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Abstract 

Preventing/mitigating natural disasters in urban areas can indirectly be part of the 17 sustainable economic and social 
development intentions according to the United Nations in 2015. Four types of natural disasters—flooding, heavy 
rain‑induced slope failures/landslides; earthquakes causing structure failure/collapse, and land subsidence—are 
briefly considered in this article. With the increased frequency of climate change‑induced extreme weathers, 
the numbers of flooding and heavy rain‑induced slope failures/landslides in urban areas has increased in recent years. 
There are both engineering methods to prevent their occurrence, and more effectively early prediction and warning 
systems to mitigate the resulting damage. However, earthquakes still cannot be predicted to an extent that is suffi‑
cient to avoid damage, and developing and adopting structures that are resilient against earthquakes, that is, struc‑
tures featuring earthquake resistance, vibration damping, and seismic isolation, are essential tasks for sustainable city 
development. Land subsidence results from human activity, and is mainly due to excessive pumping of groundwater, 
which is a “natural” disaster caused by human activity. Countermeasures include effective regional and/or national 
freshwater management and local water recycling to avoid excessive pumping the groundwater. Finally, perspec‑
tives for risk warning and hazard prevention through enhanced field monitoring, risk assessment with multi‑criteria 
decision‑making (MCDM), and artificial intelligence (AI) technology.

Keywords Preventing natural disasters, Sustainable urban development, Flooding, Slope failure, Earthquake, land 
subsidence

1 Introduction
Owing to convenient living environment in urban areas, 
an increasing number of people worldwide are choos-
ing to live in these areas; that is, worldwide urbaniza-
tion is occurring. Cohen [1] reported that almost half of 
humanity now resides in urban areas. Developing coun-
tries experience faster growth of this kind. In China, 
from 1980 to 2021, the ratio of people living in cities to 
the total population increased from 19.37% to 64.72% [2]. 
An increase in cities population results in the expansion 

of existing cities or the creation of new ones. For exam-
ple, Shanghai, China has been developed/expanded to an 
urban megapolis with over 25 million inhabitants.

Although urban areas are convenient and comfort-
able for people, they are vulnerable for natural disasters, 
including floods, earthquakes, and landslides. In densely 
populated urban areas, natural disasters can cause seri-
ous property damage and death. For example, the Great 
Hanshin-Awaji Earthquake that occurred in the Osaka 
metropolitan area, Japan, on 17 January 1995, with a 
magnitude of 7.3 caused 6,434 casualties [3]. Further-
more, global warming is one of the major environmen-
tal problems worldwide. One of the consequences of 
global warming is the frequent occurrence of extreme 
weather [4], such as torrential rains or “a belt zone of 
heavy precipitation” [5], which can cause water-related 
disasters in urban areas. According to the United Nations 
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(September 2021), extreme weather-induced natural 
hazards have increased fivefold within the last 50 years. 
To maintain the sustainable development of cities, it is 
essential to consider the countermeasures for prevent-
ing/mitigating natural disasters in the city planning and 
construction stages.

In this article, the major natural disasters related to 
urban areas are discussed. The natural disasters consid-
ered are: flooding, heavy rain-induced slope failure (for 
cities adjacent to hills/mountains); earthquakes causing 
structure failure/collapse, and land subsidence (which is 
regarded as a natural disaster here despite being caused 
mainly by human involvement). For each type of disas-
ter, first, its characteristics in recent years are described 
with some examples, and then the countermeasures are 
discussed.

To facilitate this review article, research publications 
related to the four natural disaster types from the Web 
of Science database from 2012 to 2021 were downloaded 
and analysed using VOSviewer [6]. The results of a brief 
bibliometric analysis are presented at the end of each 
topic.

2  Flooding
2.1  Occurrence tendency with some examples
Flooding is a major natural disaster occurring in urban 
areas. Sustainable flooding risk management is an impor-
tant component of sustainable city development [7]. 
Urban flooding occurs when the stormwater increase 
rate exceeds the capacity of a city’s drainage system 
(e.g. [8]). One of the consequences of global warming is 
the increased frequency and intensity of torrential rain 
or storms. If a city’s drainage system does not consider 
this type of extreme rainfall, floods can easily occur. For 
example, in Beijing, the capital city of China, heavy flood-
ing has occurred at least seven times over the past two 
decades. Among them, one case of flooding occurred on 
21 July 2012, affected an area of 160,000  km2 and 1.9 mil-
lion residents, and caused 77 casualties. In the city centre 
area, the average daily rainfall was 215 mm [9].

In 2017, the Japan Meteorological Agency (JMA) 
introduced a new term for the phenomenon of intensive 
rainfall in a narrow belt area: “a belt zone of heavy pre-
cipitation” [5], which is caused by cumulonimbus clouds 
occurring linearly one after another, passing through and 
staying in almost the same place; and as a result, very 
heavy rain continues to fall in a specific belt area for a 
long time. Beginning in 2022, the JMA started to forecast 
the occurrence of belt zones of heavy precipitation. In 
Japan, in recent years, belt zones of heavy precipitation-
induced floods have occurred almost every year. On 3–4 
July 2020, a belt zone of heavy precipitation occurred in 

the Kuma River basin region, Kumamoto, Japan, with an 
accumulated rainfall of 400–500  mm, which caused the 
collapse of the bank of the Kuma River and serious flood-
ing in the area. This flood caused 65 casualties; 2 people 
were missing, 557 houses were completely destroyed, 43 
were partially destroyed, 5,895 were flooded above the 
beds on the first floor, and 1,990 were flooded below the 
beds on the first floor [10].

2.2  Countermeasures

(1) Natural flood management (NFM)

NFM emphasises by protecting, restoring, and emu-
lating the natural processes such as catchments, flood-
plains, rivers and the coastlines to reduce the potential 
for flooding or mitigate the effects of floods [11].

One of the main reasons for the flood that occurred 
in Yamagata Prefecture, Japan, on 30 August 2022 was 
poor maintenance resulting in many agricultural ponds 
(Nippon Hoso Kyokai (NHK) news, 1 September 2022).

(2) Engineering methods

Engineering methods mainly consist of the following.

(a) Building new drainage channels or increasing the 
capacity of existing drainage channels in a city [9].

(b) Reinforcing river banks to prevent water overflow 
from rivers.

(c) Constructing retarding basins to reduce the surface 
runoff velocity and, therefore, the rate of water flow 
into rivers or urban centres.

(d) Increasing the pump capacity in lowland areas, such 
as the Saga Plain, Japan, where in some areas. the 
elevation of the land is lower than the riverbed, and 
the rainfall water must be pumped into the river or 
sea.

(3) Soft countermeasures

(a) Development of early and accurate flood predic-
tion techniques and warning systems. With the 
rapid development of computational capacity and 
high-resolution satellite imagery, early and accu-
rate weather forecasting has gradually become 
possible. Based on the results of earlier predic-
tions, earlier warning system can be established 
(e.g. [12, 13]).
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(b) Create detailed high-accuracy flood hazard maps, 
educate residents to understand them, and effec-
tively use them for evacuation.

2.3  Brief bibliometric analysis results

(1) Identified Research cluster

The search strategy code was theme = (flooding) AND 
((urban area). The four top research clusters were iden-
tified as follows:

Cluster 1: flood vulnerability (e.g. [14–18]).
Cluster 2: urban flood management and mitigation 
(e.g. [19–27]).
Cluster 3: simulation of flood evolution and inunda-
tion (e.g. [28–36]).
Cluster 4: leading cause of urban flooding (e.g. [37–45]).
Number of publications and top 10 journals publish-
ing the papers.

Figure  1 shows the yearly number of research articles 
related to urban flooding published from 2012 to 2021. 
The number of articles has increased because of the 
increasing number of floods caused by extreme rainfall 
since the 2010s [46]. Table 1 shows the top ten journals in 
which research papers related to flooding were published.

3  Rainfall‑induced slope failures/landslides
3.1  Occurrence and social impacts
Schuster [47] reported that the annual economic losses 
attributable to slope fluctuations in Japan and Italy are 

around US$ 4.5 billion per year, US$ 2.6 billion per year, 
respectively. Landslide activity is increasing because of 
changing climate patterns result in increased regional 
precipitation [47]. In recent years, the number of rain-
fall-induced slope collapses and landslides has increased 
owing to the increased frequencies of extreme rainfalls. 
The Ministry of Land, Infrastructure, Transport and 
Tourism (MLIT), Japan [48] reported that the total num-
ber of sediment disasters that occurred in Japan in 2018 
was 3,459, of which approximately 70% were rainfall-
induced landslides and slope collapses. There were 161 
casualties and 117 injuries.

Many cities are located in landslide-prone areas, such 
as Hong Kong, where landslides and slope failures occur 
almost every year [49]. The most famous landslides in 
Hong Kong were a string of large landslides that occurred 
in June 1972 [50]. The landslides occurred because of the 
severe rain that pounded Hong Kong in the days lead-
ing up to them. It is estimated that at least 156 people 
were killed, and several apartment buildings and houses 
were destroyed. Particularly, a "mammoth" downpour 
of around 640 mm in 72 h precipitated the tragedies on 
18 June 1972, which resulted in the collapse of a luxury 
block in the Mid-Levels and the loss of 67 lives.

At around 10:30 am (JST) on 3 July 2021, a large-scale 
slope failure and debris flow occurred in the Aibatsu 
River in the mountain district of Izu, Atami City, Shi-
zuoka Prefecture, Japan [51]. 27 people died (includ-
ing one disaster-related death, and one missing person). 
According to the Japan Meteorological Agency, 2–3 days 
before the disaster, warm and moist air flowed continu-
ously toward a stagnant front from western to eastern of 
Japan, and the atmospheric conditions became extremely 
unstable at the site. At the observation point in Ajiro, 
Atami City, which was relatively close to the site, 321 mm 
of precipitation was recorded in 48 h, ending at 3:20 pm 
on 3 July. Upstream of the river, there was land developed Fig. 1 Number of publications on flooding disasters

Table 1 Top 10 journals in which flooding‑related research 
papers were published from 2012 to 2021

Journal title Publications

Water 342

Natural Hazards 263

Journal of Hydrology 205

Sustainability 198

International Journal of Disaster Risk Reduction 130

Science of the Total Environment 122

Natural Hazard and Earth System Sciences 116

Remote Sensing 96

Journal of Flood Risk Management 94

Environmental Earth Sciences 62
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on a sloped area by embankments. Forensic investigation 
showed that the fill of the embankments was not properly 
compacted, was in a loose state, was almost saturated by 
the rainstorm, and thus failed first. Successive heavy rain 
then brought the failed embankments into a debris flow.

3.2  Predicting rainfall‑induced landslides
Depending primarily on the hydromechanical qualities of 
the associated soils, rainfall-induced landslides can occur 
during brief, strong precipitation or after lengthy periods 
of rain. There are two types of rainfall-induced landslides: 
shallow and deep-seated position. Rainfall-induced deep-
seated landslides (e.g. [52]) are generally caused by rain-
fall-induced groundwater level rise, which causes positive 
pore water pressures along the surface with the risk for 
slipping. This situation is normally associated with not 
only surface precipitation, but also the formation of pref-
erential water flow pathways to bring surface rainfall 
into deeper locations of a slope, such as the formation of 
vertical cracks. There are two trigging mechanisms for 
shallow landslides [53]. One is rainfall precipitation into 
the surface of unsaturated soil layers, which reduces the 
suction,therefore, the decrease in shear strength of the 
soil layers causes landslides. Additionally, pore water 
pressures inside slopes are raised resulting from the 
formation of water tables, which occurs when a perme-
able soil layer rests above a substantially lower perme-
able layer. Contel et  al. [53] proposed a straightforward 
criterion to identify the potential initiating mechanism 
of shallow landslides triggered by rainfall in accordance 
with the slope geometry, weight of unit, and strength 
characteristics of the concerned soil, as follows:

where α is slope angle; Z is the depth of potential failure; 
γ is the unit weight of soil; c’ is the cohesion intercept 
under effective stress, and φ’ denotes the effective stress 
angle of the soil’s resistance to shearing. If SFd ≤ 1, a land-
slide may be induced at a depth Z due to a decrease in the 
initial suction caused by rainwater infiltration. If SFd > 1, 
landslides can only occur when the potential failure sur-
face is subjected to positive pore water pressures due to 
rainfall.

To predict rainfall-induced landslides, rainfall pre-
cipitation (seepage) analysis and/or coupled seepage and 
stress–strain analysis of unsaturated soil slopes must be 
performed [54], in which numerical simulations, such as 
finite difference or finite element methods, are normally 
required. These techniques are described elsewhere and 
will not be explained here. To perform this type of analy-
sis, hydromechanical properties, especially soil hydraulic 

(1)SFd =
c
′

γZsinαcosα
+

tanφ′

tanα

characteristics under unsaturated conditions, that is, soil 
water characteristic curve (SWCC) and permeability 
functions, are required. Figures 2 and 3 show the typical 
SWCC and permeability functions of unsaturated soils 
[54].

The most commonly used SWCC functions are those 
proposed by Van Genuchten [55] and by Fredlund and 
Xing [56]. Although several permeability functions exist 
in the literature, a generally adopted method is to deduce 
them from SWCC functions,for example, the perme-
ability function [57] can be combined with and SWCC 
function [55], which has an explicit expression,and Fred-
lund et al.’s [58] method, which does not have an explicit 
expression (an integration form). In these mathematical 
functions, fitting parameters must be determined using 
measured data. However, to measure the SWCCs of 
soils, special equipment is required, and this process is 

Fig. 2 Typical SWCCs of an unsaturated soil

Fig. 3 Typical permeability functions of an unsaturated soil
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time-consuming (sometimes it may take several months). 
Therefore, in routing geotechnical site investigations, 
measuring the SWCCs of soils is not included. This type 
of situation limits or restricts the application of unsatu-
rated soil mechanics in geotechnical designs. To provide 
a pragmatic solution, Chai and Gao [59] and Gao and 
Chai [60] proposed empirical methods to estimate the fit-
ting parameters in the SWCCs of Fredlund and Xing [56] 
and Van Genuchten [55] using easily measured basic soil 
properties, such as saturated permeability, grain size dis-
tribution curve, and plastic index. It is believed that this 
type of estimation can effectively promote the applica-
tion of unsaturated soil mechanics in predicting rainfall-
induced slope failure or landslides.

Several factors influence rainfall-induced shallow slope 
failures. Except for the geometry and hydromechanical 
properties of the slope, the most important factors are 
the rainfall rate, rainfall duration, and initial moisture 
content of the slope soil preceding a rainstorm. Figure 4 
illustrates a chart for predicting whether rainfall will 
induce a shallow slope failure. In the figure, the “lower” 
and “higher” initial moisture contents are qualitative or 
relative conditions. Defining precise values is considered 
impractical. For a given slope, the type of chart can be 
proposed by using the hydromechanical characteristics 
of the slope soil and the findings of precipitation analy-
sis. In a region, the natural slopes may have different 
slope angles, different thicknesses of weathered soil lay-
ers, and different vegetation conditions. In practice, the 
slopes can be classified into several groups, and a predic-
tion chart for each group can be proposed. Then, using 
weather forecast information on the rainfall rate and 
duration, possible rainfall-induced slope failures can be 
predicted.

Deep-seated rainfall-induced slope failures are more 
difficult to predict. They are mainly influenced by the 
hydrogeology of a slope, and sometimes a site investiga-
tion cannot reveal all the relevant details.

3.3  Methods for preventing/mitigating rainfall‑induced 
slope failure

(1) Engineering/vegetation methods

(a) Failure of shallow slopes caused by rainfall

For rainfall-induced shallow slope failures, the most 
effective countermeasures are: (i) increasing the vegeta-
tion of a slope, and (ii) making the slope angle gentler. 
Other engineering methods include spraying a thin layer 
of concrete on the slope and rebar insertion methods 
[61].

(b) Failure of deep-seated slope

Countermeasures could be classified into two cat-
egories: methods of increasing the shear strength on a 
potential slip surface and/or reducing the driving force 
(moment) of a slope; and methods increasing the resist-
ance force (moment) using other structures. The former 
methods include improving drainage systems for surface 
water and groundwater, removing certain soils from the 
upward part of a slope, and adding certain soils at the toe 
of a slope. The latter methods include the anchor, resist-
ance pile, and retaining wall methods [62]. Normally, 
these methods are applied when there is a sign of slope 
instability.

(2) Soft methods

Soft methods aim to prevent or mitigate slope fail-
ure-induced damage to human lives and property. One 
method is to evacuate people from higher-risks areas, 
and if that is not feasible, another method is to establish a 
high-accuracy warning system.

3.4  Brief bibliometric analysis results

(1) Top four identified research clusters

The search strategy code used was: theme = (rainfall 
OR rain OR precipitation) AND (slope) AND (failure OR 
landslide OR lapse). The four top research clusters are as 
follows:

Cluster 1: failure mechanisms of landslides (e.g. [63–
68]).

Fig. 4 An illustration of a chart for predicting shallow slope failures 
caused by rainfall
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Cluster 2: landslide susceptibility evaluation (LSA) 
(e.g. [69–71]).
Cluster 3: prediction of rainfall-induced shallow 
landslides (e.g. [72–79]).
Cluster 4: soil erosion and landslide-type debris flow 
(e.g. [12, 80–83]).
Number of publications and top 10 journals publish-
ing the papers

Figure 5 presents the number of publications on rain-
fall-induced landslides from 2012 to 2021. From 2014 
to 2021, the number of related papers rapidly increased, 
indicating increased research activity in this area. Table 2 
lists the top 10 journals in which landslide-related papers 
were published from 2012 to 2021.

4  Earthquake
4.1  Occurrence and social impacts
It is commonly accepted that an earthquake is normally 
caused by “elastic rebound” of Earth’s crust, a theory pro-
posed by Reid [84]. This theory states that a major cause 
of earthquakes is deformation due to external forces, 
primarily regional tectonic pressures. When the total 
amount of strain (energy) at a critical spot surpasses the 
capacity of the rock to withstand further strain, an earth-
quake will occur due to brittle fractures in competent 
rock or slip on preexisting weak zones. An earthquake 
fault is a region where the slip or displacement occurs 
[85].

Considerable attempts have already been made to pre-
dict the occurrence of an earthquake using observations 
of abnormal animal activities as well as monitored strain 

in bedrock (e.g. [86]. Although there have been some 
“successful” predictions, such as the Haicheng earthquake 
in 1975 (M 7.3) in China [87], generally, earthquakes still 
cannot be predicted precisely enough to avoid damage. 
The World health Organization [88] reported that nearly 
750, 000 people worldwide died as a result of earthquakes 
between 1998–2017. In the emergency phase of the dis-
aster, more than 125 million people were injured, made 
homeless or displaced affected by earthquakes during 
this period. If an earthquake occurs in a highly populated 
urban area, the damage to human lives and property is 
much larger than that in a rural area. To reduce or miti-
gate possible earthquake-induced damage, developing 
resilient structures for houses and public buildings has 
become a very important topic of research and city plan-
ning strategy for sustainable city development.

4.2  Resilient structures
MLIT [89], Japan, published the “Basis of Structural 
Design for Buildings and Public Works”, which stated that 
there are three basic performance requirements:

(a) Human life is protected from foreseeable events in 
and around structures.

(b) Structure functions are adequately protected from 
foreseeable threats.

(c) Restoring the structure within reasonable ranges of 
cost and time will enable it to continue to be used 
against foreseeable actions.

There are different detailed design considerations 
for the most important structures or buildings, such 
as nuclear power stations, and common office and/or 
department buildings. However, developing and inno-
vating new techniques for structures resilient to earth-
quakes is a common and important task for sustainable 
city development.Fig. 5 Number of publications on rainfall‑induced landslides

Table 2 Top 10 journals in which landslide‑related research 
papers were published from 2012 to 2021

Journal title Publications

Landslides 349

Engineering Geology 197

Natural Hazards 163

Environmental Earth Sciences 147

Geomorphology 141

Bulletin of Engineering Geology and the Environment 118

Water 89

Journal of Mountain Science 85

Natural Hazards and Earth System Sciences 78

Catena 73



Page 7 of 16Chai and Wu  Smart Construction and Sustainable Cities             (2023) 1:4  

Japan is an earthquake-prone country because it 
lies in the boundary region between the Eurasian and 
Pacific plates, and tectonic movement of the Plates 
causes earthquakes as well as active volcanoes. It is well 
known that many houses in Japan have wooden struc-
tures, which are more flexible and has better earth-
quake resistance compared to other common building 
types. However, they are more vulnerable to fire. It may 
be less well known that in Japan, most public buildings 
and apartment buildings have steel structures instead 
of reinforced concrete structures [90]. Steel structures 
for building have higher earthquake resistance but are 
more expansive.

Although there are ongoing studies about novel 
structures that are resilient against earthquakes, prac-
tically adopted resilient structures include earthquake-
resistant structures, vibration-damping structures, and 
seismic isolation structures, as illustrated in Fig.  6. In 
earthquake-resistant structures, the pillars and beams 
that form the main frame of a building are strength-
ened to prevent the building from collapsing during 
an earthquake. On the other hand, for a seismic isola-
tion structure, vibration isolation devices are installed 
under the structure, and for a vibration damping struc-
ture, dampers are installed between the beams and col-
umns to absorb seismic energy and prevent damages to 
the main structures of a building [91].

4.3  Brief bibliometric analysis results

(1) Top four identified research cluster

The search strategy code was theme = (earthquake or 
temblor or seism or quake) AND ((urban area). The four 
top research clusters are as follows:

Cluster 1: ground-motion parameters and prediction 
(e.g. [93–95]).
Cluster 2: earthquake disaster response and evalua-
tion (e.g. [96–101]).
Cluster 3: earthquake-related geotectonic research 
(e.g. [98, 102, 103]).
Cluster 4: the site amplification effect of seismic 
ground motion (e.g. [104–107]).
Number of publications and top 10 journals publish-
ing the papers

The yearly number of publications on earthquakes in 
urban areas from 2012 to 2021 is plotted in Fig. 7. From 
2014 to 2021, papers related to earthquakes increased 
steadily, indicating with urbanisation, this subject has 
received increasing attention. Table  3 shows the top 10 
journals in which the earthquake-related research papers 
were published from 2012 to 2021.

5  Land subsidence
5.1  Causes and social impact
The major reason of land subsidence or land-level 
lowering is excessive groundwater pumping [108]. 
It appears to occur naturally, but is a result of human 
activities. Land subsidence can damage infrastruc-
ture, increase flooding potential and damage drain-
age systems of cities, and it endangers human lives 
and property. With an increasing urban population 

Fig. 6 Structures resilient against earthquakes (adapted from www. eng. nippo nsteel. com) [92]

http://www.eng.nipponsteel.com
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(urbanisation), the global demand for freshwater 
increases every year. If there is insufficient fresh surface 
water, people will inevitably use groundwater, and if 
this usage is not well managed, it will induce land sub-
sidence. Potential subsidence areas threaten 1.2 billion 
people and 21% of the major cities worldwide, espe-
cially in coastal areas. Among them, 86% of the exposed 
population lives in Asia. Figure  8 shows a map of 
potential areas of land subsidence in East Asia. United 
Nations Office for Disaster Risk Reduction (UNDRR) 
asserts this study enhances subsidence comprehension, 
uncovers new subsidence areas, and informs mitigation 
strategies [109]. This clearly shows that Eastern China 
has the highest potential in this region. Therefore, for 
sustainable city development, an economical and effec-
tive plan to ensure safe access to water resources is 
essential.

Shanghai is the largest economic city in China and 
has suffered serious land subsidence problems. As seen 
in Fig. 9, The deltaic deposit of the Yangtze River forms 
the foundation of Shanghai, as illustrated in Fig. 9. The 
primary geological layers are shown in Fig.  10, and 
Quaternary deposits are approximately 300  m thick. 
In Shanghai, land subsidence was brought on by an 
excessive amount of ground water pumping, which also 
caused the Quaternary deposit to become compressed. 
In 1921, Shanghai established a programme to monitor 
the subsidence of the soil. Up until the year 2000, the 
centre part of Shanghai had a cumulative subsidence of 
between 2 and 3 m (Fig. 11). In Fig. 11, the subsidence 
of land in the urban area of Shanghai can be divided 
into two distinct time periods, the rapid subsidence era, 
which occurred between the years 1921 and 1965, and 
the regulated phase, which occurred after 1965. From 
1965, pumping of groundwater in the Shanghai area 
was strictly controlled by the local government, and the 
land subsidence was clearly mitigated. Land subsidence 
in Shanghai has caused many social issues. An increase 
in the likelihood of flooding is the issue that needs to 
be addressed right away. Flooding due to precipita-
tion occurred 22 times between 1981 and 1994, which 
is an average of nearly twice per year [111]. Recently, 
there has been a concurrent rise in the likelihood of 
floods caused by tides. Dike heights along the coast-
line increased four times from 1956 to 1960, with crest 
elevations rising from 5 to 6.8 m. Damage to sewerage 
systems, roads, buildings, and underground tunnels are 
among the other issues created by land subsidence.

Fig. 7 Number of publications on earthquakes in urban areas

Table 3 Top 10 journals in which the earthquake‑related 
research papers were published from 2012 to 2021

Journal title Publications

Natural Hazards 226

Bulletin of Earthquake Engineering 117

International Journal Disaster Risk Reduction 117

Bulletin of the Seismological Society of America 87

Soil Dynamics and Earthquake Engineering 78

Pure and Applied Geophysics 70

Natural Hazards and Earth System Sciences 66

Earthquake Spectra 58

Seismological Research Letters 57

Journal of Seismology 51

Fig. 8 Potential land subsidence areas in East Asia (adapted 
with permission from [110], Copyright 2021 AAAS)
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5.2  Countermeasures to maintain sustainability of cities

(1) Regional and/or national water management

In most regions or countries, the distribution of fresh-
water resources is unbalanced;freshwater may be rich in 
certain parts and lacking in other parts. It is essential for 
local governments to efficiently and economically man-
age water resources.

In China, freshwater is rich (more than enough) in the 
South, but in the North, there is not enough freshwater. 
To solve this type of national freshwater shortage prob-
lem, the national project of the South-to-North Water 
Division (Fig. 12) was commenced in 2002; parts of it have 
been completed and parts are still under construction. It 
is one of the greatest projects in Chinese history, and it 
can mitigate freshwater shortages and therefore land sub-
sidence problems in North-Eastern parts of China.

Fig. 9 Locations of some monitoring points and cross section I‑I’(data from [108] and [112])

Fig. 10 Geological strata in Shanghai (cross section I‑I’in Fig. 9) data from [108] and [112]

Fig. 11 Subsidence curves of several benchmarks (Fig. 9) located 
in the Shanghai centre (data from [108] and [113]



Page 10 of 16Chai and Wu  Smart Construction and Sustainable Cities             (2023) 1:4 

Quaternary clayey soils of 10 to 30  m thickness were 
deposited in the Saga Plain, Japan [115]. In Shiroishi Dis-
trict, Saga, the Quaternary soil layers were compressed 
due to excessive groundwater pumping for agricultural 
purposes and approximately 1.0  m of subsidence from 
1970 to 2000. After that, there were restrictions on the 
amount of groundwater to be pumped, and land subsid-
ence was mitigated. Furthermore, from 2012, surface 
water from Kasegawa Dam was diverted to Shiroishi Dis-
trict and pumping of groundwater was largely stopped, 
which prevented further land subsidence.

(2) Efficient use of water

With the increasing of world populations and lim-
ited freshwater resource, aside from diverting water 
from rivers into cities, recycling locally available water 
resources is an effective way to ensure water safety in 
urban areas and maintain sustainable development. A 
community can recycle its wastewater, such as from 
bathtubs and washing machines, to flush toilets, wash 

cars, and water plants. This could help reduce the 
amount of groundwater used in certain areas and miti-
gate possible land subsidence.

5.3  Brief bibliometric analysis results

(1) Top three identified research clusters

The search strategy code was theme = (land OR ground 
OR soil OR earth surface) AND (subsidence OR settle-
ment) AND (urban area). The top three identified top 
three research clusters are as follows:

Cluster 1: the possible causes of urban ground sub-
sidence (e.g. [116–118]).
Cluster 2: land subsidence monitoring techniques 
(e.g. [119–121]).
Cluster 3: the land subsidence prediction model (e.g. 
[113, 117, 122, 123]).
Number of publications and top 10 journals publish-
ing the papers

Fig. 12 China national project: South‑to‑North Water Division route map (adapted from http:// nsbd. mwr. gov. cn/) [114]

http://nsbd.mwr.gov.cn/
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Figure 13 presents the number of publications on land 
subsidence in urban areas from 2012 to 2021. Table  4 
shows the top 10 journals in which the land subsidence-
related papers were published from 2012 to 2021.

6  Perspectives for risk warning and hazards 
prevention

6.1  Strengthening field monitoring
Natural disaster monitoring is a prominent compo-
nent of response strategies for natural hazards. Field 
monitoring not only enables the evaluation of the risks 
associated with these hazards, but also allows the opti-
mization of their prevention. For instance, remote sens-
ing technologies are highly effective for enhancing the 
understanding of spatial and temporal trends of phe-
nomena such as flooding [44, 100], landslides [124, 125], 
earthquakes (..), and land subsidence [43, 126]. However, 

these technologies should be operated in parallel with 
traditional methods to provide explicit insights into the 
investigated systems. Tools such as multiple-sensor, 
high-precision GPS, radars and geodetic methods (e.g., 
levelling) generally help in natural object monitoring, 
while automatic monitoring systems allow the approxi-
mation of future seismological, climatic, and ground-
water level changes associated with hazard occurrences. 
Furthermore, with technological breakthroughs, satellite 
technologies are increasing utilised for monitoring natu-
ral disasters. The primary advantage of this approach is 
its relatively large and movable coverage range. Adopted 
by agencies such as the Asia–Pacific Regional Space 
Agency Forum (APRSAF), the hybridisation of space-
based technology and WEB-GIS technology has proven 
to be an efficient tool for disasters management [127]. 
Although strengthening field monitoring can improve 
the understanding of natural disasters, the assessment 
of the risk associated with these hazards as well as early 
warnings of their occurrence is imperative to achieve dis-
aster resilience.

6.2  MCDM risk assessment
Disaster risk assessment in urban areas is crucial for 
long-term planning and policymaking processes for local 
communities. The aim of quantifying disaster risks is typ-
ically to determine their nature and magnitudes such as 
the probability of high-intensity flood [42], areas affected 
by landslides [128], seismic intensity [129], and degree 
of land subsidence [101]. This is carried out by analysing 
hazards and assessing the punctual states of vulnerability 
that could endanger exposed people and their immediate 
environment. In this regard, tremendous developments 
have been achieved in recent years to quantify the effects 
of disasters occurring in urban areas. Current state-of-
the-art risk assessment approaches include probabilistic 
and statistical [130], fuzzy set ([131], [132], GIS-enabled 
zoning [133], and risk characterisation [134] methods. 
Nevertheless, a resurgence of some traditional frame-
works (that are continuously improving) such as scenario 
analysis, comentropy, or grey system techniques has also 
been observed in recent years [135]. Because the preci-
sion of disaster risk assessment is primarily contingent 
on the data quality and spatial–temporal coverage of the 
assessment model, existing methods inherently embody 
or generate constraints that limit their efficiency in 
assessing the true exposure of people and their environ-
ment to natural disaster risks. Focusing on climate risk 
assessment, Arribas et  al. [136] argued that improve-
ments should be made to consider compounding risks, 
comprehensive databases, and comparison/combinations 
of different assessments results.

Fig. 13 Number of publications of land subsidence

Table 4 Top 10 journals in which the land subsidence‑related 
research papers were published from 2012 to 2021

Journal title Publications

Remote Sensing 197

Sustainability 137

Environmental Earth Sciences 72

Natural Hazards 58

Remote Sensing of Environment 49

Tunnelling and Underground Space Technology 45

Engineering Geology 39

Science of the Total Environment 38

Arabian Journal of Geosciences 29

Landscape and Urban Planning 29
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6.3  AI‑enabled early warning systems
The stochastic nature of disaster phenomena has driven 
global efforts to target the integration of AI in disaster-
management systems. AI possesses huge potential for 
strengthening disaster mitigation owing to the seamless 
availability of data and the increasing performance of 
forecasting algorithms. These two features are critical for 
enabling early warning systems, that is, technologies and 
processes that aim to predict and mitigate the harm of 
natural disasters. The data must be sufficient, representa-
tive, precise (e.g. in terms of resolution), and consistent 
(e.g. sequential data, real-time data) with the operat-
ing algorithm. However, the rarity of some events, such 
as earthquakes, can hamper the creation of sufficiently 
large database for training algorithms. Kuglitsch et  al. 
[137] postulated that producing synthetic data could be 
a viable solution to this problem. Furthermore, predict-
ing algorithms have mainly adopted the deep learning 
paradigm because of its ability to explore massive design 
spaces, deal with nonlinearity, and identify multidimen-
sional correlations. These algorithm can predict the 
future occurrence of hazards, which is critical for organ-
ising appropriate responses. Recent successes include 
deep learning-based ground characterisation [138–142], 
real-time and dynamic modelling [143–146]), ensem-
ble models, and hybrid model-based forecasting of the 
occurrence of future phenomena [147, 148]. To take full 
advantage of these technologies, they must be integrated 
into an interdisciplinary platform to allow the seamless 
understanding of both the operating process and predic-
tive analysis by relevant actors, including researchers, 
engineers, multi-stakeholders, and decision-makers.

7  Concluding remarks
In 2015, the UN set 17 goals for sustainable economic 
and social development. Goal 11 seeks to make cities 
accessible and safe for all people; Goal 13 seeks to imme-
diately mitigate the effects of climate change. Preventing 
and mitigating natural disasters in urban areas can be an 
indirect part of these two goals. Four types of natural dis-
asters—flooding, heavy rain-induced slope failures/land-
slides, earthquakes causing structure failure/collapse; and 
land subsidence—are considered in this study. The char-
acteristics of each disaster in recent years and the possi-
ble countermeasures are also discussed.

With the increasing frequency of climate change-
induced extreme weathers, the number of floods has 
increased in recent years in metropolitan regions. The 
countermeasures include natural flooding management, 
such as increasing vegetation coverage of lands, engi-
neering methods for enhancing drainage capacities in 
urban areas, increasing elevation of dikes, and soft meth-
ods such as early warning systems and evacuation plans.

Heavy rain-induced slope failures/landslides affect 
cities adjacent to hills/mountains (such as Hong 
Kong). Again, extreme weather-induced torrential 
rains cause more slope failures and landslides. Engi-
neering measures for preventing slope failures or land-
slides are often implemented after observing the signs 
of slope instability. Therefore, it is important to pre-
dict rainfall-induced slope failures/landslides. With 
an accurate early prediction/warning system, damage 
resulting from slope failures/landslides can be sub-
stantially mitigated.

Although considerable efforts have been made to pre-
dict earthquake, they still cannot be predicted effectively 
enough to avoid damage. Therefore, developing struc-
tures resilient to earthquakes is an essential engineer-
ing task for sustainable city development. Three types of 
structures can be adopted: earthquake-resistant struc-
tures, vibration damping structures, and seismic isolation 
structures.

Land subsidence is a human activity, that is, the main 
cause is excessive groundwater pumping. With rapid 
urbanisation, the demand for more freshwater is increas-
ing worldwide, and some of the freshwater is obtained by 
pumping groundwater, which can cause land subsidence. 
Approximately, 1.2 billion people are affected by land 
subsidence worldwide. The corresponding countermeas-
ures include effective regional and national freshwater 
management as well as locally water recycling.

To mitigate potential disasters in urban areas, the fol-
lowing perspectives are recommended: 1) establishment 
and strengthening of field monitoring systems, 2) con-
ducting risk assessments and providing warnings based 
on multi-criteria decision making models, and 3) estab-
lishment of early warning systems based on artificial 
intelligence technologies.
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