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Abstract 

As typical lifeline engineering systems, urban pipeline networks (UPNs) play an important role in transmission 
and distribution of materials or energies in modern society. Over the past years, many efforts have been devoted 
to the research, development and application towards intelligent operation and maintenance of UPNs in Tongji Uni-
versity, incorporating with the emerging artificial intelligence (AI)-based and internet of things (IoT)-based technolo-
gies. This paper presents a review on the recent advances and the important achievements pertaining to this field 
in Tongji University. Using multi-source data, a data-driven model for the comprehensive risk evaluation of the whole 
pipeline network is briefly introduced to address the limitation of the insufficiency of reliable data and demonstrated 
by a case study. Aiming at three major safety problems such as structural failure, leak and third-party intrusion, 
the advances in techniques and systems for health monitoring of urban pipelines are summarized and the various 
application scenarios are illustrated as well.
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1  Introduction
As major infrastructures in cities, urban pipeline 
networks(UPNs) play an important role in the transmis-
sion of gas, water and energy media. According to the 
statistics [1], the total length of urban pipelines in China 
is over 3300,000  km by 2021 and keeps a high annual 
growth. Accompanied by so enormous scale and amount, 
pipeline accidents occur more frequently. Figure  1 pre-
sents the statistical data on the amount of urban pipelines 
and the causes of pipeline accidents in the recent years in 
China. It indicates that third-party intrusion and struc-
tural damage are the main factors causing pipeline fail-
ures. The safe and reliable operation and maintenance of 

UPN is of great significance for sustainable urban devel-
opment and public security.

In recent years, with the rapid development and pro-
motion of artificial intelligence (AI), the Internet of 
Things (IoT), big data, cloud computing and so on, the 
empowerment of advanced information technologies for 
traditional infrastructure-related industries has made 
great progress. In the field of municipal engineering spe-
cially for UPN management, some technologies have 
demonstrated enormous potential. For example, build-
ing information modeling (BIM) technology for design, 
construction and maintenance of pipelines and facilities, 
advanced sensing and the IoT techniques for health mon-
itoring of pipeline systems, virtual reality technology for 
inspection, repair and replacement of pipelines, big data 
and cloud techniques for collection, storage, processing 
and management of large amount of data associated with 
UPN, AI-based pipeline survey, detection, diagnosis and 
decision making. Despite a promising future, it is faced 
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with many problems and challenges for deal with, which 
attracts more and more attention in industry.

From the perspective of academic research on lifeline 
engineering, it is originated from the mid-1970s mainly 
focused on disaster prevention and mitigation. After 
nearly 50  years, the knowledge on lifeline engineering 
has been formulated based on a broader background. 
Some new topics, such as health monitoring of lifeline 
infrastructures, the resilience of lifeline system and so 
on, have appeared associated with the progress of science 
and technology. Now, the research on lifeline engineering 
is becoming an important driving force for modern civil 
engineering [3].

Over the past years, many efforts have been devoted 
to the development and application towards intelligent 
operation and maintenance of UPNs in Tongji University, 
incorporating with the emerging AI-based and IoT-based 
technologies. A brief review of some important achieve-
ments pertaining to this field is presented in this paper, 
mainly including the data-driven risk evaluation models 
of UPNs as well as the health monitoring techniques of 
urban pipelines aiming at the major safety problems.

2 � Overall framework
In the process of construction, operation and mainte-
nance of UPNs, large amount of data have been gener-
ated, collected, stored and archived. In general, most 
cities or districts have established the following data sys-
tem for UPN management: (1) geographic information 
system (GIS) for the basic attribute data of UPN includ-
ing topology structure, pipeline properties, joints, etc.); 
(2) supervisory control and data acquisition (SCADA) 
system for on-line measurement of pressure, flow, tem-
perature; (3) inspection and maintenance system for 
inspection record, failure/damage record, and mainte-
nance record. In addition, (4) environmental monitoring 

system is sometimes available to acquire the measure-
ments of temperature, humidity, water quality, soil con-
ditions, traffic data, etc. It is worth noting that with the 
recent extensive promotion of big data, cloud storage 
and computing and internet of things (IoT) technology, 
the diversity, quality and efficiency of data collection has 
made great progress. How to take full advantages of the 
massive amounts of data, exploit valuable information 
and provide decision supports is of great significance for 
UPN management.

On the basis of the multi-source data, an overall frame-
work towards intelligent operation and maintenance of 
UPN is put forward, as shown in Fig.  2. In the frame-
work, two core physical models are generally involved, 
including the hydraulic model to simulate transmission 
and distribution of internal fluid in pipeline network 
as well as the structural model to simulate mechani-
cal behavior of pipeline structure. The key parts of the 
framework consist of two aspects. The comprehensive 
risk evaluation of the whole pipeline network is first con-
ducted, followed by a more elaborate three-level disease 
diagnosis to identify the disease type, quantify the sever-
ity and trace the cause. After determining the hot areas 
with high-risk pipelines, an integrated pipeline monitor-
ing system can be established aiming at the major safety 
problems such as structural failure, leak and third-party 
intrusion. It should be pointed out that the construction 
of an intelligent operation and maintenance system of 
UPN in engineering practice may cover a wide variety of 
technologies, strategies and policies.

3 � Risk evaluation of UPN
The existing models for risk evaluation of UPN are gener-
ally classified into three kinds: index model, data-driven 
model and physical model. The index model is most 
popular due to its convenience and simplicity. It usually 

Fig. 1  Statistical data of urban pipelines in China. a Total length of constructed urban pipelines [1]. b Cause of pipeline accidents  
(2018.07~2023.05) [2]
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selects a number of criteria, assigns different weights 
based on domain knowledge, and then sums them up to 
obtain the risk scores. However, the distinct disadvan-
tage of the index model is the high subjectivity involved 
in the scoring and weighting process. The data-driven 
model can provide more objective evaluation since it is 
entirely based on data statistical analysis with no artifi-
cial judging involved. With the flourishing development 
of machine learning algorithms, the data-driven model 
has attracted a great deal of attention recently. The main 
problems lie in the insufficiency of reliable data and the 
lack of physical significance of a typical black-box model. 
The physical model can reveal the degradation and failure 
mechanism of pipelines, but the sophisticated structural 
analysis relies on high quality data and thorough insights 
into the mechanism. In the past years, we have worked 
on the development and application of all the three kinds 
of models. Considering the length limitation of the paper, 
only data-driven risk evaluation model is introduced here 
briefly.

3.1 � Data‑driven risk evaluation model
As mentioned above, the multi-source data collected 
by various means may play an important role in intelli-
gent evaluation and decision support for operation and 

maintenance of UPN. However, in most engineering 
practice for risk evaluation, such data is far from satisfac-
tory in many aspects. This is because that the absence of 
attributes and the presence of noise in the feature data 
are common, which causes aleatory or statistical uncer-
tainty. Besides, the dataset suffers from severe class 
imbalance as the number of damaged pipelines is much 
less than that of the undamaged pipelines, which raises 
the difficulty for binary classification. Furthermore, in 
many areas worldwide, only short-term (usually within 
10 years) historical failure records are available, which 
leads to label noise in the form of the positive and unla-
beled dataset (PU dataset), and hence weakens the cor-
relation between features and labels.

To address the limitation of the insufficiency of reliable 
data, a data-driven model is proposed for risk evalua-
tion of UPN. As shown in Fig.  3, the model consists of 
two critical parts: the development of a classification 
model to determine the failure probability of all pipelines 
and thereby yield risk ranking; the utilization of a Gauss-
ian mixture model to cluster the failure probabilities and 
assign the risk levels. To examine the evaluation results, 
four indicators as defined in Fig. 3 are adopted including 
the area under the curve (AUC) and benefit coefficient 
α1% for risk ranking, and the coefficient of determination 

Fig. 2  Schematic of intelligent operation and maintenance of UPNs
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R2 and the Chi-square coefficient χ2 for risk level 
assignment.

The data-driven risk evaluation model proposed in 
Fig. 3 is elaborately devised to solve the aforementioned 
problem in data deficiency. In our research, the PU learn-
ing algorithm is chosen for data preprocessing, which 
aims to recover the labels for the unlabeled data by using 
the positive samples in the dataset [4], which effectively 
deals with the typical PU dataset and the problem of data 
imbalance. Under the assumption of being selected com-
pletely at random (SCAR) that the pipeline failure pattern 
remains largely unchanged in a relatively short period 
of time, a binary classification model can be trained by 
using the short-term historical failure records to predict 
the relative failure probability of each pipeline in the near 
future. In this case, the probabilistic model Gaussian pro-
cess classification (GPC) may perform better in the pres-
ence of incomplete data with aleatory uncertainty  than 
the traditional supervised models such as random forest 
(RF) classification. In addition, the utilization of Gauss-
ian mixture model (GMM) helps to cluster the probabili-
ties and assign risk levels avoiding subjectivity, fitting any 
failure probability distribution.

3.2 � Case study on a water supply UPN
A case study has been carried out on a UPN in the central 
district of a city in China [5]. Within the area of about 11 
km2, there are over 467 km long water supply pipelines. 
The original data is provided by a local water company. 
After selecting and preprocessing the raw data, a set of 
features are adopted, among which the continuous fea-
tures include pipe age, diameter, length, wall thickness 
and buried depth, and the categorical attributes include 
pipe material, and the area where the pipe is located.

The pipeline failure records exported from the database 
in the maintenance division are also employed. Since the 
historical accident data before 2015 is severely lacking, 
the failure records during 2016–2021 are finally adopted. 
The number of pipelines with no failure records to those 
with failure records is around 88:1, which indicates 
the data is quite unevenly distributed. Four cases are 
designed by separating the records into different training 
and testing sets. As shown in Fig. 4c, the failure records 
in 2021 are taken as the testing set, and those in one or a 
few years before 2020 serve as the training set.

The risk evaluation results are presented in brief in 
Fig.  4. The performance of the proposed data-driven 

Fig. 3  Data-driven risk evaluation model of UPN
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model for risk ranking in terms of AUC and α1% is shown 
in Fig. 4a, b, which indicates that the GPC performs bet-
ter than the RF in the task of predicting pipeline failure 
probability. Using the GPC as the classification algorithm, 
the effectiveness of the model for risk level assignment in 
terms of R2 and χ2 are listed in Fig. 4c. It can be found 
that the prediction accuracy of risk level improves as the 
number of historical accident records grows. With more 
than 1 year of failure records, R2 can reach more than 
0.94. The indicator χ2 are larger than 1.8 in each case, 
passing the chi-square test. Figure 4d also confirms that 
the predicted failure rate of the pipelines with different 
risk levels using the accident records in the past 5 years 
agree well with the true failure rate in the year 2021. As 
an outcome of this work, the evaluation results of the risk 
level for all the pipelines can be graphically represented 
and loaded as a function module in GIS as Fig.  4e for 
enterprise service and decision support.

4 � Pipeline monitoring techniques
According to the results of risk evaluation of UPNs as 
mentioned above, the pipelines with high-risk level can be 
determined. Then more attention should be putted on the 
aspect of daily inspection and monitoring in the area with 
high-risk level. Aiming at three major safety problems in 
urban pipelines such as structural failure, leak and third-
party intrusion, several pipeline-monitoring techniques 
have been developed and put into applications.

4.1 � Pipeline structural health monitoring based on NB‑IoT
4.1.1 � System design
Compared with other urban infrastructures, UPNs are 
generally distributed in a large area with the topology 
structures of the networks, which calls for the monitor-
ing techniques capable of wide spatial coverage, massive 
device access, and low cost and power consumption. As 
one of the leading low power wide area (LPWA) tech-
nologies, narrowband (NB)-IoT [6] provides an excellent 
solution to deal with the massive number of devices con-
stantly evolving with underlying requirements such as 
coverage, reliability, latency and cost effectiveness, which 
in nature perfectly fits the requirement of pipeline moni-
toring. Moreover, the variation of structural behavior or 
the degradation of structural performance of pipelines is 
generally a slow process, which allows for the data acqui-
sition with relatively large interval of time. In view of this, 
NB-IoT provides the standby sleep mode for saving bat-
tery power and thereby enables low power low cost in 
the applications of pipeline structural health monitoring 
(PSHM).

In view of the above considerations, an integrated 
PSHM system based on NB-IoT has been developed, as 
shown in Fig. 5, which is in accordance with the basic 
architecture of a typical SHM system consisting of 
sensors, data acquisition, data transmission and data 
application in structural analysis, safety evaluation and 
early warning. From the view of practical engineering 

Fig. 4  Risk evaluation results of the case study
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application, the unique aspect of the system lies in 
the development and utilization of the NB-IoT based 
wireless sensors characterized by a compact struc-
ture, a generic interface to most loads and responses 
measurements of pipeline structures, and low power 
consumption, which contributes to high cost and labor 
efficiency in sensor installation, maintenance and 
replacement.

4.1.2 � Sensors and applications
The NB-IoT based wireless sensors developed in our 
team as well as the typical application scenarios in 
UPN are briefly presented in Table  1. Three devices 
have been designed and manufactured to implement 
the on-line monitoring on the cathodic protection (CP) 
system, inclinations, and multi-parameters including 
strain, pressure and temperature. Despite the limited 

Fig. 5  PSHM system based on NB-IoT

Table 1  Wireless sensors and application scenarios
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number of devices, they cover the measurements of 
main loads and responses of pipeline structures under 
most normal operational conditions, capable of trac-
ing the structural behavior of pipelines subjected to 
corrosion, ground deformation, temperature variation 
and so on. Table 1 demonstrates some practical appli-
cations in CP wells/stations, tanks, crossover pipe-
lines and buried pipelines. It is worth pointing out that 
this work presents a successful case by promoting the 
practical applications of advanced IoT technologies in 
UPN-concerned industries.

4.2 � Leak detection in pressurized pipelines
Leak detection is a critical task in the process of main-
tenance and management of urban pipelines. As one of 
the most popular techniques, acoustic-based methods [7] 
have attracted wide interests for their capability of cap-
turing the acoustic signals propagated in the filled fluid, 
the pipe wall and the surrounding soil or air. Figure 6 pre-
sents the schematic diagram of acoustic-based methods 
for leak detection and localization. In general, the acous-
tic signals in the fluid are acquired by pressure sensors or 
hydrophones, while the acoustic signals in the pipe or soil 
are collected by accelerometers. Aiming to the main chal-
lenges of such techniques in the practical implementa-
tion of efficient leak detection, accurate localization, and 
long-term monitoring of real networks, our recent efforts 
are devoted to mechanism investigations on generation 
and propagation of leak-induced acoustic waves as well 
as the improvement of device and algorithm for practical 
applications in real pipelines in service.

When a pressurized pipeline leaks, it disturbs the 
normal flow of the fluid inside the pipe and creates tur-
bulent jets near the leak orifice, resulting in leak noise. 
The recent progress in fluid acoustic methods for leak 
detection and localization is summarized as follows.

4.2.1 � Theoretical models of the leak noise in gas pipelines

(1) Model‑based health indicator  During the leakage 
of a gas pipeline, there is continuous mass exchange 
between the pipeline and the surrounding environ-
ment, resulting in the formation of a monopole source 
with a certain intensity. The intensity of this acoustic 
source is correlated with the leakage velocity and the 
area of the leakage orifice, leading to the generation of 
corresponding leakage noise. Research suggests that 
the generation mechanism of leakage noise is mainly 
attributed to the pulsating mass flux at the leak orifice, 
which forms a monopole acoustic source. Based on this 
concept, a theoretical model for leak noise spectrum 
[8] is established as:

where Spp is the leak noise spectrum, ρ0 is the density of 
the gas,  c  is the sound speed in gas, u2 is mean square 
velocity, a is the radius of leak orifice size, R is the radius 
of the pipe,  Λ  is the integral length-scale,  U  is the exit 
speed of gas, and ω is the angular frequency.

This theoretical model distinctly differs from the statis-
tical power spectrum model obtained through general 
leakage noise observations. According to Eq.  (1), the 
power spectral density of leakage noise exhibits a power-
law distribution approaching ω−2 in the slightly higher 
frequency range. On the log-log scale, the power spec-
tral density of leakage noise has a linear relation with 
frequency. The operational conditions of gas pipelines 
can be hence characterized by the gradient of the power 
spectral density of a signal with frequency on a log-log 
scale, referred to as the characteristic power-law β [9].

(1)Spp(ω) =
8ρ2

0
c2
0
u2

π4

( a

R

)4�
U

1

1+ (ω�/U)2

Fig. 6  Schematic of acoustic-based leak detection and localization
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Different from most previous studies which require a 
baseline case to determine a threshold discriminating the 
leak and leak-free states, β can be directly applied for leak 
detection in gas pipelines. Besides, as a physical-model 
based health indicator, β has better robustness under 
varying working conditions than the traditional features 
extracted from the acoustic signals in time or frequency 
domain.

(2) Model‑based correlation function  For leak localiza-
tion, the current mainstream methods are still based on 
cross-correlation analysis, which estimate the time delay 
between two signals either side of a suspected leak and 
the sound speed in fluid. Combining the wave propa-
gation characteristics in gas pipelines with the leakage 
noise spectrum and considering the influence of physical 
parameters such as turbulence parameters, pipe param-
eters, and flow parameters, a theoretical model of corre-
lation function for leakage noise [10] is proposed as:

where T0 is the time delay, τ is the time lag, x1 or x2 is 
the distance between the sensor and the leak source (see 
Fig. 1).

(2)

Rx1x2 (τ ) =
16ρ2

0
c
2
0
u2

π4

(
a

R

)4 �
U
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0

e
−α

√
ω(x1+x2)e

iωτ
e
iωT0

1+ (ω�/U)2
dω

The physical model is capable of describing the main fea-
tures of the correlation function in gas pipelines. Moreo-
ver, this model gives an estimation on the detection lim-
its of the fluid acoustic methods, which is crucial to the 
deployment of sensors in real gas pipelines. The findings 
of this study provide theoretical insight and experimental 
evidence in optimizing the cross-correlation methods for 
leak localization.

4.2.2 � Methodology
Figure  7 presents a general framework of the acoustic-
based methods for leak detection and localization. Com-
pared with the conventional signal processing methods, 
data-driven approaches are strong self-adaptive for the 
training process, which helps to make better decisions 
in the task of leak detection. In this work, the traditional 
machine learning (TML) algorithms including artificial 
neural network (ANN), support vector machine (SVM) 
and random forest (RF) are employed to develop a binary 
classifier for leak detection. Particularly, the proposed 
health indicator β can be included as an important fea-
ture to identify the leak in gas pipelines.

The common used cross-correlation method is 
adopted for leak localization by estimating the time 
difference of arrivals (TDOAs) between two signals 
collected by the sensors placed on either side of a sus-
pected leak and the acoustic wave velocity in fluid. By 
calculating the coherence function between signals, the 

Fig. 7  Framework of the fluid acoustic method
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frequency ranges with coherence values greater than a 
threshold can be first selected to filter the leak signals, 
which are then adopted for TDOAs estimation. Particu-
larly for gas pipelines, the physical model of correlation 
function shown in Eq. (2) can be used to determine the 
maximum monitoring distance of the acoustic sen-
sors, providing guidance for sensor installation in gas 
pipelines.

4.2.3 � Test and application

(1) Gas pipeline at test site  A field test has been con-
ducted on an 80  m long outdoor gas pipeline [9]. As 
shown in Fig.  8, a 1  m replacement pipe with the same 
diameter and material as the main pipeline is installed by 
directly introducing punctures to simulate an actual leak. 
By replacing this replacement pipe, it is easy to modify 
the leak characteristics. The experiment discussed the 
impact of pipeline pressure, leakage shape, and leakage 
size on the results.

The acoustic leak signals as well as environmental noise 
are collected. For leak detection, totally 13 features are 
extracted, including the health indicator β and the tra-
ditional signal characteristics in time or frequency 
domains. Based on the Kullback-Leibler (KL) divergence, 
the features can be sorted by order of importance. The 
normalized KL divergence values of all the features are 
sorted and plotted in Fig. 9. It can be observed that the 

feature β is of greatest importance, which validates that 
this feature is a better indicator for leak detection than 
the other traditional features. Finally, the top four fea-
tures including β, maximum value, median frequency, 
and RMS are selected and used as inputs to train the leak 
detection model.

The results of leak detection using the three TML mod-
els are presented and compared in Table 2. Four indica-
tors including accuracy, precision, recall and F1 score as 
defined in Fig. 7 are employed to evaluate the model per-
formance on the near-field and far-field datasets. It can 
be observed that compared to the near-field signals, the 
recognition results of the three models on the far-field 
signals are slightly lower, but they still demonstrate satis-
factory prediction accuracy.

Figure 10 presents the results of leak localization in the 
different cases. It is indicated that except for the mini-
mum leak size and minimum pipeline pressure condi-
tions, accurate localization results can be obtained for all 
the other leak sizes regardless leakage shape at different 
pipeline pressures. The absolute error is within a range of 
1 m, and the maximum relative error is 0.83%.

(2) Water supply pipeline in service  A leak monitoring 
system has been installed on a real water supply pipe-
line in-service [11]. As shown in Fig. 11, the total length 
of the pipeline is about 1822 m, along which there is 19 

Fig. 8  Field test on an outdoor gas pipeline. a. Schematic diagram of the experimental pipeline system. b. Leak cases
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observation points. The sensor devices are installed at 
both ends of the pipeline and the leakage is simulated by 
opening valves of the hydrants in between. The innovation 
of this work lies in: (a) the development and utilization of 
a wireless synchronous high-speed data acquisition sys-
tem for long-distance leak localization; (b) performance 
comparison of pressure sensors and hydrophones in prac-
tical application of pipeline leak monitoring; (c) in-situ 
tests on a water pipeline under real operational condition.

The absolute and relative errors of leak localization are 
given in Fig. 12. It can be found that the leak monitor-
ing system can locate the leak with satisfactory accu-
racy in most cases. For pressure sensors, the absolute 
error is less than 40 m and the maximum relative error 
is 2.6%; for hydrophones, the absolute error is less than 
30  m and the maximum relative error is 2.3%. Mean-
while, considering the cases in which the results are 
absent as the distances between the leak source and 
one sensor (x1 or x2 in Fig. 2) are too far to acquire the 
meaningful acoustic signals, it can be observed that 
the effective monitoring distance of pressure sensors is 
approximately 1060 m, whereas the distance of hydro-
phones is approximately 1360  m under the exactly 
same test condition, which confirms that hydrophones 
have better performance in longer monitoring distance 
besides less errors of leak localization than pressure 
sensors.

Fig. 9  Normalized KL divergence values of the 13 features

Table 2  Performance of the TML models for leak detection on 
the near-field/ far-field datasets

TML 
Models

Accuracy 
(%)

Precision 
(%)

Recall (%) F1 Score (%)

ANN 99.13/95.53 99.70/98.97 99.02/94.22 99.36/96.54

SVM 99.00/95.13 99.70/98.87 98.83/93.93 99.26/96.34

RF 99.33/97.80 99.71/99.40 99.32/97.36 99.51/98.37

Fig. 10  Leak localization results. (Note: The absence of error results in the leakage cases means that it cannot be localized)
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4.3 � Perimeter monitoring of third‑party intrusion
Third-party threats, such as construction activities and 
man-made sabotage, have become the main cause of pipe-
line accidents. For the convenience of installation and 
maintenance, most urban pipelines are directly buried 
under roads or greenbelts. The pattern of the third-party 
activities is usually clear and characterized as excavation 

of roads and soils by excavator or by hand. Aiming at 
perimeter monitoring and early warning of urban pipe-
lines subject to third-party intrusion, two kinds of tech-
niques have been developed and applied in engineering 
practice: fiber optic sensor (FOS) based surveillance for 
long-distance buried pipelines and video/audio surveil-
lance for pipelines enclosed at construction site.

Fig. 11  In-situ test on a water supply pipeline in service. a. Experimental setup of the pipeline system. b. Leak cases

Fig. 12  Leak localization results. (Note: The absence of error results in the leakage cases means that it cannot be localized)
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4.3.1 � Fiber optic sensor (FOS) based surveillance 
for long‑distance pipeline

Distributed fiber optic sensors have great ascendancy in 
pipeline monitoring since they can acquire the long-distance 
measurements using a single optical fiber. in long-distance 
perimeter monitoring. As a popular Distributed acous-
tic sensor (DAS), the phase-sensitive optical time-domain 
reflectometry (φ-OTDR) [12] is capable of detecting very 
small perturbation and suitable for the development of a 
perimeter monitoring system. The associated recent efforts 
are summarized in the following sections.

(1) Technical framework  Using the distributed vibra-
tion measurements acquired by φ-OTDR, an integrated 
framework is proposed for perimeter monitoring and 
early warning of third-party activities alongside a buried 
urban pipeline. As shown in Fig.  13, it is mainly com-
posed of a two-stage recognition process and a warning 
strategy. After data preprocessing, the coarse recognition 
can determine whether the input time-space sample is 

a third-party or not. If the recognition result is positive, 
then the fine recognition can further identify the location 
and specific type of the third-party activities. To enhance 
the recognition rate and reduce the false alarm rate, a 
time-space matrix is finally introduced to put forward an 
early-warning strategy.

Three data-driven recognition models have been devel-
oped for the two-stage recognition process, including the 
traditional machine learning models (TML models) [13], 
the convolutional neural network models (CNN models) 
[14] and the objective detection models (OD models) (Li 
S, Liu Z, Kuang Z: Perimeter monitoring of urban bur-
ied pipeline threated by construction activities based on 
distributed fiber optic sensing and Faster R-CNN, forth-
coming). From a comparison perspective, the OD models 
in general has much larger receptive field for time-space 
samples and hence may achieve highest recognition rate 
and computational efficiency among the three models; the 
CNN models have higher recognition accuracy since they 

Fig. 13  Framework of FOS-based surveillance for long-distance pipeline
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can extract features automatically, whereas the TML mod-
els can run faster due to their lightweight frameworks.

(2) Test and application  Field tests have been con-
ducted on a long-distance urban gas pipeline in service. 
As shown in Fig. 14, a 5.25 km-long single-mode optical 
fibre cable is laid along the pipeline with the buried depth 
of 1 m. The cable covers the most common scenarios in 
cities. The sampling rate of the data acquisition system is 
250 MHz, and the spatial resolution is set as 10 m. Four 
common third-party activities including pickaxe, shovel, 
hammer and electric hammer are carried out on the 
ground near the pipeline at seven locations.

Totally 27.5GB data has been collected involving the 
measurements in the case of various third-party activi-
ties as well as the environmental noise. Using the exactly 
same datasets and computing hardware, the recognition 
results based on the proposed framework by employing 
the random forest (RF) model, the CNN model and the 
fast-RCNN (Region-based CNN) model are presented 
in Table  3. Three indicators including the recognition 
rate R, the false alarm count F and the recognition time 
A as defined in Fig.  13 are employed to evaluate and 
compare the model performance. It indicates that the 
fast-RCNN model has superior overall performance in 
good recognition accuracy, low false alarm rate and high 
computation efficiency. Compared with the RF model, 
the CNN model displays the features as higher recogni-
tion accuracy and lower false alarm rate but much more 
time-consuming.

4.3.2 � Video/audio surveillance for pipelines enclosed 
at construction site [14]

In addition to main pipelines across a long distance, 
another type of pipelines in urgent need of a surveil-
lance system for third-party intrusion are those enclosed 
at a construction site where a routine inspector is usu-
ally not allowed to enter. In this situation, it is easy to set 
up an apparatus equipped with camera and microphone 
around the pipelines to collect the video/audio signals, 
based on which recognition models and early warning 
strategies can be developed for surveillance on third-
party intrusion.

(1) Technical framework  The framework of the video/
audio surveillance system for pipelines enclosed at con-
struction site is given in Fig.  15. The monitoring device 
in  situ is mainly composed of a camera, a microphone, 
and a module incorporating the functions of data acquisi-
tion, analysis and transmission. When the alarm is trig-
gered, the data containing the alarm information as well 
as the video/audio signals with a certain length before 
and after the alarm moment is sent to data management 

Fig. 14  Field tests on a buried urban gas pipeline

Table 3  Recognition results of different models

Models R(%) F A(s)

RF 82.27 10.76 10.17

CNN 97.12 0.0286 122.08

Fast-RCNN 98.85 0.0032 0.5
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center, where a more sophisticated recognition are con-
ducted in combination with manual re-check and a final 
alarm message is issued to the divisions and inspectors 
responsible for routine patrol.

Two recognition models by using the video and audio sig-
nals respectively are developed to detect the occurrence 
and types of the third-party activities. The recognition 
results obtained by the two independent technical routes 

can be comparatively verified and their combination can 
provide a more reliable alarm information. Furthermore, 
the two-stage strategy consisting the coarse recognition 
in situ and the fine recognition in data center facilitates 
the design of monitoring device, the efficient data trans-
mission and the reliable alarm function.

(2) Case study  A case study shown in Fig. 16 has been 
conducted by installing a monitoring device on the 

Fig. 15  Framework of video/audio surveillance for pipelines enclosed at construction site

Fig. 16  A Case study of video/audio surveillance system
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corner of a construction site for surveillance of the third-
party treats on the nearby pipelines. To demonstrate the 
effectiveness of the system, a 1-min record monitored 
on site is artificially edited composed of four equivalent 
segments with each quarter for the case with different 
combination of the presence of construction noise and 
construction equipment. The probability of the detec-
tion on the third-party threat using audio and video sig-
nals is displayed. It can be found from the alarm message 
that the cross validation of audio and video recognition 
improve the accuracy of alarm.

5 � Conclusions
This paper presents a review on our recent efforts in 
development and application pertaining to intelligent 
operation and maintenance of UPNs, incorporating with 
the emerging AI-based and IoT-based technologies. The 
major achievements are summarized as follows.

(1)	 An overall framework is proposed on basis of multi-
source data and physical models, which consists of 
two essential parts including the risk evaluation and 
disease diagnosis methods for the entire network 
as well as the health monitoring techniques for the 
important pipelines.

(2)	 To deal with the problem of data inadequacy in 
quantity and quality commonly encountered in 
practice, a data-driven model for risk evaluation of 
UPNs has been developed based on PU learning 
and supervised machine learning. The effective-
ness of the model has been demonstrated by a case 
study on a real-world water supply UPN with over 
467 km long pipelines within the area of about 11 
km2.

(3)	 Aiming at three major safety problems in urban 
pipelines, a number of pipeline monitoring tech-
niques have been developed including the NB-IoT 
based PSHM, acoustic-based leak detection in pres-
surized pipelines, and perimeter monitoring of 
third party intrusion. The focuses are particularly 
placed on the theoretical investigation on the meth-
ods and principles of pipeline monitoring, the prac-
tical implementation of advanced sensing, AI-based 
recognition models, and efficient warning strate-
gies, as well as the capability of long-term monitor-
ing for real pipeline networks. The corresponding 
tests or applications are provided to demonstrate 
the feasibility of various monitoring techniques and 
systems.
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