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Abstract
Point cloud segmentation is an essential task in three-dimensional (3D) vision and intelligence. It is a critical step in
understanding 3D scenes with a variety of applications. With the rapid development of 3D scanning devices, point
cloud data have become increasingly available to researchers. Recent advances in deep learning are driving
advances in point cloud segmentation research and applications. This paper presents a comprehensive review of
recent progress in point cloud segmentation for understanding 3D indoor scenes. First, we present public point
cloud datasets, which are the foundation for research in this area. Second, we briefly review previous segmentation
methods based on geometry. Then, learning-based segmentation methods with multi-views and voxels are
presented. Next, we provide an overview of learning-based point cloud segmentation, ranging from semantic
segmentation to instance segmentation. Based on the annotation level, these methods are categorized into fully
supervised and weakly supervised methods. Finally, we discuss open challenges and research directions in the future.
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1 Introduction
Understanding indoor scenes is one of the essential tasks
for computer vision and intelligence. The rapid develop-
ment of depth sensors and three-dimensional (3D) scan-
ners, such as RGB-D cameras and LiDAR, has increased
interest in 3D indoor scene comprehension for a vari-
ety of applications, such as robotics [1], navigation [2]
and augmented/virtual reality [3, 4]. The objective of 3D
indoor scene understanding is to discern the geometric
and semantic context of each interior scene component.
There are a variety of 3D data formats, including depth im-
ages, meshes, voxels, and point clouds. Among them, point
clouds are the most common non-discretized data repre-
sentation in 3D applications and can be acquired directly
by 3D scanners or reconstructed from stereo or multi-view
images.
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Point cloud segmentation, which attempts to decompose
indoor scenes into meaningful parts and label each point,
is a fundamental and indispensable step in understand-
ing 3D indoor scenes. Point clouds provide the original
spatial information, making them the preferred data for-
mat for segmenting indoor scenes. Segmentation of indoor
scene point clouds can be divided into semantic segmen-
tation and instance segmentation. Semantic segmentation
assigns each point with a scene-level object category label.
Instance segmentation is more difficult and requires indi-
vidual object identification and localization. Unlike out-
door point cloud segmentation, which addresses dynamic
objects, indoor point cloud segmentation commonly han-
dles cluttered man-made objects with regularly designed
shapes. Indoor point cloud data are usually captured by
consumer-level sensors with short ranges, while outdoor
point clouds are commonly collected by LiDAR. Indoor
point cloud segmentation faces several challenges. First,
point cloud data are typically large and voluminous, with
varying qualities from different sensors. This makes it dif-
ficult to efficiently process and accurately annotate point
cloud data. Second, indoor scenes are typically cluttered
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with severe occlusions. It is challenging to accurately seg-
ment objects when they are hidden or close together.
Third, unlike regular data structures in two-dimensional
(2D) images, point cloud data are sparse and unorganized,
making it difficult to apply sophisticated 2D segmentation
methods directly to 3D point clouds. Moreover, annotat-
ing 3D data is time-consuming and labor-intensive, limit-
ing the ability of fully supervised learning. Existing indoor
point cloud datasets are limited and suffer from long-tailed
distributions.

Much effort has been devoted to the task of point cloud
segmentation. Traditional geometry-based solutions for
point cloud segmentation mainly include clustering-based,
model-based, and graph-based methods [5]. The major-
ity of these methods rely on hand-crafted features with
heuristic geometric constraints. Deep learning has made
significant progress in 2D vision [6–8], leading to ad-
vances in point cloud segmentation. In recent years, point
cloud based deep neural networks [9] have demonstrated
the ability to extract more powerful features and provide
more reliable geometric cues for better understanding 3D
scenes. Learning from 3D data has become a reality with
the availability of public datasets such as ShapeNet, Mod-
elNet, PartNet, ScanNet, Semantic3D, and KITTI. Re-
cently, weakly supervised learning for point cloud segmen-
tation has become a popular research topic, because it at-
tempts to learn features from limited annotated data.

This paper provides a comprehensive review of point
cloud segmentation for indoor 3D scene understanding,
especially methods based on deep learning. We will intro-
duce the primary datasets and methods used for indoor
scene point cloud segmentation, analyze the current re-
search trends in this area, and discuss future directions
for development. The structure of this paper is as follows.
Section 2 begins by introducing 3D indoor datasets that
are used for understanding 3D scenes. Section 3 presents a
brief review of geometry-based point cloud segmentation
methods. Section 4 reviews indirect learning approaches
with structured data. Section 5 provides a comprehensive
survey of existing point cloud based learning frameworks
employed for 3D scene segmentation. Section 6 introduces
recent learning-based segmentation methods with multi-
modal data. Section 7 summarizes the performance of in-
door point cloud segmentation using different methods.
Section 8 discusses open questions and future research di-
rections. Section 9 concludes the paper.

2 3D indoor scene point cloud datasets
The emergence of 3D datasets has led to the development
of deep learning-based segmentation methods, which
play a crucial role in advancing the field and promoting
progress in research and applications. Public benchmarks
have proven to be highly effective in facilitating framework
evaluation and comparison. By providing real-world data

with ground truth annotations, these benchmarks offer a
foundation for researchers to test their algorithms and en-
able fair comparisons between different approaches. The
two most commonly used 3D indoor scene point cloud
datasets are ScanNet [10] and S3DIS [11].

ScanNet. ScanNet [10] is an RGB-D video dataset en-
compassing more than 2.5 million views across more than
1500 scans. This dataset is captured by RGB-D cam-
eras and extensively annotated with essential information
such as 3D camera poses, surface reconstructions, and
instance-level semantic segmentations. This dataset has
led to remarkable advancements in state-of-the-art per-
formance across various 3D scene understanding tasks,
including object detection, semantic segmentation, in-
stance segmentation, and computer-aided design (CAD)
model retrieval. ScanNet v2, the modified released ver-
sion, has meticulously gathered 1,513 scans that have been
annotated with impressive surface coverage. In the se-
mantic segmentation task, the V2 version is labeled with
annotations for 20 classes of 3D voxelized objects. Each
of these classes corresponds to a specific furniture cate-
gory or room layout, allowing for a more granular under-
standing and analysis of the captured indoor scenes. This
makes ScanNetV2 one of the most active online evalua-
tion datasets tailored for indoor scene semantic segmen-
tation. Apart from semantic segmentation benchmarks,
ScanNetV2 also provides benchmarks for instance seg-
mentation and scene type classification.

ScanNet200. ScanNet200 [12] was developed on the ba-
sis of ScanNetV2 to overcome the limited set of 20 class la-
bels. It significantly expands the number of classes to 200,
representing an order of magnitude increase compared to
the previous version. This annotation enables a better cap-
ture and understanding of real-world indoor scenes with
a more diverse range of objects. This new benchmark al-
lows for a more comprehensive analysis of performance
across different object class distributions by splitting the
200 classes into three sets. Specifically, the “head” set com-
prises 66 categories with the highest frequency, the “com-
mon” set consists of 68 categories with less frequency, and
the “tail” set contains the remaining categories.

S3DIS. The Stanford large-scale 3D indoor spaces
dataset [11], known as S3DIS, acquired through the Mat-
terport scanner, is another highly popular dataset that has
been extensively employed in point cloud segmentation.
This dataset comprises 272 room scenes divided into 6
distinct areas. Each point within the scene is assigned a
semantic label corresponding to one of the 13 pre-defined
categories, such as walls, tables, chairs, cabinets, and oth-
ers. This dataset is specifically curated for large-scale in-
door semantic segmentation.

Cornell RGBD. This dataset [13] provides 52 labeled in-
door scenes comprising point clouds with RGB values. It
consists of 24 labeled office scenes and 28 labeled home
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scenes. The point cloud data are generated from the orig-
inal RGB-D images via the RGBD-SLAM method. This
dataset contains approximately 550 views with 2495 la-
beled segments across 27 object classes, providing valu-
able resources for previous research and development in
indoor scene understanding.

Washington RGB-D dataset. This dataset [14] includes
14 indoor scene point clouds, which are obtained via RGB-
D image registration and stitching. It provides annotations
of 9 semantic category labels, such as sofas, teacups, and
hats.

3 Geometry-based segmentation
Geometry-based solutions for understanding indoor
scenes can be classified as clustering or region growing, or
model fitting based methods. By incorporating heuristic
geometric constraints, most of these methods use hand-
crafted features. The intuition behind geometry-based
methods is that man-made environments normally con-
sist of many geometric structures.

Clustering or region growing. These approaches assume
that points in close proximity to each other are more likely
to belong to the same object or surface. By considering
the geometric properties of these neighboring points, such
as spatial coordinates and surface normals, these meth-
ods can identify regions that share similarities in these
properties. Mattausch et al. [15] proposed a method for
segmenting indoor scenes by identifying repeated objects
from multi-room indoor scanning data. To represent the
indoor scenes, they employed a collection of nearly pla-
nar patches. These patches were clustered based on a patch
similarity matrix, which was constructed using shape geo-
metrical descriptors. Using this approach, the researchers
aimed to effectively segment indoor scenes by exploiting
the inherent repeated object structures. Hu et al. [16] par-
titioned point clouds into surface patches using the dy-
namic region growing method to generate initial segmen-
tation. By leveraging this intermediate data representation,
the model can better account for shape variations and en-
hance its ability to classify objects.

Model fitting. Model fitting is proposed as a more effi-
cient and robust strategy, particularly in scenarios where
noise and outliers are present. Nan et al. [17] introduced a
search-classify pipeline for scene modeling, utilizing pre-
trained object categories to aid in the process. Similarly,
Li et al. [18] proposed an object-retrieved approach that
replaces scanned data with objects sourced from 3D shape
databases. In another approach, Shi et al. [19] trained clas-
sifiers for both objects and object groups, which allows the
decomposition of indoor sub-scenes. These methods rely
primarily on the availability and diversity of current CAD
datasets, which limits their effectiveness. Alternatively,
another strategy involves employing primitive-based ap-
proaches, where indoor scenes are decomposed into a

collection of geometric primitives. By utilizing this strat-
egy, researchers aim to capture the essential geometric in-
formation of a scene without being overly reliant on ex-
tensive CAD datasets. These primitive-based approaches
offer an alternative means of scene decomposition. The
most widely used primitive fitting method is random sam-
ple consensus (RANSAC) [20]. Monszpart et al. [21] pro-
cessed large-scale indoor point clouds via RANSAC-based
plane fitting. Sun et al. [22] developed a graph-cut seg-
mentation method to group primitives found in indoor
sub-scenes. The primitives, such as plane and cylinder,
were extracted by RANSAC and oriented by PCA. Yu et
al. [23] further used a patch relation classier to group pla-
nar patches and achieve instance segmentation.

These geometry-based methods cannot directly assign
object classes or instance labels to each point. Postpro-
cessing is normally required to produce the final segmen-
tation. Recently, several approaches have used geometry-
based segmentation as the pre-processing step and gener-
ated mid-level scene representation as the inputs of deep
learning frameworks. For instance, Huang et al. [24] clus-
tered on-surface voxels to provide a compact representa-
tion of 3D scenes. Landrieu and Simonovsky [25] parti-
tioned the scan data into superpoints, which are geometri-
cally homogeneous elements. Cheng et al. [26] encoded a
superpoint-level representation with non-local operation
at the neighborhood level. Deng et al. [27] proposed an
iterative algorithm to generate superpoints by combining
geometry-based and color-based region growing methods.
Similarly, geometry-based superpoints have been proven
to leverage large-scale point clouds and act as priors in
weakly supervised learning [28–31]. We will review these
deep learning networks in detail in the following sections.

4 Learning-based segmentation with structured
data

Unlike geometry-based methods that use hand-crafted
features, learning-based approaches automatically extract
latent features. However, point cloud feature learning re-
mains difficult due to its unstructured and unordered data
format. Since 3D scenes can be represented in several
forms, such as multi-view images and voxels, it is natural
to transform point clouds into structured data formats.

4.1 Image-based methods
The success and evolution of convolutional neural net-
works (CNNs) in the image domain has influenced the de-
velopment of point cloud feature learning. It is common
to transform 3D data into a structured multi-view repre-
sentation [32, 33]. The idea is to use virtual cameras to
capture scene point clouds from different angles, result-
ing in multi-view RGB images along with corresponding
depth images. CNN is then applied to perform feature
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extraction on the RGB images, and the results of down-
stream tasks are projected back into the 3D space. For in-
stance, the MVCNN [32] virtually scans a 3D object from
12 angles to obtain rendered images, and features are ex-
tracted from each image via the CNNs. These features are
fused into a descriptor, which is used for object classifica-
tion. SnapNet [33] also applies CNNs to multi-view images
from the point clouds. Unlike MVCNN, SnapNet selects a
set of appropriate snapshots of the point cloud to generate
an RGB image and corresponding depth map. CNN is em-
ployed to optimize the RGB-D inputs and produce pixel
labels that are back-projected to corresponding 3D points.
However, these networks have some limitations for seg-
menting indoor scenes. Semantic segmentation based on
multiple views has drawbacks, such as the need to choose
viewpoints and the number of scans. Moreover, the pro-
cess of projection and back-projection inevitably leads to
some loss of information, especially structural features.

4.2 Voxel-based methods
Converting point clouds into voxel-based representations
is another approach for addressing the challenges of regu-
larizing 3D data[34–37]. VoxNet [34] generates 3D bound-
ing boxes on point cloud segments and transforms them
into volumetric grids to represent spatial occupancy. A
3D CNN is used to predict labels directly from the oc-
cupancy grid. SEGCloud [36] utilizes a voxel-based CNN
to segment indoor scenes. The idea is to pre-process the
input point cloud by dividing the indoor scene into vox-
els. A 3D fully convolutional network is then employed
to generate voxel labels. These voxel labels are then in-
terpolated using trilinear interpolation to assign voxel la-
bels to the corresponding points. VV-Net [35] utilizes a ra-
dial basis function-based variational autoencoder network
for point cloud processing. Unlike binary voxel-based rep-
resentations, VV-Net provides richer representations of
point clouds. The voxelization of scanned point clouds
faces certain challenges. There is a risk of losing fidelity and
fine-grained details at low resolutions, while the computa-
tional and memory requirements become excessively de-
manding at high resolutions. Although there have been ef-
forts to mitigate these problems, such as reducing memory
consumption and computation [38, 39], voxel-based rep-
resentations still struggle to handle large-scale scene seg-
mentation in general. Recently, OctFormer [40] attempted
to partition input point clouds into local windows using
octrees, and used sparse octree attention to enhance seg-
mentation performance.

5 Learning-based segmentation with point clouds
Recent studies have explored the direct application of
deep learning techniques, as an alternative to multi-view
and voxel-based approaches, to raw scanned point clouds.

While point cloud data can be obtained directly from scan-
ning devices, their irregular data format presents chal-
lenges to traditional CNNs. To address this issue, PointNet
[41] has emerged as a pioneering approach in point-based
learning. One limitation of PointNet as a benchmark for
point cloud learning is that it does not exploit the struc-
tural information within local neighborhoods of points. In
response, subsequent studies have made advances by en-
hancing the use of sampling methods and feature extrac-
tion techniques. For instance, some works have improved
the sampling method by incorporating farthest point sam-
pling [42] or random sampling [43]. These modifications
aim to enhance both the feature extraction capabilities and
computational efficiency of the network. These advances
built upon the foundation of PointNet address its limita-
tions by incorporating structural information from local
neighboring points and refining the feature extraction pro-
cess. Some researchers choose an alternative approach to
PointNet and design particular convolution operations on
point clouds [44–49]. As a result, these architectures offer
improved performance and capabilities for downstream
3D scene understanding tasks such as point cloud seman-
tic segmentation and point cloud instance segmentation. A
brief timeline of learning-based point cloud segmentation
methods is shown in Fig. 1. These methods include SGPN
[50], PAT [51], PointWeb [52], GSPN [53], ASIS [54], KP-
Cov [55], 3D-BoNet [56], 3D-MPA [57], PointGroup [58],
MPRM [59], PGCNet [60], WSSPK [61], DyCo3D [62],
PSD [63], SSTNet [64], Stratified Transformer [65], Hy-
bridCR [66], SoftGroup [67], SegGroup [68], SQN [69],
3D-WSIS [70], and Mask3D [71].

5.1 Point cloud semantic segmentation
Point cloud semantic segmentation, which is a fundamen-
tal task in 3D indoor scene understanding, aims to parti-
tion a scene into multiple subsets. Based on the semantic
meanings of the individual points, our objective is to assign
each point in the scene to a specific category label. Seman-
tic segmentation methods can be categorized according to
the amount of monitoring information they rely on. De-
pending on the availability of annotated data, these meth-
ods can be categorized into fully supervised methods and
weakly supervised methods.

5.1.1 Fully supervised semantic segmentation
Deep learning-based point cloud semantic segmentation
requires large-scale data for training and typically relies on
dense annotations. Current fully annotated public datasets
make fully supervised point cloud learning possible.

PointNet. Qi et al. [41] introduced the PointNet network
architecture. This network comprises three key compo-
nents: the multi-layer perceptron (MLP) module, the max
pooling structure, and the feature fusion structure. The
MLP module enables the extraction of point cloud fea-
tures through weight sharing. The max pooling structure,
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Figure 1 A brief timeline of learning-based point cloud segmentation

which employs a symmetric function, selects the maxi-
mum feature value within a group of points and serves
as the global feature representation. This design addresses
the problem of irregularity in the data. The feature fu-
sion structure combines the local features and the global
features obtained from the maximum pooling operation.
These merged features are utilized as input, and the MLP
predicts labels for each point. Moreover, PointNet incor-
porates the T-Net structure, which facilitates the learning
of an efficient rotation matrix. PointNet has demonstrated
effectiveness in tasks such as semantic segmentation and
object classification, making it a fundamental network ar-
chitecture in this area.

PointNet++. PointNet++ [42] introduces a set of abstrac-
tion structures consisting of sampling layers, grouping lay-
ers, and PointNet layers. This hierarchical design enables
the extraction of multi-scale features from point clouds. By
stacking multiple layers of this feature extraction structure,
PointNet++ can be applied for tasks such as point cloud
classification and segmentation.

PointCNN. PointCNN [44] transforms the input points
into a latent representation. This transformation, known
as x-conv, is implemented using MLPs. This transforma-
tion allows for the application of traditional convolution,
which is effective in capturing local and global patterns in
regular data domains.

GCN-based methods. Recent studies have explored the
application of a graph convolutional network (GCN) to
point clouds, recognizing that the points and their neigh-
boring points can form a graph structure [25, 46, 72].
The objective is to extract local geometric structure in-
formation while preserving permutation invariance. This
is achieved by constructing a spatial or spectral adjacency
graph using the features of vertices and their neighbors.
DGCNN [46] employs MLPs to aggregate edge features,
which consist of nodes and their spatial neighbors. The
features of the nodes are then updated based on the edge
features. RGCNN [45] considers the features of data points
in a point cloud as graph signals and uses spectral-based
graph convolution for point cloud classification and seg-
mentation. The spectral-based graph convolution oper-
ation is defined using the approximation of the Cheby-
shev polynomial. Furthermore, the Laplacian matrix of the

graph is updated at each layer of the network based on the
learned depth features. This allows for the extraction of
local structural information while accounting for the un-
ordered nature of the data. DGCNN and RGCNN demon-
strate different approaches to the use of GCN. DGCNN
focuses on edge feature aggregation and node feature up-
dates, while RGCNN uses spectral-based graph convolu-
tion and updates the Laplacian matrix based on learned
depth features. SPG [25] is a deep learning framework
specifically designed for the task of semantic segmenta-
tion in large-scale point clouds with millions of points. The
framework introduces the concept of a superpoint graph
(SPG), which effectively captures the inherent organiza-
tion of 3D point clouds. By dividing the scanned scene
into geometrically homogeneous elements, SPG provides
a compact representation that captures the contextual re-
lationships between different object parts within the point
cloud. Leveraging this rich representation, GCN is em-
ployed to learn and infer semantic segmentation labels.
The combination of the SPG structure and GCN enables
the capture of contextual relationships, resulting in accu-
rate semantic segmentation of complex and voluminous
point cloud data. PointWeb [52] designs an adaptive fea-
ture extraction module to find the interaction between
densely connected neighbors. Unlike most point-based
deep learning methods, PGCNet [60] incorporates geo-
metric information as a prior and uses surface patches for
data representation. The idea behind this method is that
man-made objects can be decomposed into a set of geo-
metric primitives. The PGCNet framework first extracts
surface patches from indoor scene point clouds using the
region growing method. With surface patches and their
geometric features as input, a GCN-based network is de-
signed to explore patch features and contextual informa-
tion. Specifically, a dynamic graph U-Net module, which
employs dynamic edge convolution, aggregates hierarchi-
cal feature embeddings. Taking advantage of the surface
patch representation, PGCNet can achieve competitive se-
mantic segmentation performance with much less train-
ing.

Transformer-based methods. The Transformer tech-
nique has revolutionized natural language processing
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(NLP) and 2D vision [73, 74], inspiring the application of
attention-based networks in 3D space. PCT [47] extracts
point cloud features through the attention mechanism.
It solves the unordered problem by merging the spatial
position encoding and the input embedding to represent
each point. PAT [51] uses a parameter-efficient group self-
attention operation and Gumber–Softmax-based sam-
pling to replace multi-head self-attention and furthest
point sampling. Point Transformer [48] directly incorpo-
rates local attention between each point and its neigh-
boring points, effectively addressing the memory cost
problem. Point Transformer V2 [49] further improves the
previous version by replacing the original attention with
group vector attention with grouped weight encoding.
Stratified Transformer [65] improves long-range context
capture by stratified sampling. Refer to Ref. [48] for an il-
lustration of the Transformer-based structure. All these
Transformer-based networks can serve as the powerful
backbone for various point cloud understanding tasks.

In recent years, Transformer-based backbones have
proven to be more effective in exploiting features than
other structures, while cost of computing has increased.
The identification of efficient and powerful learning net-
works for point cloud semantic segmentation is worthy of
further exploration.

5.1.2 Weakly supervised semantic segmentation
Despite tremendous progress, there are still limitations
to the widespread adoption of fully supervised semantic
segmentation methods. Extensive and precise annotations
are required for fully supervised training, while current
point cloud data are still scarce and difficult to annotate.
To cope with limited annotated data, researchers have ex-
plored weakly supervised learning for semantic segmenta-
tion.

One strategy is to utilize only a small fraction of la-
beled points. Xu and Lee [75] proposed a weakly super-
vised network for semantic point cloud segmentation.
This is achieved by three carefully-designed branches.
The Siamese branch enhances the training samples by en-
couraging consistency between the original predictions
and corresponding augmented predictions. The inexact
branch suppresses the activation of negative categories for
any given point. Using spatial and color constraints, the
smooth branch ensures that spatially connected points
with similar colors have the same labels. SQN [69] en-
codes a set of hierarchical latent representations and re-
trieves subsets according to spatial positions. These rep-
resentations are fed into MLPs to predict semantic labels.
DAT [76] incorporates dual adaptive transformations us-
ing an adversarial strategy to leverage local consistency
and structural smoothness. These methods require adap-
tive and high-quality sampling, which is difficult when the
input data scales vary.

Another line of methods is to group input point clouds
into sub-clouds or superpoints. Based on a classification
network trained with sub-cloud level labels, Wei et al.
[59] presented a multi-path region mining network to pro-
duce point-level pseudo labels for fully supervised train-
ing. By constructing a SPG, SSPC-Net [29] achieves point
cloud semantic segmentation through a semi-supervised
graph neural network (GNN). The features of superpoints
are extracted as input for the generation and propagation
of pseudo labels. A coupled attention mechanism is em-
ployed to enhance the extraction of discriminative con-
textual features. Deng et al. [27] used the superpoint as a
constraint and a guide for pseudo label propagation. This
framework consists of a superpoint generation module for
superpoint generation, a pseudo-label optimization mod-
ule for the identification of pseudo labels with low confi-
dence, a superpoint feature aggregation module for fea-
ture extraction, and an edge prediction module for edge
constraints. Refer to Ref. [27] for an illustration of the
superpoint-based structure. Although these methods have
achieved instance segmentation with much fewer annota-
tions, they highly depend on the grouping quality.

As an alternative strategy to the above methods, learn-
ing from unlabeled points can act as a pre-training pre-
text. Drawing inspiration from recent developments in
contrastive learning for self-supervised tasks, Jiang et al.
[77] introduced guided point contrastive learning, which
improves feature representation in the semi-supervised
network. Augmented point clouds generated from input
point clouds are fed into an unsupervised branch for back-
bone network training. The backbone network, classifier,
and projector are shared with the supervised branch to
produce semantic scores. By incorporating self-supervised
learning, Zhang et al. [61] proposed a two-component net-
work for weakly supervised point cloud semantic segmen-
tation. Prior knowledge is learned from large-scale unla-
beled points via a self-supervised network. Together with
a sparse label propagation mechanism, the prior informa-
tion is transferred to a weakly supervised network for la-
bel prediction. Zhang et al. [63] proposed a perturbed self-
distillation framework for point cloud semantic segmenta-
tion tasks. The core of this framework is to maintain con-
sistency between the perturbed branch and the original
branch, bridging the information between labeled and un-
labeled data. The consistency constraints are imposed to
establish a graph topology among all the points. Besides,
the semantic context of labeled points is used to mon-
itor the overall understanding of the point clouds. One
thing one click [30] performs semantic segmentation with
one annotated point per object. A self-training approach
with label propagation is integrated into this framework.
With such sparse supervision, the semantic and geomet-
ric similarities are learned to generate and update pseudo
labels. HybridCR [66] uses a hybrid contrastive regulariza-
tion for finding the similarity in local neighborhoods and
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global contexts. PointMatch [78] learns consistent repre-
sentations from sparse annotations by improving the qual-
ity of pseudo labels. This is achieved by introducing super
point information. Recently, Liu et al. [79] combined ac-
tive learning with self-training to enhance instance seg-
mentation performance by selecting points to be anno-
tated. While pre-training is promising, it still requires large
amounts of data for training, and it can be difficult to fine-
tune models from other tasks.

5.2 Point cloud instance segmentation
Instance segmentation involves the identification and la-
beling of each object as a separate instance. Image-based
instance segmentation can be divided into two distinct
categories: detection-based methods and detection-free
methods. Detection-based approaches first predict the lo-
calization of each object to generate proposals and then
obtain pre-pixel instance masks [8]. For instance, YOLO
[80] predicts semantic classes and the target bounding
boxes for different image grids to complete image segmen-
tation. Detection-free methods rely on the semantic seg-
mentation results and then use clustering techniques to
obtain instance labels. In particular, PFN [81] designs a
framework that trains three sub-tasks, i.e., semantic seg-
mentation, instance location, and instance count for each
category. The final instance-level segmentation results are
obtained by clustering. With the rise of deep learning in
3D data and the availability of large-scale annotated point
cloud datasets, there has been increasing attention on deep
learning based segmentation of 3D point cloud instances.

5.2.1 Fully supervised instance segmentation
Full supervised point cloud instance segmentation re-
quires point-level instance labels. Similar to image-based
instance segmentation, fully supervised methods can also
be categorized into detection-based and detection-free
methods. Refer to Ref. [53] and Ref. [50] for details.

Detection-based methods first predict 3D bounding
boxes and then produce point-level instance masks. GSPN
[53] adopts an analysis-by-synthesis strategy and produces
object proposals. A region-based PointNet is designed to
refine proposals and generate instance segmentation. 3D-
BoNet [56] performs end-to-end regression of 3D bound-
ing boxes and predicts point-level masks for all instances.
It consists of a backbone network, followed by two par-
allel branches. One branch is dedicated to bounding box
regression, while the other branch focuses on point mask
prediction. GICN [82] approximates the instance center
of each object as a Gaussian distribution. This Gaussian
distribution is then sampled to generate candidates, which
are subsequently used to generate corresponding bound-
ing boxes and instance masks.

Detection-free methods first predict point-level seman-
tic labels and then group points into instances. SGPN [50]

is an early deep learning framework for point cloud in-
stance segmentation. Using PointNet++ as the backbone,
the SGPN predicts group proposals based on a similar-
ity matrix. ASIS [54] produces point-level instance la-
bels via joint training with semantic supervision. Simi-
larly, JSNet [83] and JSIS3D [84] also benefit from train-
ing instance and semantic segmentation simultaneously.
Liang et al. [85] used a GNN based on attention-based
neighbor search to obtain discriminative features under
both semantic and instance supervision. Mean-shift post-
processing was then employed to cluster embeddings for
final predictions. SoftGroup [67] is a two-step frame-
work that consists of bottom-up grouping and top-down
refinement. Given the input point clouds, a soft group-
ing module is used to produce instance proposals on the
basis of semantic scores and offset vectors. While most
detection-free methods require post-processing, such as
center voting or non-maximum suppression, Mask3D [71]
utilizes a Transformer-based module to directly predict in-
stance masks. Semantic and geometric information is en-
coded into point features through a stacked Transformer
decoder, which provides an instance heatmap that indi-
cates the similarities among the point clouds. Recently,
SPFormer [86] has been developed to directly predict in-
stances in an end-to-end manner based on superpoint
cross-attention. Superpoint features are aggregated from
point clouds and used as input to the Transformer decoder.

In recent years, detection-based methods, which at-
tempt to perform the instance segmentation task by a
separate detection step, have received less attention than
detection-free approaches that aim for an end-to-end so-
lution. Moreover, different backbones with varying levels
of annotation have been explored. However, the accuracy
of instance segmentation is still low, and the generality of
existing methods lacks strong empirical evidence.

5.2.2 Weakly supervised instance segmentation
While fullly supervised point cloud instance segmentation
can suffer from performance degradation when dense an-
notations are unavailable, weakly supervised frameworks
attempt to classify points into objects with small numbers
of labels.

Liao et al. [87] proposed a semi-supervised framework
for point cloud instance segmentation by using a bounding
box for supervision. The input point clouds were decom-
posed into subsets by bounding box proposals. Seman-
tic information and consistency constraints were used to
produce final instance masks. Hou et al. [88] designed a
pre-training method that could gracefully fine-tune an in-
stance segmentation network. To further enhance feature
exploitation, the spatial information was integrated into
contrastive pre-training. Tang et al. [70] grouped point
clouds into superpoints and explored inter-superpoint
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spatial and semantic relationships. The final instance seg-
mentation was completed by clustering with volume con-
straints. To address the issue of ambiguous labels due
to intersections among bounding boxes, WISGP [31] di-
vided points into two distinct sets. The univocal set con-
sists of points with clear instance labels, while the equiv-
ocal set comprises points with uncertain belongings. Ge-
ometric representations such as polygon meshes and su-
perpoints were employed to propagate univocal labels to
connected equivocal points. Pseudo labels were assigned
to the remaining equivocal points based on an instance
segmentation network. The model was retrained with all
labeled points to produce final instance segmentation re-
sults. One Thing One Click++ [89] expanded the previ-
ous self-training framework for weakly supervised 3D in-
stance segmentation. A 3D-Unet and a Relation Net were
employed to aggregate features and learn pairwise simi-
larities. The initial pseudo labels generated by annotations
were iteratively updated to refine the final outputs. To fur-
ther alleviate dependency on annotations, FreePoint [90]
explored unsupervised point cloud instance segmentation.
A multi-cut algorithm was used to group point clouds into
coarse instance masks based on point features that consist
of coordinates, colors, normals, and self-supervised deep
features. This grouping generated pseudo labels for weakly
supervised network training. The framework can be inte-
grated into supervised semantic instance segmentation as
an unsupervised pre-training pretext. The aforementioned
weakly supervised methods have achieved significant im-
provements in recent years, but they still face difficulties
in handling unbalanced data.

6 Learning-based segmentation with
multi-modality

Recent advances in foundation models of 2D vision and
NLP have inspired the exploration of multi-modality meth-
ods in 3D models [12, 91–98]. For instance, Peng et al. [97]
proposed a zero-shot approach that co-embeds point fea-
tures with images and text. Rozenberszki et al. [12] pre-
sented a language-grounded method by discovering the
joint embedding space of point features and text features.
Liu et al. [91] transferred the knowledge from 2D to 3D
for part segmentation. Wang et al. [92] trained a multi-
modal model that learns from vision, language, and geom-
etry to improve 3D semantic scene understanding. Xue
et al. [93] introduced a unified representation of images,
text, and 3D point clouds by aligning them during pre-
training. Ding et al. [94] distilled knowledge from vision-
language models for 3D scene understanding tasks. Zeng
et al. [95] aligned 3D representations to open-world vo-
cabularies via a cross-modal contrastive objective. Zhang
et al. [98] performed text-scene paired semantic under-
standing with language-assisted learning. How to facilitate
and adapt multi-modalities with point clouds for better

scene understanding is worth exploring. These methods
utilize rich information from vision and text, enabling a
more comprehensive representation of the indoor scene.
However, these approaches require high computational re-
sources, and pre-training is highly dependent on limited
multi-modal datasets.

7 Performance evaluation
7.1 Evaluation metrics
The widely adopted evaluation metrics for indoor point
cloud semantic segmentation include overall accuracy
(OA), mean intersection over union (mIoU), and mean ac-
curacy (mAcc).

The standard evaluation metric for indoor point cloud
instance segmentation is mean average precision with IoU
thresholds (mAP) from 0.5 to 0.95. In particular, mAP@50
is AP score with IoU thresholds of 0.5. Additionally, mean
precision (mPrec) and mean recall (mRec) are frequently
used criteria on the S3DIS dataset.

7.2 Results on public datasets
Semantic segmentation results. Tables 1 and 2 present in-
door point cloud semantic segmentation results of differ-
ent methods on S3DIS Area 5 and ScanNet v2, respec-
tively. We can observe that the state-of-the-art methods
outperform the pioneering work of PointNet [41] with
more than 20% mIoU gains. Transformer-based methods
[48, 49, 65] have been the dominant methods in recent
years, following the great success in NLP and image un-
derstanding. Meanwhile, several weakly supervised meth-
ods show the possibility of achieving semantic segmenta-
tion with fewer data, reaching more than 65% of mIoU on
S3DIS Area 5 and 70% on ScanNet. These results are en-
couraging, although there is still a gap between fully super-
vised and weakly supervised approaches. It is desirable to
further improve the ability to extract features from limited
annotated data.

Instance segmentation results. Tables 3 and 4 present in-
door point cloud instance segmentation results of differ-
ent methods on S3DIS Area 5 and ScanNet v2, respec-
tively. Detection-free methods have received more atten-
tion than detection-based methods because they attempt
to complete the instance segmentation task in an end-to-
end manner. Several networks [31, 68, 70, 87, 89] have
started to learn instance information from limited annota-
tion. These results clearly show that there is still room for
improvement in point cloud instance segmentation using
weakly supervised learning.

8 Discussion
Point cloud segmentation is a crucial task in 3D indoor
scene understanding. With the availability of 3D datasets,
deep learning-based segmentation methods have gained
significant attention and have contributed to the progress
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Table 1 Semantic segmentation results of different methods on
S3DIS Area 5

Methods OA mIoU mAcc

Fully supervised
SEGCloud [36] – 48.9 57.4
PointNet [41] – 41.1 49.0
PointCNN [44] 85.9 57.3 63.9
DGCNN [46] – 57.3 63.9
SPG [25] 86.4 58.0 66.5
PGCNet [60] 86.2 53.6 63.9
PointWeb [52] 87.0 60.3 66.6
PCT [47] – 61.3 67.7
PAT [51] – 60.1 70.8
KPConv [55] – 67.1 72.8
PointTransformer [48] 90.8 70.4 76.5
PointTransformerV2 [49] 91.1 71.6 77.9
Stratified Transformer [65] 91.5 72.0 78.1

Weakly supervised
Deng et al. [27](10%) – 51.5 –
SSPC-Net [29](0.01%) – 51.5 –
OTOC [30] (0.02%) – 50.1 –
Zhang et al. [61] (1%) – 61.8 –
PSD [63] (1%) – 63.5 –
SQN [69] (1%) – 63.6 –
HybridCR [66] (1%) – 65.3 –

Table 2 Semantic segmentation results of different methods on
ScanNet v2 validation set and test set

Methods Val mIoU Test mIoU

Fully supervised
PointNet [42] 53.5 55.7
PointCNN [44] – 48.4
RandLA-Net [43] – 64.5
KPConv [55] 69.2 68.6
PointTransformer [48] 70.6 –
Stratified Transformer [65] 74.3 73.7
PointTransformerV2 [49] 75.4 75.2

Weakly supervised
MPRM [59] (sub-cloud) – 41.1
Zhang et al. [61] (1%) – 51.1
PSD [63] (1%) – 54.7
SQN [69](0.1%) – 56.9
HybridCR [66] (1%) 56.9 56.8
OTOC [30] (0.02%) 70.5 69.1

in this field. However, obtaining accurate segmentation
results often requires dense annotations, which is a la-
borious and costly process. In order to mitigate the re-
liance on extensive annotations and enable learning from
limited labeled data, the research focus has shifted to-
wards weakly supervised approaches in recent years. By
exploring weakly supervised frameworks, researchers aim
to achieve satisfactory segmentation results while mini-
mizing the annotation efforts and costs involved. Despite
the rapid development of point cloud segmentation, exist-
ing frameworks still face several challenges.

Table 3 Instance segmentation results of different methods on
S3DIS Area 5

Methods mAP mAP@50 mPrec mRec

Fully supervised
SGPN [50] – – 36.0 28.7
ASIS [54] – – 55.3 42.4
3D-BoNet [56] – – 57.5 40.2
3D-MPA [57] – – 63.1 58.0
PointGroup [58] – 57.8 61.9 62.1
DyCo3D [62] – – 64.3 64.2
SSTNet [64] 42.7 59.3 65.6 64.2
SoftGroup [67] 51.6 66.1 73.6 66.6
Mask3D [71] 56.6 68.4 68.7 66.3

Weakly supervised
WISGP [31] (3D Box) 37.2 51.0 44.3 56.7
SegGroup [68] (0.02%) 21.0 29.8 47.2 34.9
3D-WSIS [70] (0.02%) 23.3 33.0 50.8 38.9

Table 4 Instance segmentation results of different methods on
ScanNet v2 validation set and test set

Methods Val mAP Val mAP@50 Test mAP Test mAP@50

Fully supervised
SGPN [50] – – 4.9 14.3
GSPN [53] 19.3 33.8 – 30.6
3D-BoNet [56] – – 25.3 48.8
3D-MPA [57] 35.5 59.1 35.5 61.1
PointGroup [58] 34.8 56.7 40.7 63.6
DyCo3D [62] 35.4 57.6 39.5 64.1
SSTNet [64] 49.4 64.3 50.6 69.8
SoftGroup [67] 46.0 67.6 50.4 76.1
Mask3D [71] 55.2 73.7 56.6 78.0

Weakly supervised
WISGP [31] (3D Box) 35.2 56.9 – –
SPIB [87] (0.16%) – 38.6 – –
SegGroup [68] (0.02%) 23.4 43.4 24.6 44.5
3D-WSIS [70] (0.02%) 28.1 47.2 25.1 47.0
OTOC++ [89] (0.02%) – – 32.6 52.9

8.1 Datasets and representations
The size of annotated point cloud data is still limited com-
pared to that of image datasets. Although acquiring point
clouds becomes affordable, annotating point clouds is still
a time-consuming task. Since both fully supervised and
pre-training [99, 100] require a large amount of data, larger
datasets with more diverse scenes are desired to advance
learning-based point cloud segmentation. Therefore, an
efficient and user-friendly annotation method for large
datasets is needed. This might be achieved by unsuper-
vised approaches with geometric priors. The recently de-
veloped datasets, such as the ScanNet200 dataset [12],
have drawn increasing attention to imbalanced learning
[101] in point cloud segmentation.

Existing point cloud segmentation methods use different
data formats, including point clouds, RGB-D images, vox-
els, and geometric primitives. Each data format has its ad-
vantages and drawbacks in different 3D scene understand-
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ing tasks. On the basis of point-based networks, we can
now directly process point clouds for training and reason-
ing. Obviously, not all points are needed for scene percep-
tion. For indoor scene point cloud data, finding a better
representation is still a promising direction of research.

8.2 Data efficiency and multi-modality
Data-efficient learning frameworks are highly desirable
because they alleviate the burden of collecting extensive
dense annotations for training the model. Although cur-
rent weakly supervised point cloud segmentation meth-
ods can achieve competitive performance with fully super-
vised learning, there are still gaps to be filled. More impor-
tantly, the generality and robustness of these data-efficient
methods are not convincing, as they mainly test on pub-
lic datasets with limited sizes rather than on open-world
scenes. Therefore, further exploration of generalist mod-
els is the trend for the future.

One promising route is to integrate other modalities,
such as images and natural languages. Previous works
[37, 102, 103] have explored the combination of 2D images
and 3D point clouds for better understanding of scenes.
Recent developments in foundation models of 2D vision
and NLP have served as inspiration sources for inves-
tigating multi-modalities in 3D data [12, 91–98]. While
these methods achieve incredible results in different 3D
tasks, adapting knowledge from other modalities to indoor
point cloud segmentation is still challenging. In addition,
collecting adequate multi-modal pre-training data can be
costly. How to facilitate and adapt multi-modalities with
point clouds for a better understanding of indoor scenes is
worth exploring.

8.3 Learning methods for dynamic scene segmentation
Current learning-based indoor point cloud segmentation
methods are mostly designed for static scenes. Indoor ob-
jects can be moved around in real-world scenarios, allow-
ing for a more comprehensive representation of the indoor
scene. Moreover, annotating such dynamic scenes is even
more costly than annotating 3D point clouds. 4D represen-
tation learning has become the core of dynamic feature ex-
ploitation. Recent work [104, 105] has explored 4D feature
extraction and distillation to improve downstream tasks
such as scene segmentation. Transferring such informa-
tion to varying scales of indoor scenes is still challenging.
The development of learning methods for dynamic scene
segmentation is an interesting prospect for further inves-
tigation.

9 Conclusion
Point cloud segmentation plays a key role in 3D vision
and intelligence. This paper aims to provide a concise
overview of point cloud segmentation techniques for un-
derstanding 3D indoor scenes. First, we present public

3D point cloud datasets, which are the foundation of
point cloud segmentation research, especially for deep
learning-based methods. Second, we review representa-
tive approaches for indoor scene point cloud segmenta-
tion, including geometry-based and learning-based meth-
ods. Geometry-based approaches extract geometric infor-
mation and can be combined with learning-based meth-
ods. Learning-based methods can be divided into struc-
tured data-based and point-based methods. We mainly
consider point-based semantic and instance segmenta-
tion frameworks, including fully supervised networks and
weakly supervised networks. Finally, we discuss the open
problems in the field and outline future research direc-
tions. We expect that this review can provide insights into
the field of indoor scene point cloud segmentation and
stimulate new research.

Abbreviations
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