedance and seismic traces derived from seismic and well log data for a 
OS-3 b OS-2 c OS-1 d OS-4 e OS-5
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Fig. 11  (continued)
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bodies. Additionally, fluid content plays a role, as hydrocarbon-filled sands exhibit lower impedance compared to 
water-bearing sands.

The inverted acoustic impedance attribute enables subsurface characterization by visualizing property variations 
across each horizon time slice, corresponding to potential reservoir tops in the ‘OS’ field (Fig. 15a–c). These horizon slices 
reveal that existing wells are situated in areas with low-to-moderate impedance values [3601–6727 (m/s)(g/cc)]. Well 
placement decisions were likely influenced by these impedance trends, with OS-1 and OS-5 deviated towards potential 
zones on horizon 1, OS-3 on horizon 2, and OS-2 and OS-5 on horizon 3. Based on typical characteristics of Niger Delta 
hydrocarbon reservoirs, areas with low impedance values below [6300 (m/s)(g/cc)] were identified as potential hydro-
carbon-saturated sands. The horizon time slices (Fig. 15a–c) reveal several prospective zones with impedance values 
below this threshold. These zones hold the most significant hydrocarbon potential within the study area, with horizon 
3 exhibiting the least prospective character. These newly identified prospective zones warrant further evaluation for 
potential drilling and development activities.

5  Conclusion

This study presented the application of seismic inversion and rock physics to characterize the subsurface reservoirs of an 
offshore field in the Niger Delta based on its hydrocarbon potential. Well log analysis identified three primary reservoir 
sands across five wells, exhibiting promising average reservoir properties, including gross thicknesses ranging from 49.2 
to 81.4 m, net pay thicknesses from 26.4 to 73.8 m, and favourable porosity, permeability and water saturation values. 
Although Reservoir 1 showed the least favourable properties, the overall quality of the reservoirs indicates a strong 
hydrocarbon potential in the study area. The wavelet extraction through cross-correlation analysis identified a high-
correlation statistical wavelet for seismic inversion, characterized by a 29° phase shift and a frequency range of 0–50 Hz. 
This wavelet was crucial for accurately estimating acoustic impedance from seismic data.

Quality control measures validated the robustness of the model-based seismic inversion process, demonstrating a 
strong correlation between well log impedance and seismic impedance, with a low error value range (385.225–520.235) 

Fig. 11  (continued)
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Fig. 12  A crossplot of porosity vs P-impedance coloured by a Gamma-ray values indicating the lithologies b water saturation values indicat-
ing the presence of fluid types
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and a high synthetic trace correlation range value of 0.983238 to 0.992808. Rock physics analysis in 3D space further clari-
fied the relationships between rock properties, fluid content, and lithology. Cross-plots of P-impedance versus porosity 
and velocity ratio (Vp/Vs) facilitated the discrimination of lithologies and fluid contents, identifying hydrocarbon-bearing 

Fig. 13  A crossplot of the velocity ration (Vp/Vs) vs P-impedance (Zp) of horizon 1 coloured by a Gamma ray and b water saturation
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sands, brine-saturated sands, and shales. Hydrocarbon sands were characterized by lower impedance values [5000–7000 
(m/s)(g/cc)] compared to water-bearing sands [6800–8000 (m/s)(g/cc)] and shales [6000–9000 (m/s)(g/cc)].

The integration of these techniques yielded valuable insights into the subsurface. The inverted acoustic impedance 
sections displayed a clear increase in impedance with depth, reflecting the expected compaction trends. Furthermore, 
the impedance distribution across the mapped horizons revealed prospective zones with low impedance values [below 
6300 (m/s)(g/cc)], particularly in horizons 1 and 2. This threshold was chosen because the rock physics analysis indicated 
significant overlaps in this range, effectively delineating hydrocarbon sands, brine-filled sands, and shale. The integrated 
approach of well log analysis, seismic inversion, and rock physics provides a robust framework for hydrocarbon explo-
ration and development of prospective zones in the Niger Delta offshore field. The identified prospective zones offer 
promising targets for future exploration and drilling endeavours.

Fig. 14  a Initial low-frequency model used for the generation of inverted acoustic impedance volume of the ‘OS’ field and b inverted acous-
tic impedance seismic volume showing horizon 1 and horizon 3 and the position of OS-5

Table 2  Classification of 
acoustic impedance range for 
the inverted seismic

Acoustic impedance values (m/s)*(g/cc) Category Colour code

3601–4563 Very low Green
4563–5765 Low Yellow
5765–6967 Medium Red
6967–7688 High Aqua marine
7688–8650 Very high Blue
8650–9372 Extremely high Purple



Vol:.(1234567890)

Research Discover Geoscience            (2024) 2:24  | https://doi.org/10.1007/s44288-024-00030-4

Fig. 15  Acoustic impedance 
horizon time slice showing 
hydrocarbon prospective 
zones encircled in black at 
OS-5 corresponding to the top 
of a reservoir 1 b reservoir 2 c 
reservoir 3
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