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Abstract
Graph layout can help users explore graph data intuitively. However, when handling large graph data volumes, the
high time complexity of the layout algorithm and the overlap of visual elements usually lead to a significant decrease
in analysis efficiency and user experience. Increasing computing speed and improving visual quality of large graph
layouts are two key approaches to solving these problems. Previous surveys are mainly conducted from the aspects
of specific graph type, layout techniques and layout evaluation, while seldom concentrating on layout optimization.
The paper reviews the recent works on the optimization of the visual and computational efficiency of graphs, and
establishes a taxonomy according to the stage when these methods are implemented: pre-layout, in-layout and
post-layout. The pre-layout methods focus on graph data compression techniques, which involve graph filtering and
graph aggregation. The in-layout approaches optimize the layout process from computing architecture and
algorithms, where deep learning techniques are also included. Visual mapping and interactive layout adjustment are
post-layout optimization techniques. Our survey reviews the current research on large graph layout optimization
techniques in different stages of the layout design process, and presents possible research challenges and
opportunities in the future.
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1 Introduction
Large graph visual analysis has played a prominent role in
various research fields. However, the generation of large
graph layouts often faces the problems of high time com-
plexity, stacking of visual elements, and cluttered visual ef-
fects. Although there is no clear definition of large graph
data, with the development of big data, the scale of graph
data shows an explosive growth, leading to traditional lay-
out methods having difficulty generating an expected lay-
out within a limited amount of time. Therefore, improving
computing efficiency and optimizing visual effects are the
most urgent needs in the current field of large graph visu-
alization. Previous surveys about large graph visualization
mainly focus on the layout algorithms and the usages of
different kinds of optimization techniques, but in which
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stage these methods should be implemented is not men-
tioned, which is thought to be more beneficial for other
relevant research and system design of large graph visual
analysis.

Taxonomy. In this paper, the large graph layout process is
divided into three stages: pre-layout, in-layout, and post-
layout (see Table 1). According to the tasks of each stage,
the corresponding optimization techniques are summa-
rized from the perspective of computational efficiency and
visual quality in each implementation stage, which is more
instructive and practical for further research.

Computing efficiency. The methods of computing effi-
ciency optimization are summarized from the aspects of
graph data compression, computing architecture and algo-
rithm, which are almost absent in previous studies. These
techniques are mainly carried out in pre-layout and in-
layout stage. The graph layout methods based on the deep
learning model are included in Sect. 4.3. This field is still
in its infancy and needs further in-depth research.
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Table 1 Categories of techniques and relative works for large graph visualization

Stage Techniques Articles

pre-layout data compression graph sampling [1–10]
graph aggregation [11–16]

in-layout architecture based [17–23]
algorithm based [24–29]
deep learning based [30–34]

post-layout visual mapping edge bundling [35–38]
visual encoding [16, 39, 40]

interaction [41–46]

Visual Quality. Visual mapping is an automatic method
for optimizing visual quality, which mainly includes defor-
mation and abstraction. However, manual interaction is
necessary in some cases, which provides exploration and
batch manipulation functions. These methods are usu-
ally applied in the post-layout stage, and some are com-
bined with the techniques from the pre-layout and in-
layout stages.

Although there are different methods for graph layout,
our survey will mainly focus on the general node-link mod-
els, which are used in large graph visualization more often,
while other layout models will also be mentioned. Only the
optimization of static graph data is discussed, while dy-
namic graph data are not considered.

2 Relative works
2.1 Large graph visualization
A survey on large graph visual analysis technology con-
ducted by Von et al. [47] summarized previous work
from four perspectives: algorithm analysis, visual repre-
sentation, user interaction and visual analysis. Although
their paper designed evaluation indicators for graph lay-
out quality including general criteria, dynamic criteria and
aesthetic scalability, it is far from now and does not cover
the latest related works. Hu et al. [48] reviewed layout algo-
rithms and visualization techniques for large graphs. They
provided a detailed summary and classification of previ-
ous graph layout algorithms and introduced various ap-
proaches to optimizing the visual effect, which involves
graph abstraction, interactive exploration and visual map-
ping techniques. However, the optimization techniques in
different fields have made much progress, and new chal-
lenges are raised by current studies.

2.2 Graph visualization
Beck et al. [49] summarized the visualization of dynamic
graphs from the perspectives of animation, time and ren-
dering methods, and designed evaluation indicators for
the visualization of dynamic graphs. Vehlow et al. [50]
studied the visualization of group structure in graphs, fo-
cusing on the study of the display coding of elements in
the real graph group structure. Didimo et al. [51] studied

graph layout techniques in non-planar spaces, discussed
the constraints and limitations of graph visualization in
non-planar spaces, and summarized the differences in the
layout effects of different non-planar spaces. Schöttler et
al. [52] studied the visualization- and interaction-related
work of geospatial networks and discussed the trade-off
between geographic map information and visualization
readability from four dimensions. Burch et al. [53] put for-
ward that the graph visualization was divided into graph
interpretation, graph memory and graph creation, and
new aesthetic indicators were established.

3 Pre-layout: graph data compression
The excessive size of data is the main cause for exceed-
ing the time limit, poor visual effect, and low interaction
quality. Reducing the size of the graph data is one of the
most effective optimization approaches and is often used
in research fields such as community detection and rec-
ommendation systems. This approach can reduce both
the time cost and the number of elements in the view.
Nevertheless, how to preserve the structural features of
the graph is a new problem to be solved during the pre-
processing of graph data. This process is called graph ab-
straction, where graph sampling and graph aggregation are
the two main processing strategies. Taking the operations
on nodes for examples, Fig. 1 describes the differences be-
tween the sampling and aggregation strategies.

3.1 Graph sampling
The graph sampling method filters the nodes or edges in
the graph according to a certain pattern and extracts a
subgraph as a representative sample of the original graph.
The sampling pattern can be random, deterministic or
partially random. A good sampling strategy can preserve
the topological structure while reducing the size of the
original graph. The current mainstream graph sampling
techniques can be divided into three categories: vertex-
based sampling, edge-based sampling, and travel-based
sampling. Wu et al. [1] analyzed the preserving degree of
visual features of node-link graphs by different sampling
strategies from the perspective of visualization and pro-
vided a supplement for evaluation metrics.
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(a)

(b)

Figure 1 The graph sampling and graph aggregation processes,
which take the operations on nodes for examples. (a) Graph sampling
selects nodes from original graph and filters the unselected part.
(b) Graph aggregation matches nodes and clusters each group of
nodes into a weighted super-node

3.1.1 Vertex-based graph sampling
Selecting a set of nodes from a graph and preserving the
connections between the selected nodes is called vertex-
based graph sampling such as random node sampling (RN)
[54]. This is a method of sampling among the nodes ran-
domly, while other methods such as random PageRank
node sampling (RPN) and random degree node sampling
(RDN) [54] optimize the process by weighted random. Al-
though the mechanism of these methods is simple, the re-
sult of sampling may vary in connectivity and density dis-
tribution of the graph due to randomness.

In recent years, an increasing number of studies have be-
gun to pay attention to the association between sampling
nodes and the topological structural features and semantic
space in neighbors. In terms of structural features, Zhao et
al. [2] noticed that several nodes accounting for a relatively
small part of a graph play a crucial role in the connectiv-
ity and community structure characteristics of the graph.
They classified these nodes into four types and defined the
series of nodes as the minority structure of the graph. They
also designed a detection algorithm for each type of minor-
ity structure.

In terms of semantic space, Cai et al. [3] proposed the
adaptive UNI sampling (adpUNI) model on the basis of the
original uniform sampling (UNI) [55]. The model consid-
ered the distribution and association of node attributes,
divided nodes into multiple intervals, and adaptively ad-
justed the sampling rate to solve the problem of changes of
graph connectivity caused by the uniform sampling prob-
ability of nodes in the UNI model. To improve the repre-
sentativeness and connectivity of sampling, they proposed
the adpUNI+N model to optimize the adpUNI model by

adding the neighbor nodes to the sample set. Zhou et al.
[4] developed a context-aware sampling method through
graph representation learning. Dimensionality reduction
was first performed to extract the two-dimensional repre-
sentation of nodes from the Hilbert space. Next, an adap-
tive blue noise sampling strategy was introduced, which
selects a subset of nodes from the vector space, and filters
nodes within a certain range of selected nodes. Then, in
the farther range, the nodes with better connectivity were
selected as the target sampling nodes for the next round.
This process would loop until all the nodes were filtered or
selected.

3.1.2 Edge-based graph sampling
Similar to the vertex sampling-based method, the main
idea of edge-based sampling is to select a subset from the
edge set with nodes on its ends. The simplest and most
classic method is also to sample in a random way as ran-
dom edge sampling (RE) [54], although this method faces
the same problem of graph connectivity and density dis-
tribution change as random node sampling. Based on the
classical algorithm, total inductive edge sampling (TIES)
[57] adopts a graph induction method to supplement the
edges between the sampling nodes to restore the topology
and connectivity of the graph.

Recent research on edge-based sampling has started
to focus on the impact of edge metrics on graph sam-
pling. Batjargal et al. [5] proposed edge metricity-based
faster graph sparsification (EM-FGS) based on edge met-
rics. They defined a semimetric edge: with the given edge
weight, if there are other alternative paths between the end
nodes of an edge, the edge is called a semimetric edge. By
continuously removing semimetric edges, the graph struc-
ture can be effectively simplified. The distributed graph
sampling (DGS) model developed by Jaouadi et al. [6] se-
lects the minimum centrality value of the nodes at both
ends of the edge as the edge metric, which is used as the
basis for edge removal. Based on the MapReduce frame-
work, a distributed computing method is used to improve
the computing speed. According to the experimental ver-
ification, the time complexity and space complexity of the
DGS model are both O(|E|), where |E| is the scale of the
edge set.

3.1.3 Traversal-based graph sampling
There are a variety of travel-based methods. The com-
mon sampling strategy of these methods is to start from
a set of initial points or edges and continuously widen the
sample size according to the current sampling informa-
tion. The advantage of this strategy is that the connectiv-
ity of the graph is better preserved. Depth-first (DF) and
breadth-first (BF) sampling are two basic traversal-based
sampling methods [7]. The snowball algorithm (SB) [58]
adopts a strategy similar to breadth-first, which selects a
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fixed proportion of neighbor nodes and visits the nodes
in each iteration. The forest fire algorithm (FF) [56] selec-
tively burns the connection according to the probability of
forward burning, and there is a certain probability that the
node at the other end will burn its own connection.

Random walk (RW) [8] is another representative idea of
travel-based sampling. Although this method is relatively
simple to implement, the major drawback is that it is easy
to get stuck in local areas and keep looping. For this prob-
lem, many methods have been proposed for improvement.
DRaWS [9] is the latest sampling method based on random
walk, which combines clique and single node relation-
ships. In this work, two random walk strategies are com-
bined: one is based on the many-to-one structure to obtain
the shortest sampling path, thereby reducing the compu-
tational cost; the other is based on the one-to-many struc-
ture so as to shorten the sampling path. This method can
significantly reduce the computational cost while main-
taining the original graph structure. The MH random walk
algorithm (MHRW) [10] combines the principles of ran-
dom walk and Metropolis–Hastings (MH) algorithm. The
algorithm randomly selects a node u and any other node v
in its neighbors, and selects a number p randomly between
(0, 1). If the value of p is lower than the degree ratio of node
u to node v, then the algorithm will walk from node u to
node v; otherwise it stays at node u. This method is suit-
able for generating small samples, and is more applicable
in well-connected graphs.

3.2 Graph aggregation
Graph aggregation is also known as graph coarsening. Dif-
ferent from graph sampling, the idea of graph aggregation
is to highlight the skeleton features of the graph by merg-
ing and folding vertices and edges. Graph aggregation is
usually a multi-level strategy since the folding operation
can be repeated several times. It can also achieve multi-
level exploration by combining it with the visual interac-
tion technology. Currently, most of the graph aggregation
methods are implemented based on weight calculation and
community detection algorithms. In the result, a weighted
“super-node” is usually used to represent a single commu-
nity. The series of results can be metaphorically encoded
by means of visual coding.

Matching is the earliest idea of graph aggregation. Early
research mainly includes random matching [59] and edge
matching [60]. The random matching algorithm contin-
uously selects two adjacent nodes randomly in the graph
to fold, but this method may cause damage to the parti-
tioning result. In contrast, the edge matching method per-
forms better in the preservation of the community struc-
ture. One of the popular algorithms for edge matching is
heavy edge matching [60], which randomly selects a node
to make it aggregate with nodes that are not contracted
with the largest edge weight in neighbors. This method

can obtain a high-quality partition and preserve the topol-
ogy of the graph. A more recent model, multi-level coars-
ening compact areas (MCCA) [11] developed by Rhouma
et al. uses a greedy strategy. During each iteration, well-
connected nodes are first selected for merging, and then
the weights of nodes and edges are updated to minimize
the graph shrinkage rate. When the shrinkage rate reaches
a threshold, the algorithm will stop. Glantz et al. [12] intro-
duced the concept of edge rating, which improves the se-
lection strategy of shrinking edges. This method uses the
conductivity of the edge (the number of shortest paths tra-
versed by the edge) as the weight of the edge, indicating the
importance of the edge to the connectivity. Then, the mini-
mum spanning tree of the graph is calculated, the edges are
classified according to the rating, and the conductivities of
all the basic cuts of the spanning tree is calculated within
the linear time complexity, which is used as the evaluation
index of node aggregation.

Paying more attention to the modularity and community
structure of graphs is the trend in recent years for graph
aggregation. By aggregating nodes within a community,
a clearer community structure and topological relation-
ship can be presented. Combined with the visual encod-
ing techniques (see Sect. 5.1), the gathered nodes can be
represented by different symbols such as Motif [16]. Puro-
hit et al. [13] noticed that the spectrum of graphs (the first
eigenvalue of the adjacency matrix) characterizes the scat-
tering properties of the network. If the first eigenvalue of
two networks is similar, then they have high structural sim-
ilarity. The COARSENET method proposed in this work
minimizes the eigenvalue change as constraints, where the
aggregation degree of graph data can reach 90% within
the complexity of linearity, and will not excessively affect
the spread characteristics of the graph. Ohsaka et al. [14]
introduced the MaxInf method based on the concept of
maximum influence. After the graph is divided into mul-
tiple communities, each community is regarded as a sin-
gle super-node with the weights of nodes and edges up-
dated. This method can effectively preserve the structural
features of the graph. Heuer et al. [15] designed a method
that considers local and global structures to deal with very
large graphs. They used the maximum modularity algo-
rithm to complete the pre-processing of community detec-
tion and then proposed a coarsening algorithm that treats
each group as a super-node at the next level. According to
the density of the graph, the generated edges are weighted
using three methods.

4 In-layout: computing performance
Time complexity is a major problem in large graph lay-
out calculations. When handling large graph data volumes,
the computational efficiency of algorithms with high time
complexity will be very low, which is unacceptable for
users and researchers. Traditional layout algorithms, for
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example, force-directed layout [61] and dimensionality re-
duction layout [62] often have high time complexity and
are not suitable for calculating layouts directly. Therefore,
traditional methods need to be optimized from the per-
spective of computing architecture and time complexity
of the algorithm. In addition, deep learning based meth-
ods have been implemented as a new approch with great
potential in terms of computational efficiency and layout
quality, which will be introduced in Sect. 4.3.

4.1 Architecture based
Efficiency optimization based on computing architecture
relies on high-performance computing (HPC) [17]. HPC
is a system in which software and hardware work to-
gether, including computing nodes, storage and file sys-
tems, network switching, cluster management and re-
source scheduling. In fact, high-performance computing
has been used in the calculation of the large-scale scientific
problems such as atmosphere, ocean currents, and gene
sequencing, as well as big data storage and data mining.
The currently used high-performance computing archi-
tectures mainly include distributed computing and GPU
computing.

Distributed computing. This architecture reduces the to-
tal running time required for computing by dividing com-
putation tasks into multiple parts, assigning them to mul-
tiple computing devices for processing, and finally merg-
ing and summarizing the computing results. Distributed
graph layout computing usually divides a graph into mul-
tiple subgraphs based on the topology and modularity
of the graph. This segmentation method can effectively
reduce the intersection problem between communities.
Multi-GiLA [18] is the first multilevel force-directed graph
layout algorithm based on a vertex-centric computation
paradigm. The algorithm is divided into four stages: prun-
ing, segmentation, layout, and restoration. All nodes with
degree 1 are removed in the pruning stage to reduce the
amount of computation and re-insertion during the recov-
ery phase, which can also minimize the additionally in-
troduced crossing edges. The method divides the vertices
into several subsets, creates balanced partitions accord-
ing to the topology, and assigns each subset to an inde-
pendent computational unit. The layout process is divided
into three stages. First, the distributed Solar Merger algo-
rithm is used to reduce the size of the graph and smooth
the subgraph. Then, inspired by the FM3 [19] algorithm,
the distributed Solar Placer algorithm places the new sub-
graph according to the location information of the previ-
ous subgraph. Finally, the layout of each subgraph is cal-
culated by the GiLA algorithm. MuGDAD [20] is another
distributed layout method that segments a graph at multi-
ple levels by computing maximum independent sets (MIS).
This method clusters nodes according to the neighbor-
hood of the selected node. Once the layout of a graph at

the higher level is computed, a distributed join operation
is utilized to propagate node positions to the lower level.
MuGDAD uses a batch synchronization parallel model to
find MIS, which defines a super-step. In these super-steps,
each node in the graph will execute a series of tasks in par-
allel, including sending the message to be read in the next
super-step to another node, reading the message received
from the previous super-step, and changing the current
node state.

GPU Computing. This architecture is a very commonly
used hardware accelerator in high-performance comput-
ing and is widely used in PCs, workstations, and large
device clusters. Compared with distributed computing,
GPUs usually have a large number of computing units,
but these computing units are only suitable for executing
some simple tasks. For graph layout, GPU is usually used
to complete the computation of force models or matrices.
Godiyal et al. [21] used a variant of fast multipole method
(FMM) to estimate repulsion at long distances in force-
directed graphs, constructing and traversing kd-trees on
the GPU to implement computations on multipoles. Com-
pared to quadtrees [24], the kd-tree is a density decompo-
sition tree rather than a spatial decomposition tree, and
thus, its running time does not suffer from distribution
dependence. Gajdoš et al. [22] proposed a variant of the
Fruchterman-Reingold (F-R) force-directed layout algo-
rithm to accelerate the computation of repulsion by GPU.
First, the positions of vertices are copied to texture mem-
ory and the index of vertices is allocated according to the
Hilbert Z-order curve. Then, each block loads the position
from texture memory to sData shared memory according
to the index. Finally, each thread computes the repulsion
force in the context of shared memory and stores the re-
sult into sForces shared memory, and then saves the re-
sult to global memory. Zellmann et al. [23] used NVIDIA’s
RT kernel to implement hierarchical tree traversal in hard-
ware, mapping the graph layout problem to a ray tracing
problem, and solved the problem through dedicated ray
tracing hardware.

4.2 Algorithm based
Reducing the algorithm complexity of time and space is
the core goal of algorithm efficiency optimization research
on graph layouts. Earlier optimization algorithms, such as
the Barnes-Hut algorithm [24] were mostly used for col-
lision detection between multiple objects. This algorithm
reduces the original O(n2) time complexity to O(n log n)
and is often used to optimize the repulsion calculation and
collision detection.

Most of the recent studies have shown that the time com-
plexity of the graph layout is reduced to linear or sublinear
time. The previous graph layout algorithm usually takes
the global influence into consideration. However, for each
node, the influence from the nodes in its neighborhood
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should be much greater than those far from; therefore, re-
cent studies have focused more on reducing the scale of
computation by sparsing and sampling, so as to further op-
timize the execution efficiency of the algorithm. Gove [25]
utilized a repulsion calculation method based on random
vertex sampling, in which the vertex set used in its calcula-
tion consists of two parts: the randomly selected part and
the fixed-size part. For the first part, using the improved
Fisher-Yates shuffle algorithm, a random set of vertices R
is selected to calculate its repulsion on another set of ver-
tices U , where |U| = |V |φ , |R| = |V |(1–φ) and the time com-
plexity of this part is O(|V |). For the second part, each ver-
tex u corresponds to a fixed-sized node set Cu and only
calculates the repulsion with Cu in each iteration. The ver-
texes far from the vertex u in Cu will be replaced by other
nearer vertexes. The time complexity for this part is also
O(|V |). Meidiana et al. [26] established a new framework
for force computation with sublinear time complexity. The
computation of this framework is divided into three steps:
analysis, initialization and force calculation. The analysis
step generates a breadth-first search (BFS) tree with the
center of the graph as the root and uses spectral sparse-
ness to sample the edges. In the initialization process, the
radial tree drawing algorithm is used to obtain the initial
layout of the graph. The force calculation is based on the
random vertex sampling algorithm. In each iteration, the
number of nodes used to calculate the repulsion is |V |0.5

and other |V |0.2 nodes are used as the reference for re-
pulsion calculation, so the time complexity of a single it-
eration is O(|V |0.7), which is reduced to sublinear time.
Zhu et al. [27] developed the DRGraph algorithm based
on the tsNET [28] algorithm, and optimized the calcula-
tion of dimensionality reduction through three schemes.
First, the graph distance is approximated by a sparse dis-
tance matrix, and the graph distance is calculated by taking
the shortest path distance between a node and its neigh-
bors into consideration only to simplify the node similarity
evaluation. Second, the matrix gradient is calculated based
on a subset of nodes using a negative sampling technique.
On this basis, finally, a new graph aggregation technique
is used to reduce the initial dataset size to form a rough
graph layout faster. Then in the iterative process, the net-
work is continuously refined until the graph structure is
completely restored.

Force-directing and dimension reduction layout often
involve an iterative process, and each iteration will make
the graph layout adjusted with a certain step size. In pre-
vious research, the step size is usually specified manually,
but there may be two problems with the directly specified
step size: one is that the step size is too large, causing the
calculation results to oscillate or diverge; the other is that
the step size is too small, which causes the algorithm to
converge too slowly. Egorov et al. [29] conducted in-depth
research on this problem. They took the force-oriented

model as the object to adaptively adjust the step size dur-
ing the iterative process using the Wolfe condition [63] as
a constraint for optimization. Their work proves that the
upper bound on the value of the step size depends only on
the characteristics of the graph and is maintained through-
out the optimization process.

4.3 Deep learning based
The deep learning model is a kind of algorithm model with
great potential that can make computers imitate the be-
havior of human vision, hearing and thinking, and solve
many complex pattern recognition problems. Benefiting
from the parallel computing technology, the deep learning
models often have high computing efficiency. For graph re-
search, the deep learning model is usually known as the
graph neural network (GNN) [64]. However, when these
methods are applied to a large graph, the size of the graph
might vary from thousands to millions and make the input
size of spectral-based GNN unchangeable, which means
that there is an upper limit for the input size of the graph.
Setting this limitation with a large value may require much
more random access memory (RAM) since the spatial
complexity of these models is usually O(n2) or O(n3). Since
then, spatial-based GNNs have been more commonly used
in large graph research.

In recent years, some scholars have tried to use the deep
learning model to complete the graph layout calculation
and have achieved certain results. The training of the deep
learning model needs to formulate its learning task, that is,
the loss function part. The loss calculation methods com-
monly used in map layout can be divided into two cat-
egories: one is to define the learning task as “imitation”,
compare the training results with the existing layout or
layout algorithm generation results, and take the quantita-
tive similarity evaluation index as the loss; the other uses
aesthetics to measure the loss, including stress, node oc-
clusion, community overlap and other common aesthetic
evaluation indicators of graph layout.

The “imitation” learning method has the characteristics
of fast learning speed and high efficiency, and the train-
ing data can be directly generated using the existing graph
layout algorithm. Kwon et al. [30] established a model of
the “encoding-decoding” structure based on the VAEs [65]
method. The encoder generates representations in the la-
tent space corresponding to the training data, while the de-
coder calculates the original layout of the generated graph
according to the representation to learn the existing graph
layout mode. In this model, the distance matrix of nodes
is used as the input of the loss function, and the Gromov
Wasserstein (GW) distance with permutation invariance
is used to measure the similarity of equivalent nodes of
the same group of structures, and the variational loss func-
tion defined in SWAE is used for training. DeepDrawing
designed by Wang et al. [31] is improved based on the
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BiLSTM model. According to the topological structure of
the graph, several additional connections are added on the
basis of the linear sequence, as revealed in Fig. 2. These
connections combine the output of the previous adjacent
nodes with the output of the previous round as the hid-
den layer information to retain the edge dependency of the
nodes. The learning task of DeepDrawing is to imitate the
layout of existing algorithms. The loss function uses the
Procrustes statistical method to quantitatively evaluate the
layout similarity of the graph by taking the coordinate set
of the nodes in the graph as the input.

The effectiveness of the aesthetic metric loss has been
verified in recent years, and the images generated by the
model trained by this type of loss function are more suit-
able for qualitative and quantitative aesthetic evaluation.

Wang et al. [32] proposed a graph neural network based
deep learning framework DeepGD, which can generate
graphic layouts that meet multiple aesthetic indicators at
the same time. The loss function of the model includes
stress, t-SNE, node occlusion and other aesthetic indica-
tors. During training, the model uses the weighted sum
of loss components derived from the corresponding aes-
thetic indicators as the multi-objective loss function and
uses adaptive weights and two SoftAdapt multi-objective
training strategies based on importance to determine the
weight coefficients of each aesthetic indicator. The exper-
imental results show that DeepGD is superior to the lat-
est graph layout algorithm in all five aesthetic indicators.
Tiezzi et al. [33] introduced the concept of Neural Aes-
thete into their study: to take any two edges as input, and
return the probability of intersection between the edges
to calculate the gradient of the loss function. The graph
neural drawer (GND) model introduced in this work for-
mulates the problem as a node-centric regression task.
Each vertex of the graph can infer its coordinates in the
two-dimensional plane according to the graph topology,
the target layout and the loss function. Input the position
features defined by the Laplace eigenvector and embed
the graph into Euclidean space through spectral technol-
ogy; thus it has uniqueness and distance preservation. The
(DNN)2 proposed by Giovannangeli et al. [34] refers to the
ResNet and uses the spectral graph convolution method
to complete the feature extraction of the graph structure.
In this model, stress and Kullback-Leibler (KL) divergence
are selected as loss function, and layout quality is captured
according to topology. Although the model is spectral-
based, the loss function is still available for large graphs.

5 Post-layout: visual optimization
The post-layout optimization technology mainly opti-
mizes the visual effect of the graph layout. Although the
graph layout algorithm can generate a node distribution
in line with expectations, it cannot effectively solve the vi-
sual confusion problem caused by excessive edge crossing,

Figure 2 The message transmitting process of graph-LSTM. The
nodes are ordered as (v1, v2, v3) and additional information
transferring structures (the dot lines) are added between hidden
layers according to the topology of the graph. [32]

and the semantic information related to nodes and edges
cannot be represented. In addition, when the existing algo-
rithms cannot stably output images that meet the expected
visual effect, manual adjustment is needed. It is obviously
unwise to adjust a large number of visual elements one
by one, and it is more efficient to process data in batches
through interaction.

5.1 Visual mapping
Visual mapping adjusts the style of the elements in the
diagram according to the human visual principle to opti-
mize the visual effect, making it easier for users to focus on
the points of interest, and enriching the semantic meaning
as shown in Fig. 3. For large graphs, the visual confusion
caused by excessive edge crossing will bring great visual
burden to users in the process of analysis and exploration.
A common method to solve this problem is edge bundling
technology. By bundling the edges in the graph, a clearer
graph skeleton structure feature can be presented to users.

Traditional edge bundling algorithms are mostly imple-
mented by layout algorithm evolution or based on edge
features. Recently, some works have introduced relatively
novel algorithms. Lhuillier et al. [35] developed an edge
bundling algorithm FFTEB based on the fast Fourier trans-
form. By transferring the bundling process from the space-
time domain to the frequency domain, edge bundling can
be implemented quickly on the GPU. Wu et al. [36] intro-
duced the MLSEB algorithm based on the least squares ap-
proximation method, sampling the graph into point cloud
data, and then using moving least squares to multiply pro-
jections to generate curvilinear bundlings. MLSEB reduces
the distortion of local bundling by iteratively projecting
each site onto its local regression curve, while generating
bundling effects based on the convergence of its neigh-
borhood density with other nearby sites. The edge-path
bundling (EPB) algorithm proposed by Wallinger et al. [37]
uses clustered edges of weighted paths as the bundling
primitives to bundle each long edge in the graph to the
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(a) Original layout

(b) Edge bundled layout

Figure 3 Graph layout with (a) and without (b) implementation of
edge bundling techniques

shortest path existing between the endpoints of the edge.
This method will not lead to the problem of independent
edge ambiguity, because it adjusts the bundling level by
shortest path distance, Euclidean distance, and a combi-
nation of the two. Sikansi et al. [38] designed a similarity-
driven edge bundling algorithm SDEB, which is an im-
provement of HEB technology, creating a similarity hierar-
chy based on multi-level partitioning of data and grouping
edges according to the similarity between nodes to guide
bundling. The SDEB algorithm is performed in two steps.
In the first step, a distance-preserving backbone struc-
ture is derived as a guide for bundling; in the second step,
straight edges are bent toward this structure. A benefit of
this backbone is the possibility of multi-scale visualization
and exploration.

Another important role of visual channel mapping is vi-
sual metaphor, a process also known as visual encoding.
Through visual coding, elements can be made to express
richer semantic meaning. Visual coding needs to follow
Gestalt theory to make the encoded image more consistent
with people’s general cognition. Van et al. [39] proposed a
phrase network technology. By segmenting the text and ex-
tracting the text, the connection between the texts is con-
structed according to the syntax, and the text is directly
used instead of the node. The thickness distribution of
fonts and edges indicates the strength of the relationship
between the frequency of text occurrence and the text. At
the same time, the color depth is used as an additional code
to indicate the ratio of node input and output. Dunne et
al. [16] introduced the Motif simplification technology, as

(a) Original layout

(b) Motif simplified layout

Figure 4 Graph layout before (a) and after (b) Motif simplification,
which utilizes various glyphs to represent the common patterns of
the structure [17]

shown in Fig. 4 which combines the graph aggregation al-
gorithm to replace the common patterns of a large num-
ber of scattered nodes with compact and meaningful sym-
bols. This technology greatly reduces the visual elements
in the image and can present the main structural features
of the graph more clearly, reducing the visual burden of
users. At the same time, it is helpful for users to understand
graph. Henry et al. [40] noticed that the node connections
within the community in the graph structure were more
compact, while the connections between the communities
were sparser, and a hybrid tool NodeTrix was introduced.
The tool employs an adjacency matrix to represent nodes
in the same community and uses external edges to repre-
sent the connection between nodes in different commu-
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nities, which can more clearly present the skeleton of the
graph and improve the readability of the network.

5.2 Interactional visual optimization
A graph layout generated by graph layout algorithms can-
not meet the expected aesthetic evaluation needs usually.
A recent study conducted by Zhao et al. [66] shows that
perceptions of a graph may vary from person to person ow-
ing to different levels of familiarity about the background
story of the graph. Hence, interactional layout optimiz-
ing tools are urgently needed to explore and manipulate a
graph layout in batches through visual interaction, and the
layout of the elements in the graph can be quickly and effi-
ciently adjusted to meet the preferences of users and assist
users in completing the exploration of the graph.

Interactional exploration of graph element positions is a
mainstream method. OnionGraph designed by Shi et al.
[41] simplifies the graph structure by aggregating nodes
through a hybrid method of node attributes and graph
topology. Combined with the metaphor of “onion”, the
nodes containing node subsets are aggregated into multi-
ple concentric circles to indicate how many abstract lev-
els they contain and allow users to explore from top to
bottom. Suh et al. [42] developed an interactive layout ad-
justment system with the guidance of the persistence ho-
mology (PH) [43]. (See Fig. 5.) The initial graph layout is
constructed by the F-R force-directed algorithm, and each
node is regarded as a separate component. The minimum
spanning tree algorithm is used to find the edge set that
connects all components with the least cost, and the re-
ciprocal of the edge weight is used as the length of the bar-
code to indicate the PH value between components. Users
can click or filter the persistent barcode according to the
structural characteristics of the graph to control whether
additional gravity or repulsion force is generated between
the components to optimize the layout. Taurus introduced
by Xue et al. [44] is a general framework which presents a
unified force representation as quotient-based forces. This
framework formulates most existing techniques as a com-
bination of power functions of graph-theoretical and Eu-
clidean distances, and hence the strengths and weaknesses
of existing techniques can be compared and new methods
can be explored. A universal augmented stochastic gradi-
ent descent is developed additionally for all layout tech-
niques which can generate optimal graph layout results.

Altering the style of the visual elements interactively can
also beautify the layout to meet the aesthetic needs of
users. Wang et al. [45] proposed a user- and task-driven
visual aggregation processing method based on the exist-
ing edge bundling algorithm, allowing users to explore dif-
ferent edge bundling technologies, and pointed out the
areas where each edge-bundling technology provides de-
sired results. The smoothness constraint defined by the
Laplace operator is used to generate smooth and clear

Figure 5 PH guided layout. Cluster nodes by manual adjustment of
contractions and repulsions through interactions with PH bars [43].

transition results between specified regions and improve
the visual quality of the graph skeleton structure. Finally,
a post-processing rendering layer is provided to sort the
edges and generate visual coding of width and color for the
edges. Topology-aware space distortion (TASD) technique
developed by Wang et al. [46] interactively distorts geo-
metric space based on user attention and visual represen-
tation structure. TASD includes two mechanisms: recog-
nition and distortion. The recognition mechanism is used
to locate the region of interest in visualization, and the dis-
tortion mechanism allocates more screen space to the re-
gion of interest according to certain rules. This study im-
plements a specific TASD tool, ZoomHalo, which allows
users to interactively explore through mouse clicking or
the gaze tracking technique.

6 Conclusion
This paper reviews the optimization techniques related to
large graph layouts from the perspective of computational
efficiency and vision. From the stages of pre-layout, in-
layout, and post-layout, various optimization techniques
and their application scenarios are discussed and the latest
progress of related research fields in recent years is sum-
marized. However, there is still room for further explo-
ration on optimization for large graph visualization. Here,
we provide the following summaries and suggest the fol-
lowing prospects for consideration in future research of
large graph layout optimization.

Graph filter and graph aggregation. These techniques
can effectively retain the graph structural features in com-
pression. It is a trendency that an increasing number of
correlational studies have started to pay attention to the
structural topology and semantic representation of graphs,
which can produce an abstract graph that is more repre-
sentative. Although most of the current studies have for-
mulated a series of coarsening rules, the randomness of the
process will generate a different result each time through
the same method, which may cause significant changes
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in the network topology and thus affect users’ judgment.
More deterministic compression algorithms for graph data
are urgently needed.

Computational efficiency. Related studies have reduced
the time complexity of graph layout algorithms to linear or
even sublinear time in a single iteration and optimized the
calculation process based on distributed, GPU and other
high-performance computing architectures. However, in-
sufficient attention has been given to the impact of itera-
tion on graph layout calculation. Egorov et al. [29] only ver-
ified the constraints on the iteration step size proposed by
them, but the optimization of the iteration process needs
further investigation.

Deep learning graph drawing. Deep learning models
have sufficient advantages on computational efficiency. Al-
though some scholars have carried out research in this
area, it has not been verified whether this kind of method
is available for large graph data rendering, and its layout
quality will be difficult to guarantee when users are exploit-
ing unknown graph structures. Furthermore, it is challeng-
ing to demonstrate the interpretability of the deep learning
models.

Visual mapping and interaction. Related research in this
field is currently relatively mature. The layout enhanced
by visual mapping can express the graph skeleton struc-
ture and graph semantic information more clearly and in-
tuitively. Effective interaction design allows users to con-
duct an in-depth analysis and exploration of large graphs.
In future research, we need to explore more visual map-
ping methods and design efficient interaction forms.
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