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Abstract
As a vital vision task, person re-identification (Re-ID) aims to retrieve the same person under non-overlapping
cameras. It is a very challenging task due to the presence of complex backgrounds, diverse illuminations and
different perspectives. In this work, we integrate the advantages of convolutional neural networks (CNNs) and
transformers, and propose a novel learning framework named convolutional multi-level transformer (CMT) for
image-based person Re-ID. More specifically, we first propose a scale-aware feature enhancement (SFE) module to
extract multi-scale local features from a pre-trained CNN backbone. Then, we introduce a part-aware transformer
encoder (PTE) to further mine discriminative local information guided by global semantics. Finally, a
deeply-supervised learning (DSL) technique is adopted to optimize the proposed CMT and improve its training
efficiency. Extensive experiments on four large-scale Re-ID benchmarks demonstrate that our method performs
favorably against several state-of-the-art methods.

Keywords: Person re-identification (Re-ID), Vision transformer, Global-local features, Deeply-supervised learning
(DSL)

1 Introduction
Person re-identification (Re-ID) aims to retrieve specific
persons in a scene based on the content of images or videos
taken at different times and places. It has drawn much at-
tention due to its diversified real-world applications, such
as safe communities, intelligent surveillance and crimi-
nal investigations [1–3]. Although great success has been
achieved, there are still many challenges in person Re-ID,
such as object occlusion, illumination change, pose distor-
tion and background clutter.

In the past two decades, great progresses have been
achieved in the typical image-based Re-ID task [4]. The
accomplishment of this task largely depends on the ro-
bust representations of person images. In fact, early per-

*Correspondence: zhpp@dlut.edu.cn
1School of Artificial Intelligence, Dalian University of Technology, Dalian,
116024, China
Full list of author information is available at the end of the article

son Re-ID methods [5–7] primarily focus on the hand-
crafted feature extraction and the similarity metric de-
sign. With the development of deep learning technologies,
many works focus on the end-to-end learning of more dis-
criminative features by designing complex deep convolu-
tional neural networks (CNNs). In addition, local informa-
tion is also discriminative and helpful in retrieving the tar-
get person. As illustrated in the upper row of Fig. 1, the fea-
tures extracted by the CNN backbone are horizontally di-
vided into multiple parts in such part-level feature extrac-
tion methods as part-based convolutional baseline (PCB)
and research has demonstrated that the PCB method has
achieved significant performance improvements [8]. How-
ever, the convolutional layers usually model the relation-
ship between pixels in a small neighborhood and cannot
realize the global modeling of person images. Thus, most
CNN-based methods [9–11] are ineffective when facing
certain challenges such as varied posture, occlusion, and
background clutter.
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Recently, transformers [12] have achieved excellent per-
formance in natural language processing and computer vi-
sion. The key reason is that transformers are global op-
erations based on self-attention and can model the re-
lationship between all input elements. As a result, sev-
eral attempts have been made to accomplish person Re-
ID using transformers. For example, Zhu et al. [13] intro-
duced an auto-aligned structure and enhanced the ability
of transformers to extract more discriminative features. He
et al. [14] proposed a pure transformer architecture to inte-
grate camera and viewpoint information and achieved ex-
cellent performance in object re-identification. Although
effective, these transformer-based methods require a large
number of transformer blocks, resulting in high model
complexity. In addition, these works seldom take into ac-
count the local information of persons, which is crucial for
person Re-ID. Therefore, there is still much room for im-
provement in current transformer-based methods.

In this work, we take advantage of CNNs and transform-
ers, and propose a novel learning framework named con-
volutional multi-level transformer (CMT) for image-based
person Re-ID. More specifically, we first utilize a scale-
aware feature enhancement (SFE) module to extract multi-
scale local features from deep CNN backbones. As a result,
they can capture multi-granularity representations of var-
ious appearances in person images. Then, we introduce a
part-aware transformer encoder (PTE) to further extract
local discriminative information guided by global seman-
tics. As shown in the bottom row of Fig. 1, we incorporate
the idea of feature partitioning into the transformer and
design a recursive transformer structure. This structure
can generate hierarchical features for diverse local parts,
resulting in great performance improvements. Finally, we
adopt a deeply-supervised learning (DSL) technique to op-
timize the proposed CMT and improve its training effi-
ciency. Extensive experiments on four large-scale Re-ID
benchmarks demonstrate that our method performs fa-
vorably against most state-of-the-art methods.

The main contributions are summarized as follows:
1) A novel global-local feature learning framework

(i.e., CMT) is proposed for robust person Re-ID.
2) A SFE module is proposed to extract multi-scale

local features, capturing multi-granularity
representations of person images.

3) A PTE is proposed to further extract local
discriminative information guided by global
semantics. The PTE can generate hierarchical
features for diverse local parts.

4) Extensive experiments demonstrate that our
proposed framework can effectively extract robust
and discriminative features. It achieves
state-of-the-art performances on four large-scale
Re-ID benchmarks.

Figure 1 The insight of our proposed CMT. Upper row: Previous
horizontal part divisions in models such as PCB [8]; Bottom row: Our
hierarchical and recursive part encoding with transformers

2 Related works
2.1 Part-based person re-identification
In recent years, image-based person Re-ID has achieved
great improvements in performance. Generally, existing
person Re-ID methods mainly focus on extracting dis-
criminative global features from entire images. However,
focusing merely on the global information of persons has
some limitations, such as ignoring the effectiveness of lo-
cal cues. Fine-grained local part features such as T-shirt
and black backpack can be very useful to identify persons
in complex scenes. As a typical practice, many researchers
resort to part features for pedestrian image description. In
particular, Sun et al. [8] proposed a method to divide spa-
tial features into horizontal strips to improve the Re-ID
performance. Wang et al. [10] utilized a multi-branch net-
work to extract the multi-granularity features of persons.
Zheng et al. [15] proposed a coarse-to-fine pyramid model
to fuse global and local features. Yang et al. [16] designed
a patch-wise loss function to guide the effective learning
of patch features. Cho et al. [17] leveraged the comple-
mentary relationships between global and local features to
refine the pseudo labels of parts and reduce label noises.
Different from the above local-based methods, we propose
a recursive structure to iteratively mine local features un-
der global semantic guidance. By hierarchical learning, our
method can generate diverse local part features of individ-
ual persons, resulting in sufficient richness of image infor-
mation and robustness of the Re-ID results.

2.2 Attention-based person re-identification
Visual attention mechanisms aim to highlight relevant in-
formation and suppress irrelevant information. Inspired
by the advantages of attention mechanisms, researchers
have proposed various attention-based methods to extract
distinguishable features for person Re-ID. For example,
Chen et al. [18] proposed a mixed high-order attention
to capture the subtle differences among pedestrians. Rao
et al. [19] presented a counterfactual attention to capture
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Figure 2 The architecture of our proposed framework. Given a person image, we first utilize the multi-level feature extractor (MFE) to extract
multi-level feature maps. Then, for the CNN branch, we employ a GAP layer to obtain the CNN feature. For three stages of the MFE, we introduce the
transformer branch, and utilize the SFE module and PTE to further extract multi-scale and diverse part features, respectively. All these branches are
supervised by the triplet loss and cross-entropy loss for model training

more discriminative representations. Chen et al. [20] built
a pyramid attention to explore attentive regions in a multi-
scale manner. Zhang et al. [21] proposed a relation-aware
attention to capture the global structural information from
persons. Li et al. [22] presented a harmonious attention to
reduce the misalignments of the same persons. Different
from the above attention-based methods, we introduce at-
tention mechanisms to capture long-range dependencies
between local features, leading to much better results.

2.3 Transformer-based person re-identification
In fact, transformers [12] are initially proposed for pro-
cessing sequential data. With the global modeling abil-
ity, transformers have been recently introduced to many
computer vision tasks, including person Re-ID. For image-
based person Re-ID, He et al. [14] first utilized a pure
transformer-based structure [23] to learn discriminative
features. Zhu et al. [13] added learnable vectors of part
tokens to learn part features and integrated part align-
ments into the self-attention. Lai et al. [24] utilized trans-
formers to achieve adaptive part divisions. Li et al. [25] in-
troduced a diverse part discovery with part-aware trans-
formers for occluded person Re-ID. Liao and Shao [26]
built a transformer-based deep image matching for gen-
eralizable person Re-ID. Wang et al. [27] proposed a self-
guided transformer framework to explore the relations of
body parts for feature alignment. Chen et al. [28] pro-
posed an omni-relational high-order transformer for per-
son Re-ID. Ma et al. [29] proposed a pose-guided trans-
former to mine the inter-part and intra-part relations for
occluded person Re-ID. Liu et al. [30] designed a trigemi-
nal transformer to simultaneously encode the spatial, tem-
poral and spatial-temporal features in complex videos.
These transformer-based methods have achieved superior
performances. However, they generally lack desirable lo-
cal properties. Different from them, we introduce a hybrid
structure combining CNNs and transformers for more ef-
fective person Re-ID.

3 Proposed method
As illustrated in Fig. 2, the proposed framework mainly
includes three key modules: a multi-level feature extractor
(MFE), the SFE module and a PTE. More specifically, the
MFE utilizes a pre-trained CNN backbone (e.g., ResNet-
50 [31]) to extract multi-level features of person images.
Afterwards, the SFE module adopts multi-scale dilated
convolutions [32] with residual connections to capture
multi-granularity feature representations. Furthermore,
with a hierarchical structure, PTE further mines local dis-
criminative information guided by global semantics. Fi-
nally, the DSL technique is utilized to optimize the whole
framework. We will elaborate on these key components in
the following subsections.

3.1 Multi-level feature extractor
As illustrated in the left part of Fig. 2, we utilize the
ResNet-50 [31] pre-trained on ImageNet to extract multi-
level features. Similar to previous works [8, 10, 33], we
remove the fully-connected layers after the global aver-
age pooling (GAP) layer, and change the stride of the fifth
stage to 1, resulting in a 1/16 feature resolution of input
images. In addition, we take the outputs of stages 3, 4 and
5, and introduce an additional convolutional layer to gen-
erate size-fixed multi-level features.

3.2 Scale-aware feature enhancement
Due to the variations of persons in scenes, multi-scale in-
formation [33] is effective for robust appearance represen-
tations. Thus, we propose the SFE module to extract multi-
scale features at three stages of the backbone network.

The structure of our proposed SFE module is illustrated
in Fig. 3. Given an input X i (i = 3, 4, 5), we first reduce the
channel numbers to a quarter of X i by a convolutional layer
and obtain X̃

i. Then, we utilize four dilated convolutional
layers to generate multi-scale features and gradually ex-
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Figure 3 The structure of our scale-aware feature enhancement

tend the receptive fields [32].

M1 = Conv1
(

X̃
i), M2 = Conv2

(
X̃

i),

M3 = Conv3
(

X̃
i), M4 = Conv4

(
X̃

i).
(1)

Then, they are concatenated in the channel and aggre-
gated by another convolutional layer. Meanwhile, a resid-
ual connection is utilized to obtain the final output of SFE,

Y i = X i + Conv
(
[M1; M2; M3; M4]

)
, (2)

where [;] means the concatenation in the channel. In fact,
due to the utilization of different kernel sizes and dilation
sizes, our SFE module is able to capture multi-scale local
cues for scale-aware feature enhancement.

3.3 Part-aware transformer-based encoder
In addition to SFE, we employ PTE to further extract part-
ware fine-grained representations with transformers. As
illustrated in Fig. 4, our PTE is designed with a recursive
and hierarchical structure, which progressively generates
diverse part features with global semantic guidance.

Formally, the PTE takes Y i as input and introduces hi-
erarchical divisions for diverse part features. It should be
noted that all the transformers at the same stage share
weights for computation reduction. The structure of the
transformers is identical to [23]. At the 2k-part learning
stage (k = 1, 2, . . .), we first use a 1 × 1 convolutional layer
to halve the number of channels. Then, we reshape the
feature map into a sequence representation F2k ∈ R

HW×C .
Here, H and W denote the height and width of the input
image, respectively. C represents the number of channels.
The class token Fcls

2k–1 ∈ R
1×C from the 2k–1-part learn-

ing stage is concatenated into the sequence to guide the
fine-grained features. In addition, a new class token Fcls

2k ∈
R

1×C is also concatenated into the sequence to summa-
rize contextual information. Finally, the position embed-

ding Fpos
2k ∈R

(HW +2)×C is added to the sequence. For the 2k-
part learning stage, the input embedding for the j-th part
transformer is:

F̃2k ,j =
[

Fcls
2k ,j;φ

(
Fcls

2k–1,n

)
; F̃2k–1,j

]
+ Fpos

2k ,j, (3)

where j ∈ {1, 2, . . . , 2k}, and n is equal to j/2 when j is even;
otherwise n is equal to (j + 1)/2. φ is a linear projection
to align the channel numbers of features. The above input
goes through several transformer layers, each of which in-
cludes a multi-head self attention (MHSA) module and a
feed forward network (FFN). After building the hierarchi-
cal structure, we generate the part features as:

Fp =
[

F̃
cls
2k ,1; F̃

cls
2k ,2; . . . ; F̃

cls
2k ,2k

]
. (4)

From the above equations and Fig. 4, one can see that
our proposed PTE uses transformers to generate hierar-
chical local features with the guidance of global semantics.
This recursive and hierarchical design can not only gen-
erate multi-scale and multi-granularity features but also
provide global guidance for more discriminative features,
enhancing the extraction of local features. In addition,
we apply transformers to extract local features and stack
fewer transformer blocks, which can significantly reduce
the model complexity.

3.4 Deeply-supervised learning
As illustrated in Fig. 2, we utilize both the feature FCNN

generated from the CNN branch and the features FTrans

from the transformer branch for inference. To train the
whole framework, we adopt the DSL technique [33, 34],
which makes the network optimization a task that is easy
to complete. At each branch, we use the label-smoothed
cross-entropy loss [35] and the batch-hard triplet loss [36].
The label-smoothed cross-entropy loss is defined as:

Lce =
N∑

i=1

–qi ln(pi), (5)

where pi is the predicted logit of identity i and qi is the
ground-truth label. The batch-hard triplet loss is defined
as:

Ltri = [dpos – dneg + m]+, (6)

where dpos and dneg are defined as the distance of positive
sample pairs and negative sample pairs, respectively. [x]+
is max(0, x) and m is the distance margin.

Finally, the overall loss can be summarized as:

Lall = Lce + Ltri + λ

K∑

k=1

(
Lk

ce + Lk
tri

)
, (7)
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Figure 4 Illustration of our proposed part-aware transformer-based encoder. H andW denote the height and width of the input image, respectively.
Q, K, and V represent query, key and value, respectively. MHSA represents a multi-head self attention and FFN means a feed forward network

where K is the number of stages. λ is the balanced coeffi-
cient for the multiple loss terms.

4 Experiments
4.1 Datasets and evaluation metrics
We conducted extensive experiments on four widely-
used person Re-ID datasets, i.e., Market1501 [37],
DukeMTMC-ReID [38], CUHK03-NP [39] and MSMT17
[40]. The Market1501 was collected from six cameras and
has 1501 pedestrians (751 for training and 750 for testing).
The DukeMTMC-ReID was collected from eight cameras
with 1404 pedestrians (702 for training and 702 for test-
ing). The CUHK03-NP dataset consists of 1467 pedes-
trians, which are divided into two sub-datasets: one with
manual labeling and the other with bounding boxes labeled
by a person detector. The MSMT17 is a large-scale dataset
deriving from 15 cameras with 4101 pedestrians (1041 for
training and 3010 for testing). Table 1 provides more de-
tailed statistics of the four datasets. Following previous
works [4, 33], we compute the mean average precision
(mAP) and cumulative matching characteristics (CMC) at
rank-1 for performance evaluation.

4.2 Implementation details
In this work, all the experiments are performed with the
PyTorch toolbox1 and one GeForce RTX 3090 GPU. We
utilize the ResNet-50 pre-trained on ImageNet as our
backbone. In addition, we balance the accuracy and com-
plexity, and ultimately choose to extract four parts through
the PTE. To extract the multi-scale features by the SFE
module, a 1 × 1 convolutional layer and three 3 × 3 dilated
convolutional layers are used to gradually extend the re-
ceptive fields. Dilation sizes d are 1, 2 and 3, respectively.
During training, all images of pedestrians are resized to

1http://pytorch.org.

Table 1 Statistics of our used datasets

Dataset ID Image Train Test #Cameras

Market1501 1501 32668 12936 19732 6
DukeMTMC-ReID 1404 36411 16522 19889 8
CUHK03-NP-Labeled 1467 14096 7368 6728 10
CUHK03-NP-Detected 1467 14096 7365 6732 10
MSMT17 4101 126441 32621 93820 15

256 × 128 and augmented by random cropping, horizon-
tal flipping and random erasing [41]. In one mini-batch,
16 identities are randomly sampled and each identity has
4 images. The Adam optimizer [42] is deployed with an
initial learning rate of 3.5 × 10–4, which is multiplied by
0.4 every 20 epochs until 180 epochs. The source code is
released at https://github.com/AI-Zhpp/CMT.

4.3 Comparison with state-of-the-art methods
In this subsection, we compare our method with other
state-of-the-art methods. The comparison results on four
public Re-ID benchmarks are presented in Table 2. The de-
tail analysis is as follows:

Market1501 As for CNN-based methods, PCB [8] and
MGN [10] mine diverse part features by horizontal strip
features and reach 81.6% mAP and 86.9% mAP on Mar-
ket1501, respectively, which validate the reasonableness
of part learning in Re-ID. In our method, we adopt a
hierarchical transformer-based structure to progressively
extract multi-granularity part representations. Thus, our
method achieves the best mAP and outperforms PCB and
MGN by 8.3% and 3.0%, respectively. Even in comparison
with transformer-based methods, such as AAformer [13],
TransReID [14], APD [24] and HAT [33], our method still
delivers a better performance.

DukeMTMC-ReID On this dataset, our method shows
superior performances. The mAP and rank-1 accuracy are

http://pytorch.org
https://github.com/AI-Zhpp/CMT
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Table 2 Performance(%) comparison with state-of-the-arts. The best performance is marked in bold and the second-best performance
is underlined. ∗ indicates that the methods are using camera information

Methods Backbones Market1501 DukeMTMC-ReID CUHK03-NP MSMT17

Labeled Detected

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

DuATM [44] DenseNet121 76.6 91.4 64.6 81.8 – – – – – –
Mancs [45] ResNet50 82.3 93.1 71.8 84.9 63.9 69.0 60.5 65.5 – –
IANet [46] ResNet50 83.1 94.4 73.4 83.1 – – – – 46.8 75.5
BoT [47] ResNet50 85.7 94.1 75.9 86.2 73.8 74.7 71.2 73.4 49.8 74.0
PCB [8] ResNet50 81.6 93.8 69.2 83.3 – – 57.5 63.7 40.4 68.2
SPReID [48] ResNet152 83.4 93.7 73.3 85.9 – – – – – –
AANet [49] ResNet152 83.4 93.9 74.3 87.7 – – – – – –
CASN [50] ResNet50 82.8 94.4 73.7 87.7 68.0 73.7 64.4 71.5 – –
CAMA [51] ResNet50 84.5 94.7 72.9 85.8 – – 64.2 66.6 – –
BATNet [52] ResNet50 84.7 95.1 77.3 87.7 76.1 78.6 73.2 76.2 56.8 79.5
MHN-6 [18] ResNet50 85.0 95.1 77.2 89.1 72.2 77.2 65.4 71.7 – –
BFE [53] ResNet50 86.2 95.3 75.9 88.9 76.7 79.4 73.5 76.4 51.5 78.8
MGN [10] ResNet50 86.9 95.7 78.4 88.7 67.4 68.0 66.0 68.0 – –
ABDNet [11] ResNet50 88.3 95.6 78.6 89.0 – – – – 60.8 82.3
Pyramid [15] ResNet101 88.2 95.7 79.0 89.0 76.9 78.9 74.8 78.9 – –
JDGL [54] ResNet50 86.0 94.8 74.8 86.6 – – – – 52.3 77.2
OSNet [9] OSNet 84.9 94.8 73.5 88.6 – – 67.8 72.3 52.9 78.7
SNR [55] ResNet50 84.7 94.4 73.0 85.9 – – – – – –
SCSN [43] ResNet50 88.5 95.7 79.0 91.0 – – – – – –
ISP [56] HRNet48 88.6 95.3 80.0 89.6 74.1 76.5 71.4 75.2 – –
HAA [57] ResNet50 89.5 95.8 80.4 89.0 – – – – – –
CDNet [58] CDNet 86.0 95.1 76.8 88.6 – – – – 54.7 78.9
APNet [20] ResNet50 89.0 96.1 78.8 89.3 81.1 83.5 78.1 80.9 59.0 80.8

AAformer [13] ViT-B/16 87.7 95.4 80.0 90.1 77.8 79.9 74.8 77.6 62.6 83.1
TransReID∗ [14] ViT-B/16 88.2 95.0 80.6 89.6 – – – – 64.9 83.3
APD [24] ResNet50 87.5 95.5 74.2 87.1 73.8 77.0 70.6 74.6 57.1 79.8
HAT [33] ResNet50 89.5 95.6 81.4 90.4 80.0 82.6 75.5 79.1 61.2 82.3

CMT (Ours) ResNet50 89.9 95.8 82.1 90.5 80.7 82.9 78.4 81.6 63.5 83.3

82.1% and 90.5%, respectively, and exceed most of the cur-
rent methods. It is noted that SCSN [43] integrates salient
features using a cascaded network architecture, resulting
in a rank-1 accuracy of 91%. Different from it, our method
takes advantages of CNNs and transformers to incorpo-
rate global and local features. Compared with SCSN, our
method gains a 3.1% improvement in mAP.

CUHK03-NP On two sub-datasets of CUHK03-NP, our
method consistently achieves competitive results. Mean-
while, APNet [20] utilizes a pyramid attention to explore
the discriminative regions of person images, and achieves
81.1% mAP and 78.1% mAP on the labeled and detected
sub-datasets of CUHK03-NP, respectively. Different from
APNet, our method extracts fine-grained partial features
by multi-stage transformers. Compared with APNet, our
method improves the mAP on the detected CUHK03-NP
by 0.3%.

MSMT17 On this dataset, our framework also attains
comparable performance in terms of mAP and rank-1.
In fact, TransReID achieves the best mAP and rank-1

on MSMT17. However, TransReID uses ViT [23] as the
backbone to capture long-range dependencies, which con-
sumes high cost complexity and extremely impacts the in-
ference speed. In contrast, our method uses ResNet-50
to extract local representations and combines part-aware
transformers for fine-grained cues. Thus, our method at-
tains a significant improvement of efficiency over Tran-
sReID. In addition, TransReID utilizes camera information
for performance boosting, while our method does not uti-
lize camera information but unifies the strengths of CNNs
and transformers, which leads to the second-best perfor-
mance on MSMT17.

Model complexities To further clarify the computation
advantages, we compare the model complexity of some
typical methods in Table 3. We use floating point oper-
ations per second (FLOPs) to test our model’s computa-
tional complexity. As can be seen in Table 3, our proposed
model shows great advantages over other transformer-
based methods in terms of FLOPs. We also note that
our proposed model has more parameters. This problem
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Table 3 Comparisons of model complexities. Both CNN-based
methods and transformer-based methods are selected for
comparisons. Params means parameter. FLOPs denotes floating
point operations per second

Methods Backbones Market1501 Params.
(M)

FLOPs
(G)mAP(%) Rank-1(%)

BoT [47] ResNet50 85.7 94.1 25.64 4.08
ABDNet [11] ResNet50 88.3 95.6 53.64 6.27
APNet [20] ResNet50 89.0 96.1 29.90 8.16
HAT [33] ResNet50 89.5 95.6 219.44 21.44
TransReID∗ [14] ViT-B/16 88.2 95.0 104.71 178.52
CMT (Ours) ResNet50 89.9 95.8 286.54 21.32

Table 4 Ablation analysis of key modules. Params means
parameter. FLOPs denotes floating point operations per second

Methods MSMT17 Params.
(M)

FLOPs
(G)mAP(%) Rank-1(%)

Baseline 49.8 74.0 25.64 4.08
+ PTE 62.6 82.4 238.79 16.01
+ SFE 63.5 83.3 286.54 21.32

can be solved by light-weight designs. CNN-based meth-
ods generally have fewer parameters and FLOPs. How-
ever, their performances are usually worse than those of
transformer-based methods. Overall, our proposed model
achieves a good balance between the Re-ID performance
and the model complexity.

4.4 Ablation studies
To verify the effectiveness of our proposed modules, we
conduct ablation experiments on the MSMT17 dataset.

Effectiveness of key modules The ablation results of our
key modules are reported in Table 4. For the baseline
method, we fine-tune ResNet-50 on MSMT17 and adopt
GAP to obtain a feature vector for testing, which achieves
49.8% mAP and 74.0% rank-1 accuracy. Then, we add our
PTE to the baseline to further extract diverse part features
at three stages. In PTE, the global feature is recursively
passed into part-aware transformers and used to refine
part features. Thus, our PTE brings significant improve-
ments over the baseline (i.e., 12.8% mAP and 8.4% rank-1
accuracy). Furthermore, we insert SFE to enhance the lo-
cal features before PTE. SFE can capture multi-granularity
representations of person images. Therefore, it brings per-
formance improvement (i.e., 0.9% mAP and 0.9% rank-1
accuracy). Overall, the resulting improvements verify the
effectiveness of our SFE module and PTE, which play a
critical role in the extraction of multi-scale and discrim-
inative features.

Effects of the PTE module In PTE, we introduce a hierar-
chical transformer to split and encode part features. The

Table 5 Ablation analysis of the PTE module. Params means
parameter. FLOPs denotes floating point operations per second

Methods #Parts MSMT17 Params.
(M)

FLOPs
(G)mAP(%) Rank-1(%)

Baseline – 49.8 74.0 25.64 4.08

+ PTE 1 56.7 79.6 127.33 11.38
2 62.0 82.1 192.19 14.50
4 62.6 82.4 238.79 16.01

Table 6 Ablation results of deploying PTE after different levels of
ResNet-50

Methods mAP(%) Rank-1(%)

ResNet-50 49.8 74.0

Res3 + PTE 56.7 77.2
Res4 + PTE 59.5 80.8
Res5 + PTE 53.0 76.9
Res3, Res4 + PTE 61.8 81.1
Res3, Res4, Res5 + PTE 62.6 82.4

ablation results are summarized in Table 5. As the recur-
sive and hierarchical structure advances, the accuracy also
achieve significant improvements. It can be observed that
the mAP and rank-1 accuracy are improved by 5.3% and
2.5%, repectively when the spatial features are divided into
two parts. With the increase of the part numbers, the di-
versity of fine-grained clues is captured. In our work, four
parts are extracted for the trade-off between accuracy and
complexity,.

Effects of PTE at different levels In experiments, we de-
ploy PTE at different levels of ResNet-50 to realize multi-
level part learning. The experimental results are listed in
Table 6. From the results, one can observe that the deploy-
ment of PTE at a single level can improve performance.
The best performance is achieved when PTE is deployed
at three levels of ResNet-50. This fact confirms that multi-
level representation learning is helpful to achieve better
performances of person Re-ID.

Effectiveness of DSL In this work, we introduce the DSL
for better model training. By deploying losses at different
stages, the ablation results are reported in Table 7. It can
be observed that the single deployment of supervision at
the 4-part learning stage is not sufficient and more super-
vision is needed to train the entire framework well. When
supervision is deployed at all stages, we can obtain the best
performance.

Effects of different transformer layers and attention heads
The number of transformer layers and attention heads may
change the structure and performance of our PTE. Thus,
we perform ablation experiments to examine the effects
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Table 7 Ablation results of DSL

Methods mAP(%) Rank-1(%)

4-part 46.0 70.0
4-part + 1-part 60.4 81.5
4-part + 2-part 50.3 72.4
4-part + 2-part + 1-part 63.5 83.3

Figure 5 Ablation results with different transformer layers

Figure 6 Ablation results with different attention heads

of transformer layers and attention heads. As shown in
Fig. 5, the performance of our proposed model is signif-
icantly reduced without transformer layers. The perfor-
mance degradation indicates that the features obtained
solely from CNNs are not robust enough, and transformers
can implicitly learn more discriminative information. In
addition, we observe that when the number of transformer
layers is set to 2, the best performance can be achieved.
Meanwhile, with the increase of transformer layers, there
are some fluctuating changes in performance. This may be
because different transformer layers can change the local
features. Furthermore, from Fig. 6, it can be observed that
as the number of attention heads increases, the retrieval
accuracy continues to be improved. Nevertheless, the per-
formance is saturated when the number of attention heads
is equal to 16. Based on the aforementioned facts, we set

Figure 7 Ablation results with different balanced coefficient λ

the numbers of transformer layers and attention heads to
2 and 16, respectively.

Effects of the balance coefficient λ In our work, we utilize
λ to balance different loss terms in Eq. (7). To verify its ef-
fect, we conduct experiments by changing the coefficient
λ from 0 to 3. As displayed in Fig. 7, with the increase of λ,
the performance continues to be improved. When λ is set
to 1.5, the best performance can be achieved.

4.5 Visualization analysis
Visualization of feature maps To verify the effectiveness
of the proposed modules, we further visualize the features
of person examples. The visualizations are shown in Fig. 8.
In each example, from left to right, there are the original
image, baseline features, SFE features, and PTE features.
It can be observed that increasingly detailed information
is captured with the gradual utilization of our key mod-
ules. Moreover, the feature maps obtained from the base-
line generally focus on salient regions, such as the heads
or shoes of persons. With the utilization of the SFE mod-
ule to extract multi-scale features, our model can capture
more meaningful information, such as bags and clothing.
With the utilization of the PTE module to extract diverse
local features, our model can capture more detailed in-
formation, such as torso details. The visualization results
demonstrate that our PTE can indeed mine discriminative
and diverse local cues guided by global semantics. The vi-
sualizations intuitively verify the effectiveness of our pro-
posed SFE module and PTE.

Meanwhile, we visualize the different parts in PTE for
qualitative comparison in Fig. 9. Comparing the 2-nd, 3-rd
and 4-th columns, it can be observed that more local cues
can be captured as the number of parts increases. These
visualization comparisons further explain the reasonable-
ness of our PTE.

Retrieval results We also visualize the retrieval results on
the MSMT17 dataset in Fig. 10. It can be observed that
the retrieval accuracies are improved when the proposed
key modules are gradually added to the baseline method.
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Figure 8 Visualizations of features obtained from Baseline, SFE and PTE

Figure 9 Visual comparisons of different part features in PTE

As illustrated in Fig. 10, the matching accuracies of the
baseline method are the worst because the correct samples
have extremely similar global appearances to the incorrect
samples. However, with the utilization of SFE and PTE,
the matching accuracy is significantly improved. Our SFE
module and PTE can extract the multi-scale and multi-
part features from global appearances. They are useful in
improving the ability of our method to distinguish similar

samples. The retrieval results further validate the effective-
ness of our proposed modules.

t-SNE visualization As shown in Fig. 11, we visualize the
feature distributions of the baseline method and our CMT
using t-SNE [59]. We randomly select 18 persons from the
MSMT17 dataset, and 50 images of each person. Differ-
ent colors represent different identities. From Fig. 11(a),
it can be observed that the feature distributions with the
same identity are relatively scattered. There are some mis-
classified samples. However, with our CMT, features of
the same identity are more clustered and features of dif-
ferent identities are relatively separated. In addition, there
are few misclassified samples compared with the baseline
method. The t-SNE visualizations show that our method
indeed helps the method learn a more discriminative em-
bedding space, which further confirms our superiority to
achieve robust person Re-ID.

5 Conclusion
In this paper, we integrate the advantages of CNNs and
transformers and propose a novel learning framework
named CMT for image-based person Re-ID. First, we pro-
pose a SFE module to extract the multi-scale features at
different levels of the CNN backbone. Furthermore, we
propose a PTE to generate and mine local diverse part fea-
tures with global guidance. Experimental results on four
public Re-ID benchmarks demonstrate that our method
performs favorably against most state-of-the-art methods.
In the future, we will reduce the computational complexity
and improve the efficiency of our part-aware transformers.
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Figure 10 Visualization of the retrieved results on the MSMT17 dataset. The top-5 retrieved images are presented. The true matches are annotated
by green boxes and the wrong matches are annotated by red boxes

Figure 11 Comparison of feature distributions in Baseline and our
CMT by using t-SNE. Different colors represent different identities
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