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Abstract
Shading, the predominant condition in most of the eucalyptus cultivation cycle, causes changes in the morphological 
and physiological weed’s characteristics, which can alter their responses to glyphosate and carfentrazone-ethyl, impor-
tant herbicides for the crop. The objective was to evaluate the influence of light on the efficiency of glyphosate and 
carfentrazone-ethyl used alone and in a mixture in Digitaria insularis control, a priority pest in the crop. The experiment 
was carried out in a 3 × 6 factorial scheme. The first factor corresponded to 3 cultivation environments (full sunlight, 45 
and 63% shading) and the second factor to doses of glyphosate and carfentrazone-ethyl applied isolated (1920 and 
40 g ai ha−1) and mixed (1536 + 8; 1152 + 16; 768 + 24 and 384 + 32 g ai ha−1), respectively. Shading increased D. insu-
laris sensitivity to glyphosate alone and in a mixture with carfentrazone-ethyl. In shading, the glyphosate application 
alone at a dose of 1920 g ha−1 and in a mixture with carfentrazone-ethyl at doses of 1536 + 8 and 1152 + 16 g ha−1 were 
efficient in D. insularis control. In the environment of 63% shading, the dose of 768 + 24 g ha−1 was also efficient in this 
species control. None of the doses were effective in controlling D. insularis in full sunlight. Isolated carfentrazone-ethyl 
was inefficient in controlling D. insularis, regardless of the growth environment. Shading increases the quantum yield of 
photosystem II and reduces the electron transport rate, photosynthetic rate, stomatal conductance, and transpiration 
rate of D. insularis. In shady environments, it is possible to control D. insularis with lower glyphosate doses, used alone 
and mixed with carfentrazone-ethyl.
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1  Introduction

Eucalyptus sp. is considered the most planted forest species worldwide [1, 2]. In this scenario, Brazil stands out as one of 
the largest producers [3], obtaining high wood productivity per hectare/year in a shorter rotation period and growing 
crop expansion in the country [4, 5].

In areas of crop expansion or even the oldest stands, weed management is one of the most important practices in 
eucalyptus cultivation. Without control, weed interference can lead to losses of up to 40% in forest productivity [6, 7]. 
Of the five pests of economic importance and the greatest phytosanitary risk for eucalyptus, which are prioritized in the 
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analysis of product registration processes and control technologies in Brazil, all are weeds [8]. Among them is Digitaria 
insularis [8], a perennial grass that is difficult to control, with biotypes resistant to glyphosate [9–11] and cross-resistance 
to acetyl-CoA carboxylase (ACCase) inhibiting herbicides [12]. Due to suitable climatic conditions and the constant use of 
the same mechanism of action, there is a risk of selecting glyphosate-resistant D. insularis biotypes in eucalyptus cultiva-
tion areas [13]. Digitaria insularis is also considered a weed in corn [14], soybean [15], cowpea [16], coffee [17], pastures 
[18], and in urban areas [10], which reinforces the species importance.

Glyphosate and carfentrazone-ethyl, herbicides that inhibit 5‐enolpyruvylshikimate 3‐phosphate synthase (EPSPS) 
and protoporphyrinogen oxidase (protox), respectively, are among the herbicides registered for eucalyptus in Brazil [19] 
and accepted by certifiers for use in the crop [20]. Both products have been used in eucalyptus plantations to control 
weeds between planting rows, even mixed in the tank as an alternative to increasing the control spectrum. In shaded 
environments, a condition commonly found under the canopies of eucalyptus planted forests [21], some weeds are more 
sensitive to glyphosate action, such as Euphorbia heterophylla [22] and Merremia cissoides [23] and protox-inhibiting her-
bicides, such as Commelina benghalensis [24], and can be controlled with lower doses of these products. The herbicides 
application in lower doses with high control efficiency, as may occur in shading conditions, helps to reduce the nega-
tive impacts of these pesticides on the environment, which is currently so questioned by society [25–31], in addition to 
reducing production costs.

Maintaining the viability of glyphosate and carfentrazone-ethyl is essential for successful weed management in euca-
lyptus crops. Mixing herbicides with different mechanisms of action increases the weed control spectrum, reduces selec-
tion pressure, delays the resistance emergence [32–34], and can also be used to control already resistant biotypes [35–38].

The mixture of glyphosate with protox-inhibiting herbicides has an additive and synergistic effect on the control of 
several species of broadleaf and grass weeds [39–41]. However, shading can interfere with the herbicide mixture’s effi-
ciency since the morphological and physiological plants characteristics [42–46] and herbicides efficiency when applied 
alone are altered under low light intensity [22–24].

The mixture of glyphosate and carfentrazone-ethyl can be a promising strategy to delay the emergence of resist-
ant biotypes. However, the weed growth environment promoted by eucalyptus plantations must be considered when 
evaluating these herbicides’ efficiency, which has been neglected. The objective of this study was to evaluate the effect 
of shading on the efficiency of glyphosate and carfentrazone-ethyl applied alone and in a mixture in the D. insularis 
control, a priority weed in the eucalyptus crop in Brazil.

2 � Materials and methods

2.1 � Site and plant material description

The experiment was carried out at the Instituto de Ciências Agrárias of the Universidade Federal de Minas Gerais, Brazil 
(16°40′58.1"S, 43°50′19.3"W). Köppen classifies the region’s climate as Aw—tropical with a dry season in winter [47].

Digitaria insularis seedlings were produced from tillers collected from plants in areas with frequent glyphosate appli-
cations. The seedlings were transplanted into 10 dm3 pots containing a substrate of sandy soil and bovine manure in 
a 3:1 ratio (volume:volume). In each pot, two D. insularis plants were grown and taken to the cultivation environments 
after transplanting. The soil used had the following characteristics: pH (water) = 5.3; organic matter = 1.66%; sand = 72%; 
silt = 16%; and clay = 12%. The substrate was fertilized with NPK 4-30-10 fertilizer, as recommended for pots fertilization 
[48], and irrigated once a day to maintain humidity between 80 and 100% of field capacity.

2.2 � Experimental design and treatments

The design adopted was randomized blocks with four replications. The treatments were established in a 3 × 6 factorial 
scheme, where the first factor consisted of plants in full sunlight and two shading levels (45 and 63%), and the second 
factor, by doses of glyphosate and carfentrazone-ethyl, applied isolated and in a mixture (Table 1).

Shading was obtained with a black polypropylene shade screen, installed on structures built with wooden posts and 
wire 2 m high, closing the sides. The shading levels adopted in the study are similar to those previously reported for 
eucalyptus planted forests [49, 50]. The incidence of photosynthetically active radiation (PAR) in the growth environments 
was determined in 20 days during the experiment execution, at 8:00, 12:00, and 16:00 h, with the fluorometer device Y 
(II) meter (OPTI- SCIENCES, Hudson, USA) (Fig. 1).
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The plants remained in the cultivation environments for 52 days. A standardization cut was performed during this 
period at 37 cultivation days, at 5 cm height. At 15 days after plant cutting, the herbicides were applied. The application 
was carried out with a backpack sprayer pressurized with CO2 with a TTI 11002 nozzle model (Teejet, Wheaton, Illinois, 
USA) and a pressure regulating valve (Comam, Belo Horizonte, Brazil) constant at 300 kPa, calibrated to apply 116 L ha−1 
of spray volume.

2.3 � Assessments

At 3 and 6 days after application (DAA), photosynthetic rate (PN, μmol CO2 m−2 s−1), stomatal conductance (gs, mol H2O 
m−2 s−1), and transpiration rate (E, µmol H2O m−2 s−1) of the plants were analyzed using an infrared gas analyzer (IRGA, 
model LCpro-SD Portable, Hoddesdon, England) and the quantum yield of photosystem II (ΦPSII) and electron transport 
rate (ETR) with the fluorometer device Y (II) meter (OPTI-SCIENCES, Hudson, USA).

Visual control assessments were carried out at 28 and 60 DAA, adopting a scale from 0 to 100%, where 0 is the absence 
of herbicide injuries, and 100 is the plant death. Extra plants without herbicide application were maintained in each 
growth environment as a comparison parameter for treatment control scores. Three evaluators assigned control scores. 
The values per plot were determined by the arithmetic mean of the three scores. At 60 DAA, the plant biomass remain-
ing in the pots was collected and weighed to determine the fresh biomass. For D. insularis, fresh biomass has the same 
behavior as dry biomass [51] and therefore was used as a parameter.

2.4 � Statistical analysis

Data were submitted to analysis of variance (ANOVA), and when significant, means were grouped using the Scott-Knott 
test (p ≤ 0.05). ANOVA and the Scott-Knott mean clustering test were performed using the R Studio statistical program 
[52] and the ExpDes.pt package [53].

Table 1   Glyphosate and 
carfentrazone-ethyl applied 
alone and in a mixture to 
control Digitaria insularis 

ai = active ingredient

Herbicides common name Herbicides commercial name Doses (g ai ha−1)

Glyphosate Roundup Original DI® 1920
Carfentrazone-ethyl Aurora® 40
Glyphosate + carfentrazone-ethyl Roundup Original DI® + Aurora® 1536 + 8
Glyphosate + carfentrazone-ethyl Roundup Original DI® + Aurora® 1152 + 16
Glyphosate + carfentrazone-ethyl Roundup Original DI® + Aurora® 768 + 24
Glyphosate + carfentrazone-ethyl Roundup Original DI® + Aurora® 384 + 32

Fig. 1   Availability of photo-
synthetically active radiation 
(PAR) in growing environ-
ments at different times. 
Bars = mean standard error
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3 � Results

3.1 � Photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E)

At 3 DAA, there was no difference between the growth environments in the plant’s PN (Table 2). However, at 6 DAA, 
plants in shading showed lower PN. At 3 and 6 DAA, shading reduced the gs and E of D. insularis (Table 2).

At 3 DAA, the herbicide doses that most reduced PN, gs, and E were glyphosate applied alone at a dose of 
1920 g ha−1 and mixed with carfentrazone-ethyl at doses 1536 + 8, 1152 + 16 and 768 + 24 g ha−1 (Table 3). At 6 DAA, 
the doses that most reduced these variables were glyphosate applied alone at a dose of 1920 g ha−1 and mixed 
with carfentrazone-ethyl at doses 1536 + 8 and 1152 + 16 g ha−1 (Table 3). Carfentrazone-ethyl applied alone was 
the treatment with the least impact on PN, gs, and E of D. insularis (Table 3).

3.2 � Quantum yield of photosystem II (ΦPSII) and electron transport rate (ETR)

Shading increased ΦPSII and reduced the ETR of D. insularis at 3 and 6 DAA (Table 4). Between shading levels, there 
was no difference in ETR, however, the 63% shading environment showed higher ΦPSII.

The glyphosate application alone at a dose of 1920 g ha−1 and mixed with carfentrazone-ethyl at doses 1536 + 8 
and 1152 + 16 g ha−1 caused the most significant reductions in ΦPSII and ETR of D. insularis at 3 and 6 DAA (Table 5). 
Carfentrazone-ethyl applied alone and in a mixture with glyphosate at doses of 768 + 24 and 384 + 32 g ha−1 caused 
the smallest impacts on these variables.

Table 2   Photosynthetic rate 
(PN), stomatal conductance 
(gs), and transpiration rate 
(E) of Digitaria insularis in 
different environments at 3 
and 6 days after application 
(DAA) of glyphosate and 
carfentrazone-ethyl alone or 
in a mixture

Means followed by the same letter in the column do not differ by the Scott-Knott mean clustering test 
(p ≤ 0.05)

CV = coefficient of variation

Growth environments Variables

3 DAA 6 DAA

PN gs E PN gs E

Full sunlight 9.18 a 0.0945 a 2.85 a 9.01 a 0.1333 a 2.89 a
45% shading 7.99 a 0.0629 b 2.28 b 6.74 b 0.0616 b 1.88 b
63% shading 7.18 a 0.0516 b 1.87 b 4.91 b 0.0433 b 1.24 c
CV (%) 42.63 40.23 30.77 46.53 51.16 35.44

Table 3   Photosynthetic rate 
(PN), stomatal conductance 
(gs), and transpiration rate 
(E) of Digitaria insularis at 3 
and 6 days after application 
(DAA) of glyphosate (Gly) 
and carfentrazone-ethyl (Car) 
alone or in a mixture

Means followed by the same letter in the column do not differ by the Scott-Knott mean clustering test 
(p ≤ 0.05)

ai = active ingredient; CV = coefficient of variation

Herbicides Doses
(g ai ha−1)

Variables

3 DAA 6 DAA

PN gs E PN gs E

Gly 1920 4.62 c 0.050 c 1.77 c 2.84 c 0.039 b 1.19 c
Car 40 17.33 a 0.139 a 4.04 a 17.21 a 0.160 a 3.52 a
Gly + Car 1536 + 8 4.67 c 0.045 c 1.66 c 3.43 c 0.054 b 1.55 c
Gly + Car 1152 + 16 4.46 c 0.038 c 1.52 c 4.26 c 0.064 b 1.77 b
Gly + Car 768 + 24 6.03 c 0.055 c 1.97 c 6.37 b 0.084 b 2.12 b
Gly + Car 384 + 32 11.59 b 0.089 b 3.04 b 7.24 b 0.074 b 1.87 b
CV (%) 42.63 40.23 30.77 46.53 51.16 35.44
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3.3 � Control and fresh biomass of D. insularis

Shading increased the D. insularis sensitivity to glyphosate applied alone and in a mixture with carfentrazone-ethyl 
(Tables 6 and 7). At 28 and 60 DAA, in environments with 45 and 63% shading, the isolated glyphosate application at 
a dose of 1920 g ha−1 and in a mixture with carfentrazone-ethyl at doses 1536 + 8 and 1152 + 16 g ha−1 were efficient 
in D. insularis management. In the environment of 63% shading, the application of 768 + 24 g ha−1 was also efficient in 
controlling this species (Table 6). These treatments means were not statistically different, with control levels above 80%. 
These doses totally reduced the plant’s fresh biomass at 60 DAA (Table 7). For this variable, there was also no statistical 
difference between treatments. Although at 28 DAA, the doses 768 + 24 and 384 + 32 g ha−1 were efficient in environ-
ments with 45 and 63% shading, respectively, at 60 DAA, the control means for these treatments were statistically lower. 
The plants recovered from the herbicide injuries and the control was less than 80%, considered unsatisfactory (Table 6). 
In full sunlight, none of the applied doses effectively controlled D. insularis (Tables 6 and 7). In this environment, the 
plants recovered from the herbicide injuries, with drastic control reductions at 60 DAA compared to 28 DAA (Table 6). 
At 60 DAA in full sunlight, D. insularis control levels were less than 18% at all applied doses. Carfentrazone-ethyl applied 
alone is inefficient in controlling D. insularis, regardless of the growth environment (Tables 6 and 7).

4 � Discussion

Shading increased D. insularis sensitivity to glyphosate applied alone and in a mixture with carfentrazone-ethyl. The 
increased D. insularis sensitivity to glyphosate applied alone and in a mixture with carfentrazone-ethyl in shading 
may be associated with lower ETR and PN of plants in these environments. These variables are related to carbon 

Table 4   Quantum yield of 
photosystem II (ΦPSII) and 
electron transport rate 
(ETR) of Digitaria insularis in 
different environments, at 3 
and 6 days after application 
(DAA) of glyphosate and 
carfentrazone-ethyl alone or 
in a mixture

Means followed by the same letter in the column do not differ by the Scott-Knott mean clustering test 
(p ≤ 0.05)

CV = coefficient of variation

Growth environments Variables

3 DAA 6 DAA

ΦPSII ETR ΦPSII ETR

Full sunlight 0.2093 c 134.46 a 0.1255 c 91.98 a
45% shading 0.2780 b 92.95 b 0.2031 b 58.94 b
63% shading 0.3566 a 78.82 b 0.3473 a 50.50 b
CV (%) 33.66 35.13 48.70 63.98

Table 5   Quantum yield of 
photosystem II (ΦPSII) and 
electron transport rate (ETR) 
of Digitaria insularis at 3 
and 6 days after application 
(DAA) of glyphosate (Gly) 
and carfentrazone-ethyl (Car) 
alone or in a mixture

Means followed by the same letter in the column do not differ by the Scott-Knott mean clustering test 
(p ≤ 0.05)

ai = active ingredient; CV = coefficient of variation

Herbicides Doses
(g ai ha−1)

Variables

3 DAA 6 DAA

ΦPSII ETR ΦPSII ETR

Gly 1920 0.1716 b 62.87 c 0.0672 c 25.43 c
Car 40 0.3975 a 152.10 a 0.4064 a 117.15 a
Gly + Car 1536 + 8 0.2201 b 69.55 c 0.1712 b 49.74 c
Gly + Car 1152 + 16 0.2504 b 95.58 c 0.2115 b 57.36 c
Gly + Car 768 + 24 0.3006 a 111.56 b 0.2360 b 78.81 b
Gly + Car 384 + 32 0.3475 a 120.80 b 0.2596 b 74.35 b
CV (%) 33.66 35.13 48.70 63.98



Vol:.(1234567890)

Research	 Discover Agriculture             (2024) 2:3  | https://doi.org/10.1007/s44279-024-00014-5

fixation and plant energy availability [54]. Plants with lower energy reserves are less likely to recover from the her-
bicides’ injuries and may become more sensitive to these products’ actions [55, 56]. The doses considered efficient 
in controlling D. insularis (1920 g ha−1 of glyphosate alone and mixed with carfentrazone-ethyl at doses 1536 + 8 
and 1152 + 16 g ha−1) presented, for the physiological variables analyzed, means that were statistically lower than 
those treatments that did not control D. insularis. The shikimate metabolic pathway, inhibited by glyphosate, has an 
indirect role in plastoquinone production and ribulose-1,5-bisphosphate regeneration in the Calvin-Benson cycle 
[57], important proteins in electron transport rate and carbon fixation. The influence of glyphosate in plastoquinone 
production and ribulose-1,5-bisphosphate regeneration may explain the reductions in ETR and PN of plants. Similar 
results were observed in Euphorbia heterophylla [22] and Salix miyabeana [58] after glyphosate application.

In addition to the energy deficit, changes in D. insularis growth caused by shading may be associated with greater herbicide 
sensitivity. Digitaria insularis has rhizomes, reserve organs that, when present, make it difficult to control [59]. Digitaria insularis 
begin to produce rhizomes 45 days after emergence [60]. In the present study, the herbicides were applied at 52 cultivation 
days, after the formation beginning of these structures in full sunlight. However, shading alters the dry matter partition of 
some grasses, investing more resources in shoot development as a function of root growth [61, 62], which, combined with 

Table 6   Visual control (%) of 
Digitaria insularis plants at 28 
and 60 days after application 
(DAA) of glyphosate (Gly) 
and carfentrazone-ethyl 
(Car) alone or in a mixture in 
environments with different 
light intensities

Means followed by the same letter, uppercase in the column and lowercase in the row, do not differ by the 
Scott-Knott mean clustering test (p ≤ 0.05)

ai = active ingredient; CV = coefficient of variation

Herbicides Doses
(g ai ha−1)

Growth environments

Full sunlight 45% shading 63% shading

28 days after application
 Gly 1920 75.41 Ab 100.00 Aa 100.00 Aa
 Car 40 7.50 Ca 5.00 Ca 3.33 Ba
 Gly + Car 1536 + 8 70.83 Ab 100.00 Aa 100.00 Aa
 Gly + Car 1152 + 16 54.58 Bb 87.91 Aa 100.00 Aa
 Gly + Car 768 + 24 45.83 Bb 91.25 Aa 96.25 Aa
 Gly + Car 384 + 32 15.83 Cc 38.54 Bb 87.91 Aa
 CV (%) = 14.2

60 days after application
 Gly 1920 17.91 Ab 100.00 Aa 100.00 Aa
 Car 40 5.00 Aa 5.00 Da 5.00 Ca
 Gly + Car 1536 + 8 13.75 Ab 100.00 Aa 100.00 Aa
 Gly + Car 1152 + 16 17.08 Ac 85.00 Bb 100.00 Aa
 Gly + Car 768 + 24 13.33 Ac 34.33 Cb 100.00 Aa
 Gly + Car 384 + 32 10.41 Ab 14.58 Db 57.91 Ba

CV (%) = 17.43

Table 7   Fresh biomass (g/pot) 
of Digitaria insularis plants 
at 60 days after application 
(DAA) of glyphosate (Gly) 
and carfentrazone-ethyl 
(Car) alone or in a mixture in 
environments with different 
light intensities

Means followed by the same letter, uppercase in the column and lowercase in the row, do not differ by the 
Scott-Knott mean clustering test (p ≤ 0.05)

ai  = active ingredient; CV = coefficient of variation

Herbicides Doses
(g ai ha−1)

Growth environments

Full sunlight 45% shading 63% shading

Gly 1920 150.20 Ba 0.00 Bb 0.00 Cb
Car 40 168.42 Bb 243.18 Aa 269.20 Aa
Gly + Car 1536 + 8 146.32 Ba 0.00 Bb 0.00 Cb
Gly + Car 1152 + 16 142.25 Ba 0.00 Bb 0.00 Cb
Gly + Car 768 + 24 222.46 Aa 211.89 Aa 0.00 Cb
Gly + Car 384 + 32 202.53 Aa 221.54 Aa 101.89 Bb
CV (%) = 35.51
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lower ETR and PN, may have delayed or compromised rhizome development and increased D. insularis sensitivity. Shading 
can also reduce wax deposition on the leaf surface [56]. The smaller wax amount in the shade can increase herbicide pen-
etration and efficiency [56].

Digitaria insularis is a C4 metabolism grass. C4 metabolism plants have a high light and temperature saturation point [63]. 
The reductions in ETR, PN, gs, and E in D. insularis grown in shading are due to the lower light incidence in these environments. 
These results align with those found in other grasses grown in the shade [64–67].

Increased sensitivity in shading to glyphosate applied alone was also observed in Euphorbia heterophylla [22] and Merremia 
cissoides [23], and the mixture of glyphosate and carfentrazone-ethyl in Macroptilium atropurpureum [68]. Unlike what was 
observed in the present study, where no increase in the efficiency of carfentrazone-ethyl isolated under shading was found, 
Santos Júnior [24] found an increase in saflufenacil efficiency, another protox-inhibiting herbicide, in controlling Commelina 
benghalensis.

Although D. insularis sensitivity to herbicides increased under shade, control after the doses application of 40 g ha−1 of 
carfentrazone-ethyl and 384 + 32 g ha−1 of glyphosate + carfentrazone-ethyl were inefficient in this environment. Caron [50] 
did not identify the need for weed control in eucalyptus planted forests when the shading level was greater than 60% due 
to low plant growth. However, the study does not report the radiation level corresponding to the shading levels studied, a 
factor that depends on the time and region where the study was conducted and that directly impacts weed growth and the 
decision to manage them. In addition, the weed community in the study was mainly composed of the species Sida rhombi-
folia, Stellaria media, Sonchus oleraceus, and Echium plantagineum, different species from the present study, and which have 
an unknown ability to adapt to shading. Therefore, the decision to manage or not to manage weeds depends more on the 
incident radiation level and the species’ ability to grow in the shade than just the shade level imposed by the forest canopy. 
Even after the application of isolated carfentrazone-ethyl, which promoted control levels equal in full sunlight and shade, 
D. insularis accumulated more fresh biomass in shade, which reinforces the need for attention to the species in forest areas.

The low control obtained by isolated carfentrazone-ethyl, regardless of the growth environment, is due to the 
advanced plant stage at the application time. Carfentrazone-ethyl is a contact herbicide that acts by inhibiting chlorophyll 
synthesis [69, 70] but has no action on already-formed chlorophylls. As it does not act on already-formed chlorophylls 
and does not translocate in the plant, it is only efficient in controlling plants in the early development stages [71]. The 
low control obtained by the mixture of glyphosate and carfentrazone-ethyl at the dose of 384 + 32 g ha−1, regardless of 
the growth environment, is associated with the low glyphosate dose used in the mixture. Carfentrazone-ethyl applied 
alone at a dose of 40 g ha−1 and mixed with glyphosate at a dose of 384 + 32 g ha−1 were the doses that had the least 
impact on D. insularis physiology.

Although isolated carfentrazone-ethyl has low control efficiency against D. insularis, it has good efficiency against 
other glyphosate-resistant weeds, such as Commelina ssp. [39]. Moreover, its use in a mixture with glyphosate can benefit 
D. insularis control in shading, as in the present study, and against other important weeds, like the glyphosate-tolerant 
species [39, 72]. Additionally, the constant glyphosate application, the most widely used herbicide in the world, led to 
the selection of resistant biotypes over time [73–75]. The use of two or more herbicides with different mechanisms of 
action has been an interesting agronomic practice because, in addition to improving the management efficiency of 
tolerant weeds [76–78], it decreases selection pressure for resistant weeds [32].

The application of glyphosate alone and in a mixture with carfentrazone-ethyl showed different behavior depending 
on the light intensity in the growth environments, indicating the need to consider this factor when defining weed control 
doses in eucalyptus areas. Considering the light availability in growing environments in the definition of herbicide doses 
for weed control creates a new possibility for efficient dose reduction and, consequently, gains in economy and sustain-
ability. Weeds in shading conditions are widely found in crops of other forest species, orchards, and integration systems, 
adding up to millions of hectares where this new management approach could be applied. Studies on the absorption 
and translocation of glyphosate and carfentrazone-ethyl, starch accumulation and wax deposition in the leaves of D. 
insularis cultivated in environments with different light intensities are necessary to elucidate the mechanisms involved 
in the species susceptibility or tolerance when grown in shade or full sunlight, respectively.

5 � Conclusions

The shading of 45 and 63% of the photosynthetically active radiation increases D. insularis sensitivity to glyphosate 
applied alone and mixed with carfentrazone-ethyl, requiring lower doses for its control in the understory of eucalyptus 
plantations. In full sunlight, D. insularis was not controlled. To manage this species in shade, glyphosate application alone 
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at a dose of 1920 g ha−1 and in a mixture with carfentrazone-ethyl at doses of 1536 + 8 and 1152 + 16 g ha−1 were effi-
cient. In the environment of 63% shading, the dose of 768 + 24 g ha−1 was also efficient. The light intensity in the growing 
environments must be considered when defining glyphosate doses, applied alone or mixed with carfentrazone-ethyl.
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