
Vol.:(0123456789)

 Discover Geoscience             (2024) 2:3  | https://doi.org/10.1007/s44288-024-00004-6

Discover Geoscience

Case Study

Geospatial analysis of soil resistivity and hydro‑parameters 
for groundwater assessment

Umar Javed1,2 · Pradeep Kumar1 · Sajjad Hussain3 · Taufiq Nawaz4 · Shah Fahad5,6 · Shahbaz Ashraf2 · Karamat Ali7

Received: 2 December 2023 / Accepted: 29 February 2024

© The Author(s) 2024  OPEN

Abstract
Groundwater is a precious resource for irrigating the crops in developing countries. This research was governed in 
Faisalabad District of Pakistan to assess the groundwater strata using GIS cum geoelectric resistivity method approach. 
The IX1D computer model was calibrated with root mean square error (up-to 5%), to obtain true soil layers’ resistivities and 
thicknesses model for each VES point based on apparent resistivity data collected by ABEM SAS 4000 Terrameter using the 
most common Schlumberger electrode array setting. Knowledge of geo-hydraulic parameters (hydraulic conductivity, 
transmissivity, and porosity) aids in identifying the quality and potential of groundwater repositories, estimated based 
on modeling results (soil layers resistivities and thicknesses). Most common interpolation (inverse distance weighted) 
method in ArcGIS Pro was used for mapping the soil aquifer layers resistivities/thicknesses and geo-hydraulic parameters. 
Transmissivity, Porosity, and hydraulic conductivity values ranged from 365.46 to 1888.503  m2/day, 31.84 to 39.72% and 
4.05 to 15.27 m/day for all surveys, respectively. Based on these results, aquifer layers with thicknesses 30 to 103.5 m, 
were distinguished as comprised of saline to low marginal quality (fine sand and clay formation), marginal to fresh quality 
(fine sand and gravel formation) and fresh quality groundwater (coarse sand and gravel formation).
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1 Introduction

Water is essential for supporting all forms of life on our planet. However, many regions around the world are experiencing 
a growing issue of water scarcity. The excessive use of 70% of the accessible water for agricultural purposes is placing 
significant strain on this crucial resource [36]. Additionally, water plays a vital role in maintaining the balance of Earth’s 
ecosystem. In developing countries with economies heavily reliant on agriculture, coping with seasonal and nationwide 
water shortages has become a major challenge [76]. The growing demand for freshwater resources emphasizes the need 
for effective water management in the agricultural sector which stands as the foremost global consumer for water [77]. 
Therefore, among the freshwater resources, availability of groundwater resource is of paramount importance to meet the 
demands of agriculture, households, and industries. Groundwater is an important component of water resource systems 
[4, 44] and it is a largest freshwater reservoir which is accessible [24]. With the enhancement of groundwater withdrawal, 
the quality of groundwater is continuously deteriorating with the passage of time [38].

The Indus River Basin, a substantial transboundary river system, ranks among the largest in the Aisa concerning volumetric 
flow which sustains irrigation and hydropower systems in Afghanistan, India and Pakistan [34]. Indus basin system of 
Pakistan, plays a pivotal role in contributions for 90% of agricultural output and 25% of national GDP [9, 84]. In this system, 
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the anticipated rapid increase in population and impacts of climate change are expected to heighten the challenges 
interconnected with water resources and farm productivity [26, 72]. Owing to the challenges of water supply, Pakistan is at 
risk of confronting the severe food shortages. Current forecasts indicate a reduction of over 30% in water storage capacity 
by 2025 attributed to climate change impacts [84]. Moreover, canal irrigation water supply falls short of fulfilling the water 
demands for both present and past crops primarily due to an enlarged irrigated area [24]. So, the groundwater is utilized 
either directly or indirectly for irrigation to meet the crop water requirement and groundwater systems exhibit a slower 
response to short-term climate fluctuations compared to surface water systems, primarily because they serve as a crucial 
buffer against deficiencies in surface water [81]. The addition of groundwater can significantly contribute to sustaining crop 
yields at farm levels, potentially increasing them by 50–100% [37]. Therefore, the area under groundwater-based irrigation has 
seen a rise from 2.8 to 3.5 million hectares, while the area under canal irrigation has decreased from 7.9 to 6.9 million hectares. 
This shift in irrigated areas has been accompanied by a substantial increase in the number of water wells, underscoring the 
current heavy reliance of farmers on groundwater to ensure agricultural productivity [11]. Consequently, the exploration of 
groundwater is becoming increasingly crucial not only for Pakistan but also on a global scale due to the growing demand 
for irrigation water supplies.

Effective methods are essential for groundwater exploration [60]. Geophysics involves applying the principles of physics 
to study the earth with measurements taken either at or in near proximity of earth surface [43, 59]. So, there is an important 
role of geophysics in groundwater exploration, and it is very necessary to utilize cost-effective geophysical methods for 
locating the potential groundwater zones [20, 25, 53, 54, 59, 61]. Among the geophysical methods, the geoelectric resistivity 
method is being used mostly for investigating the groundwater strata because of has simple instrumentation and easy field 
operations as well as analysis of data than other methods [23, 66, 80]. Collected resistivity data can be employed to recognize 
and characterize the subsurface elements including identification and nature of aquifers viz quality of groundwater [48, 60]. 
Moreover, aquifer hydraulic parameters (hydraulic conductivity, transmissivity, and porosity) estimated from resistivity data 
of geophysical methods help in identifying the availability of potential groundwater repositories [6, 23]. A fundamental 
correlation was observed after the integration of hydraulic parameters attained from resistivity data [23, 41, 46, 49, 78].

GIS coupling with other models is largely being used in now a day research such as GIS method along resistivity profile 
together was used to locate the deep water well sites and groundwater potential zones [3, 16, 30, 50] which indicates the 
effectiveness of GIS usage in assessment, monitoring and management of groundwater [1, 5, 8, 21, 50, 75]. For mapping 
the groundwater strata and properties, it is essential to know in depth about groundwater and soil layer lithology and GIS 
can play a great role in achieving this goal [5, 8]. GIS coupled electric resistivity meter method was used for estimation 
and mapping of soil layers resistivities as well as geo-hydraulic parameters to differentiate the soil lithological layers and 
groundwater potential zones [23]. GIS analysis was used for delineating the hydrogeological zones by integration of vertical 
electrical sounding data collected by electric resistivity meter at field [31]. Unfortunately, continuous decrease in surface water 
resources in Pakistan is leading to excessive extraction of groundwater resources [22] and excessive usage of water resources 
by mismanaging leads to that quality resource depletion along with water quality deterioration and environmental issues 
[58]. That is why the groundwater exploration along with soil layers lithology determination prior to the well drilling is very 
essential which leads to the groundwater management, and it is dire need of the time [79]. Some studies identified only the 
groundwater quality zones with formations characteristics based on layers resistivity and thicknesses data [25, 32, 40, 67] but 
in this research study we calculated also the geo-hydraulic parameters from resistivity layers thicknesses and resistivities to 
better understand not only the groundwater quality but also the groundwater potential zones. Integrated electrical resistivity 
and GIS approach was potentially applied to find out the hydrogeological zones in a study [31]. Moreover, declining in water 
table was assess through GIS by deploying the interpolation method in study conducted in desert area of Iran [5]. Continuous 
decline in surface water resources of country putting the enormous pressure on groundwater resource and without proper 
management and prior investigation, it led towards depletion of this quality resource (groundwater). Keeping in view the 
water security and sustainability [42], there is a dire need to properly manage the groundwater extraction by assessing its 
quality and potential properly which will also be very effective in policy making process to save for future generations. In this 
study, an integrated approach of resistivity surveys along with ArcGIS Pro’s interpolation methods was used for estimation 
and mapping of soil layers resistivities/thicknesses and calculated geo-hydraulic parameters to evaluate the groundwater 
quality and potential zones, respectively. Points suitable for well installations to attain fresh quality of groundwater were 
identified. This study also tried to mitigate the bore hole failures trend and could also be quite effective in policy making 
steps for resource management in Pakistan [42, 58].
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2  Methods

2.1  Study area

This study was conducted in Faisalabad district of Pakistan covering an area of 2261.014 sq. miles. Geographically, 
Faisalabad is situated at an elevation of 604.134ft above sea level and with coordinates (30.68°N 72.85°E to 31.76°N 
73.21°E) as shown in Fig. 1. The climate is arid to semi-arid characterized by extremely hot summers (69.8–123.8ºF) 
and milder winters (44.6–80.6ºF) [29].

2.2  Data processing steps

In Fig. 2, data processing steps are shown. Firstly, apparent resistivity data collected in field by using ABEM SAS 4000 
Terrameter [7, 12, 47, 52, 68], was processed using IX1D model. The model calculated true resistivities and thicknesses 

Fig. 1  Study Area Map -VES Locations

Fig. 2  Flowchart for data 
processing in methods



Vol.:(0123456789)

Discover Geoscience             (2024) 2:3  | https://doi.org/10.1007/s44288-024-00004-6 Case Study

of soil layers which were then utilized to determine geo-hydraulic parameters [15, 52]. ArcGIS Pro, with a suitable 
projection for Faisalabad, was employed for mapping true resistivities-thicknesses and calculated geo-hydraulic 
parameters. The interpolation method IDW in ArcGIS Pro was applied for mapping following recommendations from 
various researchers [65, 70, 83, 85] as shown in Fig. 2.

2.3  Investigation method

Electric resistivity surveys with most commonly being used Schlumberger electrode array [2, 3, 7, 18, 22] were conducted 
in the research area. Schlumberger electrode array configuration was chosen and employed because of simple layout 
and high efficiency in groundwater exploration [22, 25, 40, 68]. Specific parameters, including current electrode partition 
(AB/2) of 2–180 m and potential electrode (MN/2) partition of 0.5–20 m, were employed during the survey [39, 40, 52, 
68, 74]. Geometric constant (K), derived from respective positions of current and potential electrodes, was utilized to 
calculate apparent resistivity [47, 73].

ρa represents the apparent resistivity measured in Ω-m, R is the resistance measured in Ω, and K is Constant of 
proportionality [47].

2.4  Modeling

The IX1D computer software generated resistivity models (soil layers resistivities and thicknesses) for selected VES points, 
minimizing the root mean square (RMS) error between the model’s generated data and actual field data [40, 68]. RMS is 
the estimation of closeness of theoretical to observed field curves. The acceptable range for RMS (5–8%) was followed, 
with three iterations performed until the RMS reached 5% [39, 47].

2.5  Geo‑hydraulic parameters

Hydraulic parameters (hydraulic conductivity, transmissivity and porosity) were interrelated in determining groundwater 
potential zones. Understanding these parameters is crucial for effective groundwater management [51]. Hydraulic 
conductivity, indicating how water moves through material [13, 62] and transmissivity, obtained by multiplying hydraulic 
conductivity with aquifer layer thickness, play significant roles [17, 33, 69]. For two alike sandy aquifers, if one has high 
porosity then it will have high hydraulic conductivity as well. On the other hand, clay with low hydraulic conductivity will 
have higher porosity because clay is a more saturated material which holds substantial amounts of water but doesn’t 
release it quickly [19].

2.6  Map projection and interpolation (ArcGIS Pro)

A projected map projection (WGS 1984 UTM Zone 43N) was used under ‘WGS 1984’ as the datum for measuring the 
locations and creating maps. Inverse distance weighted (IDW) interpolation in ArcGIS Pro was chosen as one of the 
most common spatial analysis methods for mapping values in uncalculated places [4, 65, 83]. This approach involves 
applying a linear weighted combination of sample points for calculating cell values [45]. It was concluded that IDW 
works to forecast the values for any uncalculated place, by estimating the surrounding value’s foreseen locations [14]. 
There are two assumptions behind its procedure: firstly, the effect of untold value of a location is expanded with respect 
to the close commanded locations as compared to distant spots. Secondly, the impact degree of location has directly 
proportionality with inverse of the distance between the locations [27].

Pa = K ∗ R
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3  Results and discussions

3.1  Data collection and modeling

For this study, vertical electrical sounding data was acquired at selected VES locations using a Resistivity meter (ABEM 
Terrameter SAS 4000). The ‘IX1D’ computer model facilitated the determination of soil layers’ resistivities and thicknesses. 
Geo-hydraulic parameters (transmissivity, hydraulic conductivity, and porosity) were subsequently derived from these 
properties [15, 19, 53–56]. Using the newly developed GIS software ‘ArcGIS Pro’, resistivities/thicknesses of soil aquifer 
layers and assessed geo-hydraulic parameters were mapped for interpreting the soil layers lithology and groundwater 
quality and potential zones.

Here,  haq represents the aquifer layer thickness calculated in meter, K represents the hydraulic conductivity calculated 
in m/day, ρaq is the aquifer layer resistivity measured in Ω-m, Ф is the porosity measured in % and  Tr is the transmissivity 
measured in  m2/day [15, 53]. A graph was employed to illustrate geo-hydraulic parameters and resistivities-thicknesses 
of soil aquifer layers at all VES points. Notably, the 7th and 8th VES points displayed low aquifer layer thickness, while 
9th and 10th VES points exhibited higher resistivity values indicating hard formations at these locations in aquifer layers 
[74]. This led to lower hydraulic conductivity, transmissivity and porosity values at these locations compared to others. 
On the other hand, resistivity values are very low at 4th, 5th, and 6th VES points but the layers thicknesses, hydraulic 
conductivities, transmissivities, porosities are higher at these locations than others. Aquifer layers resistivity values at 
1st, 2nd and 3rd VES points are in good range with high aquifer layers thicknesses (up to 100 m) and promising values of 
hydraulic conductivity, transmissivity and porosity, declaring these points suitable for extraction of groundwater from 
aquifer layers.

3.2  GIS mapping and analysis

3.2.1  Groundwater quality zones

Groundwater quality zones and aquifer layer thicknesses maps were depicted in Fig. 4a and b based on resistivities 
and thicknesses of aquifer layers for identifying the groundwater quality zones along with their respective thicknesses 
together with reference to each VES point. Based on layers’ resistivities and thicknesses, we can assess and define the 
groundwater quality zones depending mainly on range of resistivity values in geophysical settings [32, 40, 71]. VES points 
4th, 5th, and 6th were identified as having aquifer layers with clay and find sand, up to 90-m and saline to low marginal 
quality groundwater based on low resistivity values ranging from 20 to 30 Ωm as shown in Figs. 3 and 4a. In calibrated 
true resistivity models of geophysical surveys, resistivities of clay formation are generally shown less than that of sand 
which is less than that of gravel in humid environmental conditions as it was reported in some recent studies [2, 32, 40, 
71]. Points 9th and 10th exhibited hard formations with higher resistivity values ranging from 400 to 800 Ωm as shown in 
Fig. 3 and thicknesses up to 103.5 m. Higher resistivities displayed by calibrated layered resistivity model in the soil profile, 
indicate top surface materials or hard formations which depends mainly on the depth within profile whether it is above 
or below water level which was declared in some past and recent studies as well [2, 22, 40, 71, 74]. On the other hand, 
aquifer layers at 1st, 2nd, 3rd, 7th, and 8th VES points consist of coarse sand and gravel materials where groundwater 

Fig. 3  Graph summary of soil 
aquifer layers resistivities/
thicknesses and geo-hydraulic 
parameters
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quality is marginal to fresh based on higher aquifer layer resistivity values ranging from 35 to 72 Ωm as shown in Fig. 3 
while thickness of aquifer layer at 1st, 2nd and 3rd points is high as up to 103.5 m as compared to the 7th and 8th points 
where aquifer layer thickness is only up to 30 m. Keeping in view these results, the resistivity inverse model also showed 
the freshwater zones very clearly in research conducted by [32]. Moreover, resistivity ranges of < 25 Ωm, 25 to 50 Ωm 
50 to 100 Ωm were declared for poor, marginal and good/fresh quality groundwater layers based on calibrated model 
results [2, 22, 40, 68].

Fig. 4  a Groundwater quality zones Map. b Aquifer layer thicknesses Map

Fig. 5  a Well yield Map. b Formations’ water capacities Map. c Porosities Map
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3.2.2  Groundwater potential zones

3.2.2.1 Hydraulic conductivity and transmissivity Figure 5a and b showcased groundwater potential zones (well yield 
based on hydraulic conductivities and water capacities of the formations based on transmissivities) of aquifer layers. 
In groundwater management science, hydraulic conductivity and transmissivity are the important factors aiding in the 
understanding of groundwater exploration properties [15, 22, 28]. Aquifers play a crucial role in supplying the water 
to wells after activation of pump, water level declines which stimulate the groundwater flow from aquifer as it initially 
comes from storage within the aquifer, so aquifers possess at least two vital properties: capacity to store and capability 
to transmit the water. Therefore, these two properties are essential to know about groundwater storage and transmitting 
potential in groundwater management [17, 63]. Both maps look similar, but these are different in defining the hydraulic 
properties and we can identify the high groundwater potential zones by finding out high well yields and water capacities 
in these both maps. When we refer to hydraulic conductivity, we are discussing a parameter which governs the average 
characteristics of groundwater flow through aquifer layer. Hydraulic conductivity is the measure of how water moves 
through the soil particles [62]. The idea of transmissivity bears similarity to hydraulic conductivity. The primary distinction 
lies in the fact that transmissivity is the measure that extends over the vertical thickness of aquifer layer [17]. There is a 
linear relationship between hydraulic conductivity as well yield would be higher if hydraulic conductivity increases. Well 
yield as well was estimated based on hydraulic conductivity. Well yield could be attained as 6–30 l/s through medium well 
sorted sand and porous limestone, if K is moderate 0.3–3 m/day. It was reported that well yield would be higher 30–60 l/s 
through the coarse sand and gravel formation, based on higher K 3–20 m/day [64]. Transmissivity is also connected 
with the water bearing formations based on findings of [35]. Water bearing formations capacities would be very low, 
low and intermediate based on transmissivities of 0.1–1, 1–10, and 10–100   m2/day respectively [35]. So, keeping in 
view these previous studies’ findings, 9th and 10th points have low hydraulic conductivity (up to 4.05 m/day) and low 
transmissivity (up to 365.462  m2/day) which shows that aquifer layers at these points have low well yield (6–30 L/sec) 
and intermediate water capacities respectively. In both maps, aquifer layers at 4th, 5th, and 6th VES points consist of high 
well yield (30–60 L/sec) and very high-water capacities by having higher hydraulic conductivity (up to 20.05 m/day) and 
higher transmissivity (up to 1888.503  m2/day) respectively. It can be clearly seen from both maps that 1st, 2nd, and 3rd 
VES points have high groundwater potential aquifer layers in which well yield is 30–60 L/sec indicating the high-water 
capacities of that formation layers based on intermediate to higher hydraulic conductivity (up to 15.268 m/day) and 
intermediate transmissivity value (up to 1049.818  m2/day) respectively. On the other hand, 7th, and 8th VES points have 
intermediate to higher hydraulic conductivity (up to 15.268 m/day) indicating high groundwater potential zones where 
well yield is 30–60 L/sec while these points show intermediate water capacities by having low transmissivity value (up to 
365.462  m2/day) because these points have very low thicknesses of aquifer layers.

3.2.2.2 Porosity Figure  5c displayed the porosity map which complemented the groundwater quality zones map, 
aiding in the illustration of geological formations within aquifer layers. Aquifers play a crucial role in supplying the 
water to wells and one of the aquifer’s important attributes is its capacity to store water [17]. Porosities values are used 
to differentiate the geological formations in the aquifer layers by storage and retention of water within a geological 
formation. Assessment of porosity is especially important to validate the occurrence of aquifer layer in the geological 
formation [18, 19]. Map shows that 9th and 10th VES points consist of rock formations based on low porosity value (up 
to 31.839%), aligning with the groundwater quality zones map (Fig. 4a). So, the porosity map is aiding in explaining 
the geological formations as discussed by [19]. Similarly, VES points (1st, 2nd, 3rd, 7th, and 8th), consist of coarse sand 
and gravel formations by having intermediate to higher porosity value (up to 37.789%) aligning with the results of 
groundwater quality zones map (Fig. 4a). On the other hand, 4th, 5th, and 6th VES points consist of clay and fine sand 
materials by showing the higher porosity value (up to 39.725%).

Combining analysis from groundwater quality zones, layers thicknesses and geo-hydraulic parameters maps, it is 
recommended, not to install wells at 9th and 10th points due to hard formations [74] as shown in Fig. 4a and low 
groundwater potentials as shown in Fig. 5a–c. 4th, 5th, and 6th points are unsuitable to install wells for fresh groundwater 
extraction due to saline to low marginal quality aquifers despite having good hydraulic conductivity, transmissivity 
and porosity values as shown in Figs. 4a and 5a–c. On the other hand, 1st, 2nd, and 3rd VES points are suitable for 
well installations, offering fresh groundwater through coarse sand and gravel formations based on high groundwater 
potentials as shown in Fig. 4b but 7th, and 8th VES points are suitable for shallow well installations only based on less 
aquifer layers thicknesses and low transmissivities as shown in Figs. 4b and 5b) despite having coarse sand and gravel 
materials formations (marginal to fresh groundwater) aquifer layers as well as good hydraulic conductivities and good 
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porosities as shown in Figs. 4a and 5a–c. Likewise, the shallow thickness aquifers were also identified recently in the 
same region study conducted by [40].

4  Conclusion

Affordable geophysical surveys are often suggested prior to the costly process of borehole drilling for groundwater 
resource [20, 25, 53, 54, 59]. This precaution is essential to enhance productivity and prevent potential inefficiencies that 
may arise from improper sitting. In this study, GIS cum geoelectric resistivity method approach was used to assess the 
groundwater strata at selected VES points in Faisalabad District of Pakistan, and this approach is proved as very useful 
in recommending the groundwater quality and potential zones locations. 9th, and 10th VES points containing hard 
formations of thicknesses (≤ 103.5 m) were not suitable for well installations based on very low hydraulic conductivity 
(≤ 4.05 m/day), low transmissivity (≤ 365.462  m2/day), and low porosity (≤ 31.839%) values while 4th, 5th, and 6th VES 
points were declared as unsuitable for well installations because of having saline to low marginal quality groundwater 
aquifer layers despite of having good hydraulic conductivity (≤ 20.05 m/day), very high transmissivity (≤ 1888.503  m2/
day) and high porosity (≤ 39.725%). On the other hand, 1st, 2nd, and 3rd VES points were suitable for well installations 
to extract fresh groundwater through coarse sand and gravel formations of greater thicknesses (≤ 103.5 m) based on 
good hydraulic conductivities (≤ 15.268 m/day), high transmissivities (≤ 1049.818  m2/day), and intermediate to higher 
porosities (≤ 37.789%) but 7th, and 8th VES points were suitable for shallow well installations only based on less aquifer 
layers thicknesses (≤ 30 m) and low transmissivities (≤ 365.462  m2/day) despite having coarse sand and gravel materials 
formations (marginal to fresh quality) aquifer layers as well as good hydraulic conductivities (≤ 15.268 m/day) and 
porosities (≤ 37.789%). This study helped to mitigate the borehole failure trend in this region.

5  Study limitations

Though, accuracy of resistivity surveys is beyond 80% as most being seen in the literature and field experiences’ results 
but in this type of study, the number of resistivity surveys should be increased as much as when covering the larger area. 
As, in this study, the number of surveys is quite less to assess the groundwater quality and potential in the larger area 
as well. That is why we used the most widely used interpolation method in GIS to estimate the groundwater potentials 
and formations at unknown locations by mapping the actual points and nearby locations as zones for understanding 
in an uncomplicated way. Economic constraints could be an issue for conducting the resistivity surveys in the large 
area coverage while other geophysical methods are quite expensive. Moreover, there could also be hindrances to limit 
the specific selected electrode array in the resistivity survey at a point in the field. So, selecting the appropriate point 
to cover the whole straight distance of 180 m at both sides is also necessary for conducting survey in an efficient way. 
In Asian and African developing countries, mostly farmers cannot afford the installation costs of well even up to and 
beyond 150 m depth.

5.1  Future research recommendations

Based on results, it is recommended that surface electrical resistivity methods have immense potential and are quite 
affordable in assessing combinedly the groundwater quality and potential zones than other alone surface (gravity, 
seismic, magnetic, and nuclear methods etc.) and subsurface (borehole test) geophysical methods [10, 23, 57, 82]. Due 
to declining status of groundwater, mismanagement in withdrawal and growing population demands on agriculture, 
it is direly needed to expand the research areas by deploying the cost-effective electrical resistivity method to properly 
investigate them prior to install the well in the developing countries like Pakistan.
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