
Vol.:(0123456789)

Moore and More             (2024) 1:4  
https://doi.org/10.1007/s44275-024-00007-y

ORIGINAL ARTICLE

Band engineering in two‑dimensional porphyrin‑ 
and phthalocyanine‑based covalent organic frameworks: insight 
from molecular design

Xiaojuan Ni1   · Jean‑Luc Brédas1 

Received: 2 April 2024 / Revised: 17 May 2024 / Accepted: 22 May 2024 
© The Author(s) 2024

Abstract
Two-dimensional covalent organic frameworks (2D COFs) represent an emerging class of crystalline polymeric networks, 
characterized by their tunable architectures and porosity, synthetic adaptability, and interesting optical, magnetic, and elec-
trical properties. The incorporation of porphyrin (Por) or phthalocyanine (Pc) core units into 2D COFs provides an ideal 
platform for exploring the relationship between the COF geometric structure and its electronic properties in the case of 
tetragonal symmetry. In this work, on the basis of tight-binding models and density functional theory calculations, we 
describe the generic types of electronic band structures that can arise in tetragonal COFs. Three tetragonal lattice symmetries 
are examined: the basic square lattice, the Lieb lattice, and the checkerboard lattice. The potential topological characteristics 
of each lattice are explored. The Por-/Pc-based COFs exhibit characteristic band dispersions that are directly linked to their 
lattice symmetries and the nature of the frontier molecular orbitals of their building units. We show that the band dispersions 
in these COFs can be tailored by choosing specific symmetries of the molecular building units and/or by modulating the 
relative energies of the core and linker units. These strategies can be extended to a wide array of COFs, offering an effective 
approach to engineering their electronic properties.
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1  Introduction

While porphyrin and phthalocyanine have electronic struc-
tures that are markedly different [1–5], they appear as struc-
turally analogous macrocyclic compounds, each comprising 
four pyrrole-like subunits interconnected to form a 16-mem-
ber inner ring [6–8]. These macrocycles exhibit pronounced 
absorption bands in the visible and have remarkable thermal 
and chemical stability [9, 10]. Importantly, their photophysi-
cal and redox properties can be finely tuned by selecting 
appropriate metal centers or peripheral substituents [11–15]. 
They have emerged as important components in molecular 
materials exhibiting compelling electronic and/or magnetic 

properties [16–18]. Incorporating porphyrin or phthalocya-
nine moieties into polymer networks significantly enhances 
the versatility of the resulting materials [19–24]. Covalent 
organic frameworks (COFs) based on these macrocycles, 
hereafter referred to as Por-COFs or Pc-COFs, provide for 
a broad range of applications from catalysis, adsorption, 
and separation processes to therapeutic uses [25–28]. The 
properties leading to specific applications can be optimized 
via preparation strategies, structural designs, and monomer 
functionalizations [9–11, 15, 29–34].

In addition to the applications stemming from their 
ultrahigh porosity, Por- or Pc-COFs with a tetragonal lat-
tice symmetry are of significant interest in the framework 
of organic electronics and spintronics [35–42]. Two-dimen-
sional (2D) COFs with Por or Pc four-arm cores typically 
display a square lattice symmetry, such as a Lieb lattice or 
checkerboard lattice, as illustrated in Fig. 1. A Lieb lat-
tice has a unit cell that contains one corner site and two 
edge sites and can lead to various exotic electronic proper-
ties derived from its intriguing combination of Dirac and 
flat bands [43–45]. The first realization of a Lieb lattice 
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in COFs was reported in 2017 by Jiang and co-workers in 
the case of a pyrene-based COF [35]; chemical oxidation 
of this semiconducting material with iodine significantly 
enhanced its electrical conductivity, with the radicals 
appearing on the pyrene cores resulting in a high spin den-
sity and paramagnetism [35]. Subsequent computational 
studies have shown that these Lieb-like COFs can undergo 
magnetic phase transitions as the carrier doping concentra-
tion increases [46, 47]. In a recent theoretical work, Heine 
and co-workers [48] reported that several Zn-Pc COFs can 
have characteristic Lieb-lattice electronic bands, which can 
be shifted to the Fermi level via electron removal or atom 
substitution. The checkerboard lattice (which corresponds 
to the line graph of the square lattice) [49] has been stud-
ied as a lattice model for antiferromagnetism or flat-band 
superfluidity [50, 51], although its material design and 
synthesis have remained limited [36, 52]. The first demon-
stration of a checkerboard lattice was reported in 2018 by 
Crommie and co-workers in the case of a single layer of 
COF-420 [36]; COF-420 consists of porphyrin-based core 
units that are bridged by chemically asymmetric linkers. A 
topographic image obtained from scanning tunneling spec-
troscopy revealed its distinct checkerboard pattern [36].

In the case of hexagonal COFs, based on the determina-
tion of the frontier molecular-orbital (MO) symmetry of the 

building blocks (core and linker units) and the lattice symme-
try, we described recently how one can tailor the electronic 
bands (Dirac band vs. flat band) near the Fermi level by 
selecting appropriate molecular units [53]. Here, we expand 
this investigation to tetragonal COFs, with the aim of provid-
ing a comprehensive understanding of their electronic struc-
tures. First, the generic band structures related to the square 
lattice, Lieb lattice, and checkerboard lattice are examined 
using tight-binding (TB) models, since these models offer a 
theoretical framework for analyzing the electronic properties 
of the various lattices. Then, through an analysis of the fron-
tier MOs of the building units of several representative Por- 
or Pc-COFs and with the assistance of the TB models, we 
qualitatively predict the band structures of the corresponding 
COFs. In the following step, density functional theory (DFT) 
calculations are employed to validate these TB predictions 
and demonstrate the realization of the anticipated generic 
band structures in the 2D polymer networks.

2 � Computational approaches

The ground-state geometry optimizations and electronic-
structure calculations of the porphyrin, Zn-porphyrin 
(Zn-Por), phthalocyanine, and Zn-phthalocyanine (Zn-Pc) 

Fig. 1   Illustrations of typi-
cal lattice symmetries and 
representative cores and linkers 
for 2D tetragonal COFs. The 
four-arm cores and linkers 
are colored in green and blue, 
respectively. The grey square 
box in each lattice indicates the 
unit cell
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molecules were performed at the DFT level with the range-
separated ωB97XD functional [54, 55] and the 6-31G** 
basis set (Gaussian16 package) [56]. The range-separation 
parameters (ω) were optimized nonempirically by minimiz-
ing J(�) =

[
EHOMO(�) + IP(�)

]2
+ [ELUMO(�) + EA(�)]2 , 

where EHOMO[LUMO] is the energy of the highest occu-
pied molecular orbital (HOMO) [lowest unoccupied MO 
(LUMO)] and IP [EA] is the vertical ionization potential 
[electron affinity] [57]. The ω values were optimized to be 
0.180, 0.178, 0.127, and 0.125 bohr-1 for the Por, Zn-Por, 
Pc, and Zn-Pc, respectively. Considering the frontier MOs of 
the molecules, we employed tight-binding models to inves-
tigate their generic band structures in the various tetragonal 
lattices. Further details on the tight-binding models are pro-
vided in the Supplementary Information (SI).

Turning to the molecular building units (cores and link-
ers) of the Por-/Pc-COFs, their ground-state geometries and 
frontier MOs were also evaluated at the DFT level using the 
ωB97XD functional [54, 55] and the 6-31G** basis set [56]. 
The range-separation parameter (ω) for each building unit 
was set to the same value as that tuned for the correspond-
ing Por, Zn-Por, Pc, or Zn-Pc molecule. DFT band structure 
calculations on the 2D Por-/Pc-COFs were then performed 
at the level of the generalized gradient approximation (GGA) 
with the Perdew–Burke–Ernzerhof (PBE) functional as 
implemented in the Vienna Ab initio Simulations Pack-
age (VASP) [58–60]. A Monkhorst-Pack k-points grid of 
7 × 7 × 1 and a plane-wave cutoff of 500 eV were used. To 
ensure full decoupling between neighboring slabs, a vacuum 
layer over 15 Å was adopted. All atoms were allowed to 
relax until the atomic forces for structural relaxation were 
reduced to less than 0.01 eV/Å. The VASPKIT code [61] 
was used for post-processing of the VASP-calculated data 
and the VESTA program [62], to visualize the results.

3 � Results and discussion

3.1 � Frontier molecular orbitals of the porphyrin 
and phthalocyanine molecules

The frontier MOs of the porphyrin and phthalocyanine mol-
ecules (which exhibit D2h symmetry), are depicted in Fig. 2 
along with those of their zinc-coordinated counterparts (D4h 
symmetry). The figure also collects the MO energies and 
symmetries. It is worth noting that: (i) The Zn-coordinated 
molecules have a doubly degenerate lowest unoccupied MO 
(LUMO), which in the case of the lower-symmetry metal-
free molecules splits into the energetically close LUMO and 
LUMO + 1 levels. In all four instances, the next unoccupied 
MO is energetically well separated. Similarly, the highest 
occupied molecular orbital (HOMO) and the HOMO-1 lev-
els are well separated with an energy separation over 1.5 

eV. (ii) In Zn-Por and Zn-Pc, zinc does not contribute to the 
wavefunctions of the frontier levels that are entirely deter-
mined by the π-conjugated macrocycle.

Building on the insight gained from previous studies 
[37, 41, 42, 53, 63, 64], these frontier MOs provide the 
orbital basis to initially elucidate the generic band disper-
sions in tetragonal Por- or Pc-COFs. In the next section, 
we illustrate various models where we consider one, two, 
or three orbitals per site. The relevance of these models to 
actual COFs will then be discussed later. We recall that, as 
was the case in our earlier work [63], the TB models look 
at the valence bands (VBs) and conduction bands (CBs) 
separately and can be different for the two cases.

3.2 � Tight‑binding model – square lattice

We begin with the simplest scenario, involving a single-
orbital hopping (e.g., the single HOMO depicted in Fig. 2) 
within a square lattice, see Fig. 3a. Thus, here, there is only 
one site per unit cell, each site carrying one orbital. As a 
result, this lattice model yields a single band, as shown in 
Fig. 3b. The eigenvalue for the simple square lattice model 
is E

(
�⃗k
)
= 2t(cosk1 + cosk2) ; k1,2 = �⃗k ⋅ �����⃗a1,2  , and ���⃗a1 = �x  , 

���⃗a2 = �y . The bandwidth corresponds to 8|t|, i.e., eight times 
the electronic coupling strength between sites; this feature 
is commonly observed in polymer networks with tetragonal 
symmetry [37, 42, 65]. We note that the band is flat along 
the Y-X k-path ( ||k1 ± k2

|| = � ), as illustrated in Fig. S1, 
which fulfills the phase cancellation condition (indeed, since 
cosk2 = −cosk1 , this leads to E

(
�⃗k
)
= 0 ) [66].

For the next model, we consider the case where two 
frontier πx and πy molecular orbitals (MOs) need to 
be considered as the orbital basis (see Fig.  3c); these 
can be, for example, the degenerate LUMOs of Zn-Por 
or Zn-Pc. Here, two bands emerge with eigenvalues 
E1[2] = 2 ∗ (pp� ∗ cosk1[2] + pp� ∗ cosk2[1]) . Under the con-
dition ||k1|| = ||k2|| along Γ-M1[2], the two bands are degenerate 
along the Γ-M k-path, as depicted in Fig. 3d. In the case of a 
negligible pp� hopping integral, the bandwidth corresponds 
to 4| pp� |. We note that, when the core unit possesses only 
two-fold symmetry such as in Por or Pc and we need to con-
sider the energetically close LUMO and LUMO + 1, since 
the degeneracy of these π orbitals is lifted, there appears an 
energetic splitting of the two bands along the Γ-M k-path 
(see Fig. S2c).

By incorporating an additional σ orbital, we can extend 
the orbital basis to (σ, πx, πy), as illustrated in Fig. 3e. This 
can be viewed as a combination of the earlier two lattice 
models with a single orbital and degenerate π orbitals and 
would have to be used, for instance, if a doubly degenerate 
LUMO is energetically close to the LUMO + 1. Then, the 
relative on-site energies of the σ and π orbitals, together with 
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the differences in hopping integrals, can result in a variety of 
band dispersions, such as the one shown in Fig. 3f.

Given that the HOMO and LUMO levels of the Por and 
Pc systems exhibit opposite orbital parities (where orbital 
parity refers to the evolution of the wavefunction under spa-
tial inversion, with even parity keeping the wavefunction the 
same upon inversion and odd parity changing the sign of the 
wavefunction), they provide the essential foundation for the 
emergence of topological states due to band inversion (see 
Fig. S3) [39, 41]. The (σ, πx, πy)-orbital basis in COFs is 
analogous to the (s, px, py)-orbital basis in inorganic mate-
rials, such as the Au/GaAs(111) interfacial system (even 
though the latter corresponds to a trigonal lattice) [67]. In 
Au/GaAs(111), the s- and p-orbital components of the three 
bands near the Fermi level were described effectively via an 
sp2 hybridization involving Au-s and As-p orbitals. Given 
the substantial spin-orbit coupling (SOC) effect in both Au 
and GaAs, the degeneracy at the Dirac point in the band 
structure is lifted, resulting in the formation of a topological 

insulating gap. Details regarding topological features in a 
square lattice with a (σ, πx, πy)-orbital basis are provided 
in the SI.

3.3 � Tight‑binding model – Lieb lattice

The Lieb lattice is a variant of the square lattice that con-
sists of three sites within each square unit cell, as illustrated 
in Fig. 4a. Two of the sites (highlighted in blue) are con-
nected to two neighboring sites, while the third site (marked 
in green) has four neighbors. Hereafter, these sites will be 
referred to as edge (blue) and corner (green) sites, respec-
tively. When considering hopping only between nearest-
neighbor (NN) sites, this geometric arrangement gives rise 
to an electronic band structure characterized by two dis-
tinctive features: (i) two dispersive bands forming a Dirac 
cone at the M point in the first Brillouin zone and (ii) a flat 
band intersecting the Dirac point (Fig. 4b). The flat band 

Fig. 2   Frontier molecular orbitals of the Por, Zn-Por, Pc, and Zn-Pc 
molecules, as calculated at the ωB97XD level of theory with the 
6-31G** basis set. The MO energies and symmetries are also given. 

The black arrows indicate our convention for the x and y axes. (The 
wavefunctions of the HOMO-1 and LUMO + 2 levels are omitted as 
these levels are not considered in any of the subsequent calculations)
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comprises electronic states localized exclusively on edge 
sites, whereas all sites contribute to the dispersive bands.

A SOC term can be incorporated into the Hamiltonian 
by considering an imaginary hopping between the second 
nearest-neighbor (2NN) sites (see Fig. 4a), in the spirit of 
the SOC term found in the Kane-Mele model [68]. The SOC 
effects can generally lift the degeneracy at the Dirac point, 
as illustrated in Fig. 4c and result in the opening of what 
are topologically non-trivial bandgaps above and below the 
flat band.

We recall that a topologically non-trivial bandgap is char-
acterized by a topological invariant. In systems with inver-
sion symmetry, the topological invariant known as the Z2 
number [69] can be determined based on the parity at time-
reversal invariant momenta [70]. A system with a nontrivial 
topology (Z2 = 1) represents a topological insulating phase 
that exhibits the quantum spin Hall effect. This phase is char-
acterized by edge states with quantized conductivity. 

Additionally, the Z2 number is equivalent to the spin Chern 
number, Cs =

1

2
(C↑ − C↓) . The Chern number is defined as: [71] 

C =
1

2�
∫
BZ

d
2
kF12(k)

 , where F12(k) =
�

�k1
A2(k) −

�

�k2
A1(k) is the Berry 

curvature; A�(k) = −i⟨nk�
�

�k�
�nk⟩ , the Berry connection; and 

�nk⟩ , the normalized wave function of the respective band.
We also examined scenarios with different on-site ener-

gies for edge and corner sites, which reflects the differences 
present between the COF core and linker units. In this con-
text, the degeneracy of the Dirac and flat bands is disrupted, 
leading to a trivial bandgap characterized by a zero topo-
logical invariant, as depicted in Fig. 4d and e. The posi-
tion of the bandgap, either below ( �corner< �edge ) or above 
( �corner> �edge ) the flat band, is determined by the relative 
on-site energies between the two types of sites. Near the 
M point, the wavefunction components of these Dirac and 
flat bands are found to be markedly distinct from those of 
the ideal Lieb lattice model (see Fig. 4b). Specifically, the 

Fig. 3   Illustrations of (a) single-
orbital hopping, (c) (πx, πy)-
orbital hopping, and (e) (σ, πx, 
πy)-orbital hopping in a square 
lattice. The hopping integrals 
are indicated by arrows. The 
dashed square indicates the 
unit cell. The corresponding 
band structures obtained from 
TB models with (b) �

0
= 0 and 

t > 0 ; (d) επ = 0, ppσ > 0, and 
ppπ = 0; and (f) εσ = -4.5|ssσ|, 
επ = 2.5|ssσ|, ssσ < 0, spσ =|ssσ|, 
ppσ =|ssσ|, and ppπ = 0. The 
inset in (b) depicts the first 
Brillouin zone. The ppσ, ppπ, 
ssσ and spσ hopping integrals 
are indicated by the arrows in 
(c) and (e)
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wavefunction at the M point of the separated Dirac band 
(the bottommost band in Fig. 4d or the topmost band in 
Fig. 4e) primarily comes from the corner sites, while the 
edge sites predominantly contribute to the flat band and the 
other Dirac band.

We also considered a case where a SOC term is incorpo-
rated in addition to the on-site energy difference. The result-
ing band structure has three isolated bands, as depicted in 
Fig. 4f; the two bandgaps at the M point correspond to a 
topological insulating phase with a nonzero Z2 number. By 
adjusting the parameters of the on-site energy difference and 
the SOC strength, the Chern number of the middle flat band 
can be either zero or nonzero [46].

Given the four-fold symmetry of the corner site in a Lieb 
lattice, the doubly degenerate frontier MOs of the four-arm 
core units can also emerge in tetragonal COFs. We examined 
a special case of the Lieb lattice where the corner site car-
ries degenerate (πx, πy)-orbitals and the edge site contains a 
single orbital, as depicted in Fig. 5a. By considering only 
the NN interactions between corner and edge sites, while 

excluding interactions between corner-to-corner or edge-to-
edge sites, the band structure obtained from the TB model 
is presented in Fig. 5b. This band structure is markedly dif-
ferent from those shown in Fig. 4. Therefore, the relative 
on-site energies for the corner and edge sites as well as the 
MO degeneracy of the corner site play an important role in 
determining the electronic band structure of the Lieb lattice.

3.4 � Tight‑binding model – checkerboard lattice

A checkerboard lattice is created by introducing additional 
sites at the center of each square in the basic square lattice, 
as depicted in Fig. 6a. When considering only NN hopping, 
the TB model in the case of a single orbital per site yields 
the two bands shown in Fig. 6b; the bands have a folded 
structure derived from those shown in Fig. 3b. If the 2NN 
hopping parameter is non-zero, the partial flat band at half 
filling gains some dispersion, as illustrated in Fig. S4a. By 
extending the orbital basis to include two (πx, πy) or three 
(σ, πx, πy) orbitals per site, the typical band structures that 

Fig. 4   a Illustration of a single-
orbital hopping in the Lieb 
lattice. The hopping integral is 
indicated by the black arrow. 
The spin-orbit coupling (SOC) 
term is considered as an 
imaginary hopping between the 
second nearest-neighbor sites, 
indicated by red arrows; �SOC 
represents the magnitude of 
the SOC. The corner and edge 
sites are colored in green and 
blue, respectively. Examples of 
band structures obtained from 
the Lieb lattice models: (b) 
�corner∕edge = 0 and �SOC = 0; (c) 
εcorner/edge = 0 and �SOC = 0.1|t|; 
(d) �corner = 0, �edge = 0.2|t|, and 
�SOC = 0; (e) �corner = 0.2|t|, 
�edge = 0, and �SOC = 0; and (f) 
�corner = 0.2|t|, �edge = 0, and �SOC 
= 0.1|t|
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can be obtained are depicted in Fig. 6c and d, respectively. 
Similarly, the partial flat bands along the M-Γ k-path gain 
some dispersion when considering a nonzero ppπ param-
eter (see Fig. S4b).

It is worth noting that the band structure derived from 
the checkerboard lattice model exhibits similarities with 
those of materials possessing a Cairo pentagonal lattice 
symmetry. In each 2D pentagonal lattice (see Fig. S5), 
there are two types of sites: one is fourfold-coordinated 
and the other is threefold-coordinated, with a total of 
six sites per unit cell. The fourfold-coordinated sites 
display the checkerboard lattice symmetry. Considering 
one orbital per site, this lattice model yields six bands. 
For reference, the checkerboard lattice with a (σ, πx, πy)-
orbital basis also produces six bands, which indeed look 
like those obtained from the pentagonal lattice model 

[40]. Since the theoretical prediction of penta-graphene 
in 2015 by Zhang and co-workers [72], a variety of other 
2D pentagonal materials have been theoretically predicted 
and/or experimentally synthesized [73–77]. These mate-
rials are reported to exhibit tunable properties ranging 
from semiconducting to metallic and even topologically 
insulating states [78].

3.5 � Covalent organic frameworks

We selected three COFs with either Zn-Por or Zn-Pc as the 
four-arm core units to serve as representative examples. 
These examples were chosen to demonstrate that the char-
acteristic band dispersions associated with the square lat-
tice, the Lieb lattice, and the checkerboard lattice, which we 
described above, can be realized in 2D polymer networks.

Fig. 5   a Illustration of (σ, πx, 
πy)-orbital hopping in the Lieb 
lattice. The corner site carries 
degenerate (πx, πy)-orbitals 
and the edge site, a single 
orbital. Only nearest-neighbor 
interactions are considered; 
the hopping integral spσ is 
indicated by the arrows between 
the corner and edge sites. b 
Band structures obtained from 
this lattice model: εσ = 0.5|spσ|, 
επ = -0.5|spσ|, and spσ > 0

Fig. 6   a Illustration of the sin-
gle-orbital hopping model in the 
checkerboard lattice; the near-
est-neighbor hopping integral is 
indicated by t1 and the second 
nearest-neighbor hopping, by t2. 
Band structures obtained from 
the checkerboard lattice models: 
(b) single-orbital hopping 
with nearest-neighbor hopping 
integral t

1
> 0 and �

0
= 0 ; (c) 

(πx, πy)-orbital hopping with 
επ = 0, ppσ > 0, and ppπ = 0; 
(d) (σ, πx, πy)-orbital hopping 
with εσ = -4.5|ssσ|, επ = 2.5|ssσ|, 
ssσ < 0, spσ =|ssσ|, ppσ =|ssσ|, 
and ppπ = 0
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3.5.1 � Square lattice

The first COF we examined is built from zinc-5,10,15,20-
tetraethynylporphyrin (Zn-TEP) units (we refer to it as 
Zn-TEP COF) [38]. Its chemical structure is illustrated in 
Fig. 7a. Prior to conducting band-structure calculations, we 
first evaluated the frontier MOs of the Zn-TEP unit, as shown 
in Fig. S6. Based on the understanding gained from the TB 
models we discussed above, we can predict the characteris-
tics of the bands appearing near the Fermi level. Following 
the square lattice model with single-orbital hopping (see 
Fig. 3b), the topmost VB of the Zn-TEP COF is anticipated 
to be a single band derived from the Zn-TEP HOMO. The 
two lowest CBs are expected to originate from the degener-
ate LUMO levels of Zn-TEP, following the (πx, πy)-orbital 
hopping model in a square lattice, which results in the typi-
cal band dispersions illustrated in Fig. 3d.

The DFT-calculated band structure of Zn-TEP is pre-
sented in Fig. 7b and confirms our predictions: The lowest 
two CBs display the characteristic band dispersion aris-
ing from a square lattice model with degenerate (πx, πy)-
orbital hopping, while the top VB is solely derived from 
the HOMO of the Zn-TEP. Figure 7c displays the wave-
functions of bands 1 to 4 at the Γ point. We note that band 
3 is a flat band, originating from the HOMO-1 level of Zn-
TEP; this flatness is related to the fact that the acetylene 
units do not contribute to the HOMO-1 wavefunction (see 
Fig. S6) [42]. A comparison of the Γ-point wavefunctions 
with the frontier MOs of Zn-TEP (Fig. 7c vs. Fig. S6) cor-
roborates that the electronic bands near the Fermi level are 
indeed derived from the frontier MOs of the correspond-
ing building unit. This confirms that, by examining the 
characteristics of the frontier MOs of the building units 
along with the COF lattice symmetry, one can effectively 

predict the band characteristics in the corresponding COF 
with the assistance of TB models.

3.5.2 � Lieb lattice

We recall that the Lieb lattice has two types of sites: corner 
sites and edge sites. For the interaction between these sites 
to be effective, it is essential to have a close alignment of 
their on-site energies; this facilitates the desired electronic 
coupling between the two types of sites and leads to the 
emergence of electronic bands characteristic of the Lieb 
lattice. Therefore, to realize the electronic features of a Lieb 
lattice in a 2D COF, it is important to select a linker unit 
with an on-site energy comparable to that of the core unit. 
The Zn-Pc-based COF with pyrazine-pyrene-pyrazine link-
ers [79] illustrated in Fig. 8a, is a pertinent example in this 
regard. The frontier MOs of the building units are shown in 
Fig. S7. Given that the Zn-Pc HOMO level is much higher 
in energy than that of the pyrene-pyrazine linker (by over 1 
eV), the top VB is expected to be exclusively derived from 
the former level. Subsequently, the appropriate model for 
the top VB in fact corresponds to a single orbital hopping 
in a square lattice, with the anticipation that the band will 
be flat as only the corner sites will contribute to it. Turn-
ing to the unoccupied levels, the degenerate Zn-Pc LUMOs 
levels are lower in energy than the linker LUMO but with a 
smaller energetic separation of approximately 0.7 eV; thus, 
the bottom CBs of this COF can be expected to display a 
band structure akin to that illustrated in Fig. 5b. In addition, 
since the LUMO + 1 level of Zn-Pc and the LUMO + 2 level 
of the linker are rather closely aligned (with a separation 
of about 0.48 eV), the electronic states derived from these 
orbitals are anticipated to exhibit Lieb-like characteristics.

Fig. 7   Two-dimensional 
Zn-TEP COF: a Chemical 
structure; the red dashed box 
represents the unit cell. b DFT-
PBE-calculated band structure; 
the VBs and CBs are colored 
in blue and red, respectively. c 
Illustration of the wavefunctions 
at the Γ point for bands 1 to 4, 
as labelled in (b)
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The DFT-calculated band structure is shown in Fig. 8b. 
Indeed, the dispersions of the upper unoccupied bands in the 
energy window between 2 and 3.5 eV for the CBs exhibit 
three bands (denoted 1 to 3) possessing the characteristics 
of a Lieb lattice. An analysis of their wavefunctions at the Γ 
point, shown in Fig. 8c, reveals that bands 1 and 3 originate 
from both the core and linker units, while band 2 is predomi-
nantly contributed by the LUMO + 2 level of the linker units; 
these attributes are consistent with those depicted in Fig. 4e.

The wavefunctions of the bands near the Fermi level are 
depicted in Fig. S8. As predicted, the topmost VB consists of 
a single band originating solely from the Zn-Pc HOMO. The 
bottom CBs can be classified into three groups (CB, CB + 1, 
and CB + 2), each containing two bands. There exists a close 
correspondence between these CBs and the Zn-Pc LUMO and 
the LUMO and LUMO + 1 levels of the pyrazine-pyrene-pyra-
zine linker (see Fig. S7). In contrast to the width of approxi-
mately 1 eV seen for the Lieb bands, the widths of the CBs and 
VBs near the Fermi level are much narrower and smaller than 
0.1 eV. This can be attributed to the very limited electronic 
coupling between the pyrazine-pyrene-pyrazine-based linkers 
and Zn-Pc units. By modulating the degree of conjugation in 
the linker unit (i.e., by varying the linker length), the relative 
positions of the three bands derived from the Lieb lattice can 
be adjusted to be in closer proximity to the Fermi level [48]. 
Again, in the framework of the COF lattice symmetry, the 
analysis of the symmetries and energies of the frontier MOs of 
the core and linker units allows for the prediction of the band 
dispersion near the Fermi level in a specific COF.

3.5.3 � Checkerboard lattice

When the core units situated at both the center and cor-
ner sites are identical, the primitive unit cell of the COF 
adopts the structure of a simple square lattice. However, 
introducing a relative orientation between these two sites, 
as exemplified by the Zn-Pc-based anthracene-linked COF 
[40] depicted in Fig. 9a, leads to a unit cell with the sym-
metry of a checkerboard lattice. The frontier MOs of the 
Zn-Pc core and the tribenzo[f,k,m]tetraphene linker are 
shown in Fig. S9. The degenerate Zn-Pc LUMO levels are 
significantly lower in energy than the linker LUMO (dif-
ference of ca. 1.6 eV), while the Zn-Pc HOMO is higher 
than that of the linker by about 1 eV. Thus, the bottom CBs 
and top VBs of this ZnPc-based anthracene-linked COF 
are expected to display band dispersions similar to those 
depicted in Fig. 6.

The band structure calculated at the DFT-PBE level of 
theory is shown in Fig. 9b and indeed exhibits features like 
those in Fig. 6. Figure 9c presents the wavefunctions corre-
sponding to bands 1 to 6 at the Γ point and confirms that the 
bottom CBs originate from the degenerate LUMOs of Zn-Pc, 
while the top VBs are derived from the single HOMO of 
Zn-Pc. The wavefunctions at the Γ point for bands 7 and 
8, depicted in Fig. S10, clearly carry the orbital character-
istics of the HOMO level of the tribenzo[f,k,m]tetraphene 
linker. These results underline again that the most relevant 
characteristics of the band structure of a specific COF can 
be qualitatively predicted by analyzing the symmetry and 

Fig. 8   Two-dimensional Zn-
Pc-based pyrazine-linked COF: 
a Chemical structure; the red 
dashed box represents the unit 
cell. b DFT-PBE-calculated 
band structure; the VBs and 
CBs are colored in blue and red, 
respectively. c Illustration of the 
wavefunctions at the Γ point for 
bands 1 to 3, as labelled in (b)
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energy of the frontier MOs of its building units in conjunc-
tion with the lattice symmetry.

In the case of Por-/Pc-based COFs with two-fold symmet-
ric porphyrin or phthalocyanine as four-arm core units, the 
band structures closely resemble those of COFs with Zn-Por/
Pc as core units [41, 80], despite the lifted degeneracy at the 
M point due to the energy splitting between the LUMO and 
LUMO + 1 levels in the metal-free porphyrin and phthalo-
cyanine molecules (Fig. 2). The comparison between Zn-Pc-
based and Pc-based COFs is presented in Figs. S11 and S12.

While our present work focuses on the electronic struc-
ture of COF monolayers, we have also briefly investigated 
the impact of the interlayer stacking patterns on the elec-
tronic properties by using Zn-TEP COF as a representa-
tive example, as detailed in the SI. Due to the relatively 
small bandgap of these Pc-based COFs, they are promis-
ing materials to achieve band inversion and a topological 
state. A topological phase transition from a conventional 
insulating state to a topological Dirac semimetal state has 
been theoretically predicted to occur in a Pc-based COF 
upon the application of external strain [41]. However, it is 
worth bearing in mind that the realization of a first-order 

topological insulating phase usually requires a significant 
SOC strength to facilitate the band inversion and bandgap 
opening. In this regard, it is thus challenging to achieve 
a topological insulating state in COFs composed solely 
of light elements (such as H, C, N, O, and F) or where 
only light elements contribute to the frontier wavefunc-
tions. We note that incorporating heavy metal atoms with 
a strong SOC effect is an effective approach to realizing a 
topological insulating phase in porphyrin/phthalocyanine-
based metal-organic frameworks (MOFs). For instance, 
phthalocyanine-based MOFs with metal centers other than 
zinc have been studied and shown to exhibit a topological 
insulating phase, leading to the quantum spin/anomalous 
Hall effect [39, 81].

4 � Conclusions

Employing tight-binding models and density functional 
theory calculations, we have investigated the electronic 
structures of tetragonal COFs, using porphyrin- and phth-
alocyanine-based COFs as representative examples. The 

Fig. 9   Two-dimensional ZnPc-
based anthracene-linked COF: 
a Chemical structure; the red 
dashed box represents the unit 
cell. b DFT-PBE-calculated 
band structure; the VBs and 
CBs are colored in blue and red, 
respectively. c Illustration of the 
wavefunctions at the Γ point for 
bands 1 to 6, as labelled in (b)
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generic band structures corresponding to the square lat-
tice, the Lieb lattice, and the checkerboard lattice were 
initially explored through tight-binding model analyses. 
The realization of these band structures was demonstrated 
in 2D polymer networks that incorporate porphyrin or 
phthalocyanine as building units, thereby confirming the 
versatility and applicability of these TB models in the con-
text of COFs.

Expanding on our earlier investigations of hexagonal 
COFs, we have determined that the band structures in 
tetragonal COFs can also be tailored by choosing the sym-
metries of the core units and/or by adjusting the relative 
energies of the frontier MOs of the core and linker units. The 
approaches taken to engineer the band structures outlined in 
this and our previous studies are expected to be applicable 
to a wide variety of COFs, thereby broadening the ability to 
tune the electronic properties and enhancing the functional-
ity of these materials.

Finally, we emphasize that, unlike the first-order topo-
logical insulating phase that requires a substantial spin-
orbit coupling effect to achieve band inversion and bandgap 
opening, the topological semimetal phase and higher-order 
topological insulating phase can be realized in COFs com-
posed exclusively of light elements [41, 63, 82].This dis-
tinction highlights the versatility of COFs in accommo-
dating various topological phases, thereby expanding their 
potential applications in the realm of topological materials 
science.
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