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PANoptosis‑based molecular subtype 
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Abstract 

Purpose  To establish a prognostic model to predict the survival of patients with esophageal cancer (EC).

Methods  We extracted the expression profiles of prognostic-related genes and clinicopathological data from TCGA 
and GEO databases. Subsequently, a comprehensive bioinformatics analysis was conducted to construct a prog-
nostic model utilizing LASSO and multivariate Cox regression. The stability of the risk signature was validated 
through Kaplan-Meier and ROC curve analyses on the training, internal testing, and external testing sets. Furthermore, 
we developed a nomogram that incorporates the risk score and clinical features to predict the suvival. Additionally, 
a nomogram incorporating the risk score and relevant clinical parameters was developed to enhance survivorship 
prediction. Furthermore, we delved into exploring the correlation between the risk score and immune cell abun-
dance, expression of cancer checkpoints, as well as responses to immunotherapy and chemotherapeutic agents.

Results  In this study, we successfully identified 19 prognosis-related genes out  of  a pool of  65 PANoptosis-related 
genes (PRGs) sourced from  existing literature. Through consensus clustering analysis, we classified patients into  two 
distinct groups as PANcluster A and B. Furthermore, the risk score derived from the five PANoptosis-related signatures 
emerged as  an  independent prognostic factor among  patients with  EC. To enhance the  prognostic accuracy, we 
devised a nomogram integrating the risk score with clinical risk characteristics, enabling the prediction of 1-year, 2-year, 
and 3-year overall survival (OS) rates. Notably, individuals classified in the high-risk group demonstrated poorer progno-
ses compared to their low-risk counterparts. Furthermore, the risk score displayed substantial correlations with immune 
cell abundance, expression levels of  cancer checkpoints, and  responses to  immunotherapy and  chemotherapeutic 
agents. These pivotal findings underscore the  significance of  considering PANoptosis-related patterns in  improving 
prognostic assessment and predicting treatment responses in patients diagnosed with esophageal cancer.
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Conclusion  We constructed a reliable prognostic risk model for EC utilizing five PRGs. The developed nomogram 
serves as a valuable tool in predicting patient outcomes, offering crucial insights that can inform and guide treatment 
decisions for individuals diagnosed with EC.
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Introdution
Esophageal cancer (EC) is a highly prevalent malignant 
tumor worldwide, with a significant impact on global 
health. According to the 2020 Global Epidemiology of 
Cancer report, there were 604,000 new cases and 544,000 
deaths attributed to esophageal cancer [1]. Significant 
advancements in diagnosis, surgery, radiotherapy, chem-
otherapy, and immunotherapy have led to substantial 
improvements in the clinical efficacy for EC patients. 
Consequently, the overall survival rate of patients with 
EC has increased compared to the past. In recent years, 
tumor immunotherapy and the application of immune 
checkpoint inhibitors have shown promising results in 
cancer treatment. Programmed cell death protein 1 (PD-
1), a 288 amino acid protein expressed on the surface of 
T-cells and involved in apoptosis, was first discovered in 
1992 [2]. Despite these advancements, the 5-year survival 
rate for EC remains relatively low.

Cell death is a fundamental physiological process that 
occurs in organisms, serving various roles such as embry-
onic development, organ maintenance, aging, and the 
coordination of immune responses and self-immunity 
[3]. Among the different forms of programmed cell death, 
namely apoptosis, necroptosis, and necrosis, recent 
research has focused on elucidating their redundancy 
and crosstalk [4].A newly discovered concept called 
PANoptosis emphasizes the interactions and coordina-
tion between apoptosis, necroptosis, and necrosis [5]. 
Dysregulation of cell death and inflammatory responses 
has been associated with tumor development. Jiang et al. 
reported that CASP8 plays a pivotal role as a key protein 
in the signaling pathway of tumor PANoptosis crosstalk 
[6]. Previous studies have emphasized the significance of 
patient characteristics, clinicopathologic tumor features, 
molecular markers, and treatment strategies in deter-
mining prognosis. Clinicopathologic factors, molecular 
markers, and treatment approaches have been linked to 
prognosis [7, 8]. However, the current prognostic assess-
ment may not adequately capture these potential survival 
differences due to the intricate relationship among prog-
nostic factors, leading to significant prognostic heteroge-
neity. Therefore, there is a compelling need to integrate 
these diverse factors into a predictive model that can 
effectively guide treatment decisions.

Numerous studies have focused on constructing tumor 
classifications and prognostic signatures by analyzing 

gene or non-coding RNA expression levels to predict the 
survival and immune landscape of cancer patients [9–12]. 
In our study, we demonstrate the effectiveness of molecu-
lar clustering and prognostic features based on PANopto-
sis in predicting the prognosis and intratumoral immune 
landscape of patients diagnosed with EC. Additionally, 
we have calculated risk scores and established prognos-
tic markers that accurately predict overall survival (OS) 
and response to immunotherapy in these patients. Fur-
thermore, we have developed a comprehensive progno-
sis model specifically related to PANoptosis in patients 
with esophageal cancer. Our findings strongly support a 
significant association between PANoptosis impacts on 
EC patient prognosis, biological behavior, and response 
to anticancer drugs. These results contribute to a deeper 
understanding of the underlying mechanisms of PANop-
tosis and provide valuable insights for the development 
of novel treatment strategies for patients with esophageal 
cancer.

Meterials and methods
Data acquisition
Gene expression data and relevant clinical information of 
EC patients were retrieved from the TCGA (https://​por-
tal.​gdc. cancer.gov)and GEO (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/, ID: GSE53625) databases. Sixty-five PANopto-
sis-related genes (PRGs) were identified from prior stud-
ies [13]. TCGA and GEO data were combined and batch 
effects were eliminated using the Combat algorithm 
of the sva R package (R software, version 4.3.2). After 
matching the transcriptome data from both databases 
with eligible survival data, 183 samples from TCGA EC 
cohort were used for modeling and internal validation. 
Meanwhile, 179 samples of the GEO ESCC cohort were 
used for external validation. Patients with no follow-up 
data or incomplete clinical information were excluded 
from the study. Finally, 362 patients were included in the 
study.

Selection and consensus clustering analysis 
of PANoptosis‑related genes
We identified PANoptosis-associated differentially 
expressed genes by using the “limma” package, screen-
ing for genes meeting criteria: “|log2FC| > 1” and 
“adjusted P < 0.05” in different EC subtypes. Prognosis-
related DEGs (PRDEGs) were then determined through 

https://portal.gdc
https://portal.gdc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Kaplan-Meier analysis and univariate Cox regression. 
Consensus clustering, based on PRDEGs, revealed dif-
ferent expression patterns within esophageal cancer. 
The optimal clustering was selected, and its prognosis 
was assessed using Kaplan-Meier analysis. Principal 
component analysis (PCA) assessed expression pat-
terns. Clinical features were compared using the Wil-
coxon test, and DEGs between clusters were identified 
(|log fold change (FC)| >1, p-value < 0.05). Gene set 
variation analysis (GSVA) assessed biological pro-
cess disparities. Single-sample gene set enrichment 
analysis (ssGSEA) evaluated immune cell infiltration 
and immune-related function activity. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses explored biological functions and 
pathways associated with PANDEGs, all considering a 
significance threshold of p-values and q-values < 0.05.

Construction and verification of the PANoptosis‑related 
prognostic signature
To construct the PANoptosis-related gene prognos-
tic signature, we identified significant differentially 
expressed genes between Cluster A and Cluster B. 
Utilizing these genes, we randomly allocated TCGA 
patients in a 5:5 ratio into training and internal test-
ing sets. Subsequently, a prognostic signature was 
developed by incorporating five genes, determined 
through least absolute shrinkage and selection opera-
tor (LASSO) regression analysis and multivariate Cox 
regression analysis. The survival, survminer, and glm-
net R packages facilitated this process. Patients from 
GEO served as the external verification set. The risk 
score was computed using the expression levels of the 
five genes, subsequently categorizing patients into high 
and low-risk groups based on the median risk score. 
K-M analysis assessed survival disparities between the 
high-risk and low-risk groups. The prediction efficiency 
of the risk score was evaluated using receiver operat-
ing characteristic (ROC) curves and the area under the 
curve (AUC).

Establishing a predictive nomogram
An nomogram model that integrates risk scores derived 
from the prognostic signature and relatively complete 
information about clinicopathologic or theraputic fac-
tors was meticulously formulated. Calibration graphs 
were meticulously generated to visually delineate the 
congruence or disparities between the prognostic esti-
mations offered by the nomogram model and the actual 
survival rates observed in esophageal cancer patients.

Evaluation of PANoptosis‑related genes in immune 
microenvironment
To elucidate the association between the risk score and 
the tumor microenvironment (TME), CIBERSORT 
was employed to quantify the abundance of infiltrat-
ing immune cells in heterogeneous samples from both 
high- and low-risk groups. TME scores, encompassing 
stromal, immune, and ESTIMATE scores, were com-
pared between the high- and low-risk groups using the 
Wilcoxon signed-rank test. Response to immunotherapy 
and chemotherapeutic drugs, the tumor mutation bur-
den (TMB) score of patients was computed, and the cor-
relation between the risk score and TMB was scrutinized 
using the Spearman method. The Tumor Immune Dys-
function and Exclusion (TIDE, https://​tide.​dfci.​harva​rd.​
edu/) database assesses the potential for tumor immune 
escape based on the gene expression profile of tumor 
samples. Additionally, the "OncoPredict" R package was 
employed to predict drug responses in vivo or in cancer 
patients using data screened through cell lines. Finally, 
the "OncoPredict" R package was utilized to assess dif-
ferences in drug sensitivity among patients in distinct 
riskscore groups.

Results
Identification and analysis of PANoptosis related genes 
in esophageal cancer Patients
The expression data of 183 EC patients were obtained 
from the TCGA database, and the expression levels of 
PRGs were compared across 13 normal and 181 tumor 
samples. A total of 65 PRGs were considered from previ-
ous studies, as indicated in Fig. 1a. Out of these, 42 Dif-
ferentially Expressed Genes (DEGs) exhibited differential 
expression in EC samples compared to normal tissue, 
shown in Fig.  1b. All 42 DEGs demonstrated upregula-
tion in tumor samples (p < 0.05). To elucidate the prog-
nostic significance of these genes, Kaplan-Meier curves 
depict the relationship between DEGs and the prognosis 
of EC patients, there were 19 DEGs with statistically dif-
ferent survival rates between the high and low expression 
groups (Fig. 1c).

Identification of prognostic PANoptosis‑related 
geneclusters in esophgeal cancer
PRDEGs were identified using KM analysis and uni-
variate Cox regression. The Cox regression revealed two 
genes associated with overall survival: CASP5 (HR 1.246, 
95%CI:1 .033~1.502, P=0.0210) and IRF1 (HR 1.332, 
95%CI: 1.035~1.714, P=0.0261) . We investigated the cor-
relation of consensus clustering for prognostic PRDEGs 
with the characteristics and survival of EC patients. By 
incrementing the clustering variable (k), we determined 

https://tide.dfci.harvard.edu/
https://tide.dfci.harvard.edu/
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Fig. 1  a The PANoptosis gene list contains 65 genes, of which 25 are from pyroptosis, 32 are from apoptosis, and 8 are from necroptosis; (b) The 
expression of PANoptosis-related genes in normal and tumor tissues; (c) 19 DEGs with statistically different survival rates between the high and low 
expression groups
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that when k = 2, the classification met the standard 
(Fig.  2a, Figure  S1). A total of 159 patients were cat-
egorized into two clusters (A and B) based on PRDEGs 
expression levels, cluster A (n = 132) and cluster B (n = 
50). As shown in Fig.  2b, patients in cluster A demon-
strated significantly longer survival compared to those 
in cluster B (p = 0.014). Principal Component Analysis 
(PCA) exhibited a clear separation between cluster A and 
B (Fig. 2c). To assess differences in immune cell infiltra-
tion between the two clusters, ssGSEA was conducted, 
revealing that cluster B exhibited higher levels of immune 
cell infiltration, including activated B cells, activated CD4 
+ T-cells, activated CD8 + T-cells, activated dendritic 
cells, macrophages, mast cells, monocytes, natural killer 
T cells, and neutrophils (Fig. 2d). GSVA highlighted that 
cluster B was significantly enriched in immune-related 
pathways, including natural killer cell-mediated cytotox-
icity, antigen processing and presentation, and primary 
immunodeficiency signaling pathways (Fig.  2e). Based 
on these findings, GO and KEGG analyses illustrated the 
relevant biological processes (BP), cellular components 
(CC), molecular functions (MF), and pathways (Fig.  2f, 
g, h). The identified genes in dfferent cluster were asso-
ciated with BP including skin development, embryonic 
organ morphogenesis, and humoral immune response, 
correlating with CC, such as the apical plasma mem-
brane, external side of the plasma membrane, cluster of 
actin-based cell projections, and T cell receptor com-
plex. These genes were involved in MF such as cytokine 
activity, carboxylic acid binding, and immune receptor 
activity. According to KEGG analysis, these genes partici-
pated in certain cancer-related pathways, including the 
cytokine and cytokine receptor interaction, Cell adhesion 
molecules, Th1 and Th2 cell differentiation, and Chemi-
cal carcinogenesis-DNA adducts.

Construction and Validation of Prognostic Signatures 
for PANoptosis‑related genes
We intersected the data of DEGs with varied expression 
in the two clusters (|log fold change (FC)| > 1, p-value < 
0.05), identifying 1809 genes. Subsequently, LASSO and 
Cox regression analyses were executed to narrow down 
these intersected genes (Fig. 3a). This method can effec-
tively discern the most available forecast markers and 
produce a prognostic indicator to predict clinical results. 
The dashed perpendicular line illustrates the first-rank 
value of logλ with the minimum segment likelihood bias. 
The risk score was calculated based on the coefficients 
for each intersected gene by the LASSO algorithm, and 
the equation is as follows: risk score = ( 0.5113 × IRF1 
expression level) + ( 0.4222 × NEUROG3 expression 
level) + ( 0.4871 × TMIGD2 expression level) - ( 0.3701 × 
SHOX2 expression level) - ( 0.5441 × TRBJ1-2 expression 

level). Boxplots illustrated higher risk scores from clus-
ter B compared to those in cluster A (Fig.  3b). A San-
key diagram depicted the associations among clusters, 
risk groups, and survival status (Fig.  3c). In Figure  3d, 
patients in the high-risk group exhibited a significantly 
lower probability of survival than those in the low-risk 
group in both TCGA and GEO databases (p < 0.05). 
Subgroup analysis indicated that the risk model effec-
tively distinguished survival prognosis in N +, IIB-IIIA, 
and T3-4 groups (Fig. 3e), suggesting that this risk clas-
sification may be more predictive value for the prognosis 
of locally advanced esophageal cancer. In the case data 
from TCGA database and GEO database( GSE53625, 179 
ESCC patients from China), ROC curves were generated 
to assess the predictive efficiency of the risk score, with 
AUCs for 1, 2, and 3-years survival at 0.730, 0.768, and 
0.725, respectively, outperforming other clinical features 
(Fig. 3f ). The AUC values of 1, 2, and 3-year survival of 
patients in TCGA training set, internal TCGA valida-
tion set, the external GEO validation set were shown in 
Figure S2.

Construction and evaluation of the prognostic nomogram 
of esophageal cancer
We performed univariate and multivariate Cox regres-
sion analysis to evaluate whether the risk model of five 
genes and other clinical information (such as pathologi-
cal stage,adjuvant radiation therapy, alcohol consump-
tion, etc.) had independent prognostic characteristics. 
Univariate analysis showed that clinical stage (p< 0.001), 
N stage (p< 0.001), and risk score (p= 0.005) were consid-
erably associated with the OS (Fig. 4a). Multivariate Cox 
regression analysis showed that clinical stage (p< 0.001) 
and risk score (p< 0.002) remained closely correlated 
with the OS (Fig.  4a). revealing that clinical stage and 
risk score remained closely correlated with OS . C-Index 
suggested that risk score is a better predictor of survival 
than other clinical factors (Fig.  4b). The risk score and 
additional clinical features were integrated into a nomo-
gram model (Fig.  4c). Calibration plots demonstrated 
close alignment between the nomogram-predicted and 
actual survival probabilities of esophageal cancer patients 
(Fig. 4d), confirming the accurate predictive capability of 
this nomogram model for the survival of esophageal can-
cer patients.

Comparative evaluation of the tumor microenvironments 
and response to immunotherapy and chemotherapeutic 
drugs
In evaluating differences in immune cell infiltration 
between the two risk groups, the findings indicated ele-
vated levels of activated mast cells in the high-risk group 
(Fig. 5a, c). Calculation of TME scores unveiled that the 
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Fig. 2  a According to the similarity displayed by the expression levels of prognstic PANoptosis-related genes and the proportion of ambiguous 
clustering measure identified the optimal custer (k=2); (b) Survival of patients in cluster A and cluster B (p = 0.014); (c) PCA exhibited a clear 
separation between cluster A and B; (d) Differences in immune cell infiltration between the two clusters were analyzed by ssGSEA; (e) GSVA 
highlighted that cluster B was significantly enriched in immune-related pathways; (f, g) GO analyses illustrated the relevant BP, CC, MF, 
and pathways; (h) KEGG analyses illustrated the relevant BP, CC, MF, and pathways
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low-risk group displayed a higher stromal and lower 
immune score (Fig.  5b). Additionally, the tumor muta-
tion burden (TMB) demonstrated a significant associa-
tion with the risk score (Fig. 5d). Assessing the predictive 
potential for checkpoint blockade therapy, boxplots illus-
trated variations in immune checkpoint gene expression 
between the two risk groups . Notably, checkpoint genes 
such as CTLA4, TNFRSF18, CD44, TNFSF18, CD276, 
and PDCD1LG2ID exhibited higher expression levels in 
the low-risk group (Fig. 5e). Violin plots further indicated 
that the low-risk group had a higher TIDE, representing 
a more favorable response to PD-1 and CTLA-4 block-
ers (Fig. 5f ). We also found that IC50 indicated that the 

high-risk group was more sensitive to chemotherapeutic 
drugs, Oxaliplatin, Gemcitabine Crizotinib, and Camp-
tothencin; while low-risk group was more sensitive to 
Paclitaxel (Fig. 5g).

Dicussion
Despite notable improvments in thraputic strategies 
have been showed, the 5-year survival rate of esophageal 
cancer patients remains relatively low. The intricate rela-
tionship among prognostic factors for esophageal cancer 
contributes to significant prognostic heterogeneity [1].
Therefore, it is particularly important to search for new 
predictive models to forecast patient survival and enable 

Fig. 3  a The LASSO regression analysis and partial likelihood deviance on the prognostic genes; (b) Association between risk score and molecular 
classifications; (c) Sankey plot showed the correlation between molecular subtpye, risk groups and survival status; (d) KM curve showed 
that patients in high-risk group had a worse prognosis in both TCGA and GEO databases (p < 0.05); (e) Subgroup analysis indicated that the risk 
model effectively distinguished survival prognosis in N+, IIB-IIIA, and T3-4 groups; (f) ROC methods were used to evaluate the efficiency of the risk 
score at predicting patient survival
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early intervention. PANoptosis is recently discovered as 
a novel inflammatory programmed cell death mechanism 
[14]. It combines and regulates cell death pathways, such 
as apoptosis, pyroptosis, and necroptosis, by forming a 
PANoptosome as part of the innate immune responses 
of the host [15, 16]. Studies have underscored the pivotal 
role of PANoptosis in both tumorigenesis and anti-tumor 
therapy by modulating key regulatory elements to thwart 
tumorigenesis [15, 17]. PANoptosomes can influence 
inflammatory and immune responses as well as tumori-
genesis by regulating PANoptosis.

Past reports have highlighted the potency of mark-
ers based on PANoptosis genes in effectively predict-
ing outcomes for esophageal cancer patients [18]. Thus, 
our study embarks on establishing and validating a risk 
model utilizing the TCGA and GEO databases to prog-
nosticate esophageal cancer outcomes grounded in the 
expression patterns of PANoptosis-related genes. In our 
study, 183 esophageal cancer patients were downloaded 
from the TCGA database to explore the prognostic func-
tion of PRGs. Firstly, we confirmed the prognostic value 
of 21 PRGs from 65 PRGs. Subsequently, we performed 
consensus clustering analysis to explore the PANoptosis-
related molecular subtype, and the results showed that 
two distinct subtypes, cluster A and cluster B, where a 
significant difference in prognosis and enriched path-
ways/functions was discerned between the two subtypes. 
Notably, patients within cluster B exhibited markedly 
poorer prognosis.

The construction of a prognostic signature involved 
the utilization of LASSO and multivariate Cox regression 

analyses to meticulously select genes. Patients were sub-
sequently stratified into high and low-risk groups based 
on their calculated risk scores. Patients in the low-risk 
group had a superior prognosis compared to those in 
the high-risk group. Rigorous assessment of predictive 
efficiency was carried out through ROC analyses. Sub-
group analysis indicated that the risk model effectively 
distinguished survival prognosis in N+ , IIB-IIIA, and 
T3-4 groups, suggesting that this risk classification may 
be more predictive value for the prognosis of locally 
advanced esophageal cancer. Since the tumor hetero-
geneity and treatment complexity of locally advanced 
esophageal cancer [19], effective molecular predictive 
model is needed to guide therapy stratgies. A nomo-
gram model was established according to the risk score 
and other clinical characteristics to accurately predict the 
survival of patients. Comparing it with clinical factors, we 
found that the nomogram predicted survival closely cor-
related with optimal predictive performance. This result 
indicates that our predictive model outperforms solely 
clinical factors in predicting the prognosis of esophageal 
cancer.

The tumor microenvironment is a complex structure 
consisting of stromal, cancer, endothelial, and immune 
cells. Dynamic interactions and crosstalk within the 
TME involve innate and adaptive immune cells, extracel-
lular immune factors, and cell surface molecules, play-
ing a crucial role in tumorigenesis [20–22]. However, 
our results from GSVA and ssGSEA demonstrated that 
cluster B was significantly enriched in immune-related 
pathways, including NK cell-mediated cytotoxicity, 

Fig. 4  a Univariate and multivariate Cox regression analysis revealed the risk model and clinical stage independently correlated with OS; (b) C-Index 
suggested that risk score is a better predictor of survival than other clinical factors; (c) Nomogram using risk score and other clinical features were 
constructed for predicting survival; (d) Calibration graph investigated that then omogrampredicted survival rates were close to the actual survival 
rates of EC patients
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Fig. 5  a, c Differences in immune cell infiltration were shown between the two risk groups; (b) Correlation between risk score and immunerelated 
scores. *p < 0.05; **p < 0.01; and ***p < 0.001; (d) Tumor mutation burden (TMB) in two risk groups; (e) The differences of immune checkpoint gene 
expression in two risk groups; (f) ) Violin plots showed the relationship between TIDE scores and risk groups; (g) IC50 differences of six anticancer drugs 
in two risk group. *p < 0.05; **p < 0.01; and ***p < 0.001
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antigen processing and presentation, and primary immu-
nodeficiency signaling pathways. Furthermore, cluster B 
exhibited higher immune cell infiltration levels, involv-
ing activated B cells, activated CD4 + T-cells, activated 
CD8 + T-cells, activated dendritic cells, MDSC, mono-
cytes, natural killer T cells, and T helper cells. Studies 
have highlighted that the impact of tumor promoting 
immune cells, such as macrophages, dendritic cells, neu-
trophils, myeloid suppressor cells, innate lymphocytes, 
and cytokines in the TME would influence immune func-
tion, suppress anti-tumor immune responses by T cells, 
promote angiogenesis, and enhance cancer cell prolifera-
tion, invasion, and metastasis [23–25]. NK cells, M1 cells, 
N1 cells, dendritic cell 1 (DC1 cells), T helper cell 1 (Th1 
cells) and CD8 + T cells are tumor suppressive infiltrat-
ing immune cells [26, 27]. These findings suggest that 
cluser B subtypes may respond better to immunotherapy 
despite poor prognosis.

The examination of immune checkpoint gene expres-
sion in both high-risk and low-risk groups included an 
assessment of IRF1, NEUROG3, TMIGD2, SHOX2, and 
TRBJ1-2. Several of these genes have established associa-
tions with diverse malignant tumors. IRF1, a transcrip-
tion factor responding to viral infection or interferon 
stimulation, was notably downregulated by FOXM1c 
insufficiency in esophageal cancer cell lines, impact-
ing invasion and migration [28]. Wu et  al [29] revealed 
a key role of KAT8-IRF1 condensates in PD-L1 regula-
tion and provide a competitive peptide to enhance anti-
tumor immune responses. TMIGD2 sharing around 10% 
amino acid sequences with CD28, PD-1, and CTLA, 
is a transmembrane protein expressed on naive T cells, 
memory T lymphocytes, tissue-resident T cells, NK 
cells, plasmacytoid dendritic cells, and innate lymphoid 
cells [30]. Its expression correlates negatively with angi-
ogenesis, hypoxia, G2/M checkpoint, and epithelial to 
mesenchymal transition signaling pathways. TMIGD2’s 
positive correlation with immune cell infiltration, includ-
ing dendritic cells, monocytes, NK cells, gd T cells, and 
naive CD8 T cells, suggests its potential as a target for 
developing agonistic bispecific antibodies against tumor 
resistance to PD-1/PD-L1 blockade therapy [31, 32].
Additionally, SHOX2’s methylation emerges as a criti-
cal event in lung cancer tumorigenesis and progres-
sion, presenting itself as a potential biomarker for early 
or advanced-stage lung cancer screening [33]. In breast 
cancer, SHOX2 collaborates with STAT3 to promote 
metastasis [34]. These collective findings underscore the 
potential of IRF1, TMIGD2, and SHOX2, among others, 
as valuable biomarkers in cancer diagnosis and therapeu-
tic endeavors.

The analysis of the correlation between the risk score 
and immune cells revealed no significant expression 

differences in immune-infiltrated cells between high-risk 
and low-risk groups [35].Underscored the relevance of 
an immune score derived from immunogenomic analy-
sis as an indicator of the efficacy of immunotherapy and 
chemotherapy. In the TCGA dataset, the high-risk group 
displayed higher stromal and lower immune scores, 
suggesting a potentially better response to antitumor 
therapy. Significant differences in immune checkpoint 
gene expression, including TNFRSF18,CD44, TNFSF18, 
CD276, and PDCD1LG2ID, were found to be higher in 
the low-risk group. TNFRSF18, a key regulator of inflam-
matory and immune response factors, exhibited consist-
ent high expression in NK-T cells within tumor tissues 
compared to normal tissue. It was highly expressed in 
TREG cells in lung cancer tissues that did not respond 
to anti-PD-1 therapy [36]. CD276, identified as a cancer 
stem cell marker, was highly expressed in cancer stem 
cells, and CD276 inhibitors demonstrated efficacy in 
eliminating cancer stem cell formation through enhanced 
T-cell-mediated anti-tumor immunity [37].Positive CD44 
expression in malignant tumor tissues correlated with 
vascular invasion, distant metastasis, short tumor-free 
survival, low survival rates, and poor prognosis [38].

Two distinct immune escape mechanisms in tumors 
involve immunosuppressive factors hindering T cell 
invasion and functional inactivation of cytotoxic T cells 
despite high infiltration levels. TIDE scores, which pre-
dict immune escape ability by evaluating these mecha-
nisms [39], indicated that low-risk groups had higher 
TIDE scores, aligning with previous conclusions drawn 
from TME-related analyses and checkpoint gene analy-
ses. This result contrasts with the prognosis for high-
risk group patients. Upon reviewing the TCGA database 
patients, it was noted that they were included earlier and 
likely did not receive immunotherapy, contributing to 
their poor prognosis. Detection of the immune micro-
environment and timely immunotherapy might substan-
tially improve the prognosis of high-risk group patients.

Furthermore, IC50 values highlighted differential sen-
sitivity to chemotherapeutic drugs, with the high-risk 
group exhibiting more sensitivity to Oxaliplatin, Gemcit-
abine, Crizotinib, and Camptothecin, while the low-risk 
group demonstrated greater sensitivity to Paclitaxel. This 
finding aligns with clinical practice at that time, suggest-
ing increased prognosis for esophageal cancer patients 
in the low-risk group after Paclitaxel treatment. Notably, 
Oxaliplatin, Gemcitabine, and Camptothecin were also 
more sensitive in the high-risk group, indicating poten-
tial efficacy for patients choosing these drugs after Taxol 
resistance. For patients unable to tolerate chemotherapy, 
Crizotinib could be a consideration.

Currently, some scholars have also done PANoptosis 
for certain cancer types, including colon cancer [40], 
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hepatocellular carcinoma [41], gastric cancer [42] and 
pancreatic cancer [43]. However, there is still a lack 
of research on the construction of predictive prog-
nostic model for esophageal cancer and PANoptosis. 
To optimize this prognostic nomogram, we included 
relatively complete clinicopathologic and therapeutic 
information(such as histology, radiation therapy, alco-
hol consumption, etc.) for anylisis. What’s more, 272 
of 362 patients from two databases were esophageal 
squarmous cell carcinoma, indicating that the model 
might be more suitable for domestic situation. Never-
theless, our study has some limitations. Most analyses 
were based on data from public datasets, and all sam-
ples were obtained retrospectively, which may have 
caused an inherent case selection bias. In addition, lim-
ited molecular biology experiments were performed in 
the study, and further in vitro and in vivo experiments 
are needed to validate our findings. Finally, some valu-
able clinical features such as surgery methods, adjuvant 
chemotherapy regimes, and tumor markers were not 
totally available in database. As such, clinical cases are 
needed to confirm our conclusions.

In conclusion, we constructed a PANoptosis-based 
molecular clustering and prognostic signature that 
plays a vital role in predicting survival, TMB, and guid-
ing clinical therapy. The findings of this study may 
improve our understanding of PANoptosis in esopha-
geal cancer and help develop more effective treatment 
strategies. However, this study has some limitations, 
and additional experiments and clinical cases are 
needed to validate our findings.
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