
Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

Discover Data

Research

Evaluating Word Embedding Feature Extraction Techniques
for Host‑Based Intrusion Detection Systems

Paul K. Mvula1 · Paula Branco1 · Guy‑Vincent Jourdan1 · Herna L. Viktor1

Received: 20 December 2022 / Accepted: 22 February 2023

© The Author(s) 2023   OPEN

Abstract
Research into Intrusion and Anomaly Detectors at the Host level typically pays much attention to extracting attributes
from system call traces. These include window-based, Hidden Markov Models, and sequence-model-based attributes.
Recently, several works have been focusing on sequence-model-based feature extractors, specifically Word2Vec and
GloVe, to extract embeddings from the system call traces due to their ability to capture semantic relationships among
system calls. However, due to the nature of the data, these extractors introduce inconsistencies in the extracted features,
causing the Machine Learning models built on them to yield inaccurate and potentially misleading results. In this paper,
we first highlight the research challenges posed by these extractors. Then, we conduct experiments with new feature sets
assessing their suitability to address the detected issues. Our experiments show that Word2Vec is prone to introducing
more duplicated samples than GloVe. Regarding the solutions proposed, we found that concatenating the embedding
vectors generated by Word2Vec and GloVe yields the overall best balanced accuracy. In addition to resolving the chal-
lenge of data leakage, this approach enables an improvement in performance relative to other alternatives.

Keywords  Word embedding · Feature extraction · Cyber-security · Intrusion detection · Syscall traces

1  Introduction

Host-based Intrusion Detection Systems (HIDS) may be used to assist organizations in identifying threats within the
network perimeter by monitoring host devices for malicious activities that could result in massive breaches if left
unchecked [1]. A HIDS based on Machine Learning (ML) methods analyzes data in the form of logs, file systems, connec-
tions, or kernel (system) calls, which can be seen as an ordered sequence of system calls that a process performs during
its execution. Kernel or system call (syscall) traces are specific to different processes or applications and of arbitrary
length, and most ML/DL methods require fixed feature vectors as input for training and detection. Therefore the system
call traces must be preprocessed and standardized to a fixed length before they are fed to the ML algorithm for training
and detection.

Speed and reliability matter in cyber-security, thus the feature extraction technique used must standardize the syscall
trace as fast as possible without losing information before it is sent to the ML algorithm for classification. There exist

Paula Branco, Guy-Vincent Jourdan and Herna L. Viktor contributed equally to this work

 *  Paul K. Mvula, pmvul089@uottawa.ca; Paula Branco, pbranco@uottawa.ca; Guy‑Vincent Jourdan, gjourdan@uottawa.ca; Herna L. Viktor,
hviktor@uottawa.ca | 1School of Electrical Engineering and Computer Science (EECS), University of Ottawa, 800 King Edward Avenue,
Ottawa K1N 6N5, ON, Canada.

http://crossmark.crossref.org/dialog/?doi=10.1007/s44248-023-00002-y&domain=pdf

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

several feature extraction techniques for system call traces, each with its advantages and peculiarities, but they can be
divided into window-based or short-sequence, frequency-based, Hidden Markov Models (HMM) and sequence model-
based features. In this research, we introduce the common feature extraction and dimensionality reduction techniques
used for standardizing system call traces then evaluate approaches based on Natural Language Processing (NLP). We
focus on sequence model-based extractors because they produce embeddings with implicit relationships that are effec-
tive for training on data that can benefit from contextual information. It has been demonstrated that those embeddings
improve generalization and performance for HIDS, particularly when there is a lack of training data.

Nevertheless, since we are dealing with sequences of numbers and not text, these feature extraction techniques intro-
duce several duplicates which in the worst case appear both in the training and testing sets. A possible solution would
be removing the duplicated samples, however, this results in a reduction in variety and the number of samples in the
datasets. Moreover, our findings show that in addition to the reduction in diversity and the number of training and test-
ing data, the ML model’s performance is also negatively affected when duplicated vectors are deleted from the dataset
prior to building the intrusion detection model. We, therefore, propose additional methods to prevent the performance
decline and loss of data diversity, while ensuring that no data leakage occurs.

Below is a summary of our contributions:

1.	 We show the discrepancies and pitfalls of utilizing word embeddings as features for HIDS.
2.	 We propose the incorporation of new feature sets to mitigate the research challenges introduced by these feature

extraction techniques.
3.	 We assess the performance of the new feature sets by conducting an extensive set of experiments and we analyze

the results using statistical tests.
4.	 We provide a set of recommendations on the use of the proposed alternate feature sets.

The remainder of the paper is structured as follows. We begin by introducing the different feature extraction methods
used for system call traces in Sect. 2. In Sect. 3, we present the research challenges that word-embedding feature extrac-
tors introduce in the data and in Sect. 4, we conduct several experiments using alternative feature sets. Section 5 com-
pares and analyzes the results of the additional feature sets followed by Sect. 6, which concludes the work.

2 � Related Work

Since Forrest [2] stated that system calls may be utilized to detect computer system anomalies two decades ago, several
implementations of ML-based HIDS from system call traces, each using different feature extractors or representations
have been proposed. Correspondingly, several benchmark datasets for evaluating syscall-based HIDS have been evalu-
ated in the plethora of studies presented over the past few decades.

Earlier works used short-sequence or window-based feature extractors to extract fixed or variable-length windows
from the system calls which are used as feature vectors. Sliding-window and n-gram feature representations may be seen
as window-based features. An n-gram is a contiguous sequence of n system calls and a sliding window extracts n-grams
from a system-call trace at different time steps. Depending on the context there can either be a single, fixed, window size
or multiple window sizes as the optimal window size is determined by the syscalls in the modelled sub-sequence [3–5].
The short-sequence-based feature extractors tend to be computationally expensive [6]. In contrast, frequency-based
feature extractors are computationally cheaper than window-based algorithms because they rearrange system call traces
into equal-sized vectors based on the idea of “frequency” and deal exclusively with the resulting frequency vectors [7–11].

A Hidden Markov Model (HMM) is a doubly embedded stochastic process that incorporates one underlying stochas-
tic process embedded within another set of stochastic processes that generate the observations. Although powerful,
HMMs are known for often being computationally expensive, having larger storage requirements, especially when syscall
traces consist of several calls, and yielding sub-optimal accuracy when constructing subject behaviour [12]. They also
require hyper-parameter tuning for optimal results [6]. The application of HMMs for syscalls feature extraction was first
introduced by Warrender et al [13], then extended by other authors [14–18].

The sequence models capture the semantic meaning of syscalls by calculating the probability distribution over the
traces. These include but are not limited to Long-Short Term Memory (LSTM) [19], Gated Recurrent Units (GRUs), Recurrent
Neural Networks (RNNs) [20], Word2Vec [21], and GloVe embeddings [22]. Sequence models have received much interest
due to their remarkable ability in capturing inter-word correlations. Mikolov et al. proposed Word2Vec (W2V) [23, 24],

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

a method that produces word vectors depending on their use context. Word vectors may be utilized in the Skip-Gram
and Continuous Bag-of-Words models (CBOW). CBOW learns target words based on their context. The Skip-Gram model
operates in the opposite direction, anticipating context from a target word. The fundamental concept underlying W2V
is to train a neural network, discard the model, and then utilize the learned hidden layer weights as word vectors. Pen-
nington et al. introduced Global Vectors for Word Representation, GloVe (GLV) [25], a count-based model that learns a
context-sensitive vector representation of words. GLV views context as a co-occurrence matrix and incorporates word
data accordingly. GLV is subsequently trained with the co-occurrence matrix’s non-zero elements.

These feature extractors all have advantages and peculiarities. Window-based feature extractors tend to require high
computing costs for extracting features and model training, but they often result in increased detection rates. Although
frequency-based techniques are less computationally expensive than window-based techniques, they do not necessar-
ily produce high detection rates. Although training an HMM is a computationally expensive procedure, the approach
frequently produces high detection metrics. W2V is simple and requires little to no preprocessing and low memory. GLV
requires a lot of memory for storage because it is trained on the co-occurrence matrix, but the word vectors describe
sub-linear correlations in the vector space, resulting in stronger models. In this paper, we specifically investigate W2V
and GLV feature extraction techniques as they generate embeddings that provide implicit relationships, which are useful
when training on data that can benefit from contextual information. The embeddings generated by W2V and GLV have
been shown to improve generalization and performance for HIDS, especially when training data is scarce. We refer the
interested reader to recent HIDS’ reviews presented by Liu et al. [26] and Bridges et al [6].

The work by Arp et al. [27] identifies ten common pitfalls of using AI applied to cybersecurity at the different stages
of an ML workflow. Those pitfalls, however, do not include the discrepancies identified in this paper, which occur during
the data processing/feature extraction stage. We demonstrate their impact as well as the simplest possible solution in
the next section.

3 � Discrepancies in Feature Extraction Methods

In this work, we focus on the Australian Defense Force Academy Linux Dataset (ADFA-LD) [4, 28, 29], the Next-Generation
Intrusion Detection System Dataset (NGIDS-DS) [30], the Web Conference 2019 Dataset (WWW2019) [31] and the Leipzig
Intrusion Detection Dataset 2021 (LID-DS2021), an updated version of the LID-DS2019 [32]. We have selected these
four datasets because they contain new and relevant intrusion types and were designed to assess the performance of
modern HIDS. The ADFA-LD consists of 833 benign training, 4372 benign validation traces, and 746 attack training traces
from six attack classes, namely, user to root, password brute force (FTP and SSH via the Hydra tool), add new superuser, Java
Based Meterpreter, Linux Meterpreter Payload, and C100 Webshell. The NGIDS-DS comprises 19,256 benign and 18,121
attack traces and the WWW2019 dataset comprises 43,725 benign and 108,905 attack traces. The entire LID-DS2021
dataset is divided into train, validation, and test classes with recordings belonging to one of the four classes: idle, normal,
attack, and the normal and attack combined. For experimental purposes, we only select the normal and attack record-
ings because they are the only classes of recordings or samples that appear in the other three datasets. We, therefore,
combine all the partitions and present the original per-class binary compositions of the datasets in Table 1. The “Mean
Length” column represents the mean length of all the traces in the dataset. In the ADFA-LD dataset, the shortest trace
contains 76 syscalls and the longest contains 4495 syscalls. In the WWW2019 and NGIDS-DS datasets, the shortest traces
contain only 1 syscall and the longest contain 349,986 and 471,177 syscalls, respectively. Traces in the LID-DS2021 are
relatively longer than the ones in the other three datasets with the shortest trace containing 42 syscalls and the longest
containing 10,698,062 syscalls.

W2V and GLV create embeddings for each call in the trace, therefore, to have fixed-size samples, most researchers
take the average of all the embeddings of a trace as the final sample. We follow the same approach and use a standard

Table 1   Composition of the
datasets

Dataset Total number of traces Benign Attack Mean length

ADFA-LD 5951 5205 746 462.69
NGIDS-DS 37,377 19,256 18,121 2409.34
WWW2019 152,630 43,725 108,905 303.31
LID-DS2021 15,242 14,944 298 452261.96

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

value for the vector size v = 128 for the W2V and GLV embeddings. Since we are dealing with sequences of numbers and
not text, this approach introduces duplicates. This phenomenon is due to the nature of the samples and the vectoriza-
tion technique used. An example is shown in Table 2, where we build a W2V model to generate embedding vectors of
size v = 4 for each trace. Although traces A and B, and C and D are different samples in the dataset, their embedding
vectors of size 4, V1–V4, are the same for each pair (A–B and C–D) as we average the embedding vectors generated for
each syscall. Having duplicate samples in the data is a significant research challenge in ML since it might lead to a data
leakage scenario, in which the trained ML model is aware of a portion of the test data, that is, having data from the test
data already present in the training data. One solution to this challenge involves keeping only one of these duplicated
instances and removing the others. Nonetheless, this results in a loss of diversity and a lower sample size which may
then lead to poor generalization.

Table 3 shows the number of duplicates introduced by W2V and GLV in the four datasets. The “Benign” (“Attack”)
column shows the initial number of benign (attack) samples in the dataset, and the “Duplicate Benign” (“Duplicate
Attack”) column shows the number of duplicate benign (attack) samples after vectorization with the approach in the
corresponding “Approach” column, the “Duplicate Attack & Benign” column shows the number samples that appear
in both the benign and attack set after vectorization, and the “Final” column shows the final number of samples in the
dataset after removing all the duplicates. In all the cases, except for the LID-DS2021 dataset, where the number of
duplicated attack and benign samples is the same with both vectorization techniques, and the attacks in the ADFA-LD
dataset, W2V has introduced more duplicates than GLV. As a result of deleting the duplicates, the final datasets contain
fewer samples after vectorization with W2V.

To illustrate the influence of duplicated samples in the datasets, we constructed two ML models per dataset, one built
on the data before the duplicated samples were removed and another constructed on the data after the duplicated
samples were removed. Thus, we constructed a total of eight ML models with eight sets of evaluation metrics described
in Sect. 3.1; and we present the preliminary results in Sect. 3.2.

3.1 � Experimental Setup

In the experiments conducted throughout the manuscript, we used the Extremely Randomized Trees (ERT) [33] as the
binary classification algorithm to classify syscall traces as either “attack” or “benign”. The ERT is a tree-based ensemble
method that builds multiple trees and splits nodes using random subsets of features. In the ERT, sampling is done without
replacement, and the nodes are split into random splits [33]. This allows the ERT to be more computationally efficient

Table 2   Toy example of
duplicate system calls after
vectorization with Word2Vec

Trace ID Syscalls Embedding vector

V1 V2 V3 V4

A 3 1 3 − 0.652 − 0.579 − 0.074 − 0.647
B 3 3 1 1 3 3 − 0.652 − 0.579 − 0.074 − 0.647
C 1 1 3 3 − 0.588 − 0.550 − 0.092 − 0.689
D 3 3 1 1 − 0.588 − 0.550 − 0.092 − 0.689

Table 3   Quantitative descriptions after vectorization

Approach Dataset Benign Duplicate benign Attack Duplicate attack Duplicate attack
and benign

Final

W2V ADFA-LD 5205 2459 746 14 3 3475
NGIDS-DS 19,256 7169 18,121 10,382 161 19,665
WWW2019 43,725 12,353 108,905 20,027 45 120,205
LID-DS2021 14,944 29 298 26 0 15,187

GLV ADFA-LD 5205 2105 746 14 2 3830
NGIDS-DS 19,256 5115 18,121 5764 116 26,382
WWW2019 43,725 11,388 108,905 18,474 9 122,759
LID-DS2021 14,944 29 298 26 0 15,187

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

than other tree-based ensemble algorithms that split on best splits such as Random Forests [34]. We set the number of
trees parameter t of the ERT to t = 1000 and leave the other hyper-parameters at their default values.

In terms of performance assessment metrics, we considered the balanced accuracy, macro recall, macro precision,
macro F1-score, and the Area Under the Receiver Operating Characteristic curve (AUROC). We constructed a robust
stratified 5-fold cross-validation framework to report reliable metrics and account for potential sampling bias [27]. All
experiments were conducted on the Digital Research Alliance of Canada (the Alliance), formerly Compute Canada, clusters
using 4 NVIDIA A100 GPUs (each with a memory of 40 GB) and 48 CPU cores with 128GB of RAM.

3.2 � Preliminary Evaluation

Figure 1 shows the performance of the ERT before (Fig. 1a), and after (Fig. 1b) removing the duplicates introduced by
W2V and GLV, respectively. The higher results depicted in Fig. 1a, are due to the potential inclusion of duplicate samples
in the training and testing sets which are often overlooked by researchers [21, 35–37]; this, however, is not a correct form
of evaluation, the correct results are those shown in Fig. 1b which appear to be lower.

Additionally, Fig. 2 shows the differences between the five pairs of metrics when the model is built after (Fig. 1b) and
before (Fig. 1a) removing the replicated samples (after–before). Thus, a negative value shows that the model obtained
without duplicates has a lower performance than the model trained with duplicates. It can be seen that with both feature
sets, except on the LID-DS2021, we observe a drop in macro precision, recall, F1-score, and AUROC, on all the other
datasets in the ranges 0.0193–4.3153% with the largest drop of 4.3153% in macro recall and balanced accuracy on the
WWW2019 dataset with W2V embeddings. The LID-DS2021 dataset produces relatively stable results due to the fact
that the vectorization techniques do not generate as many duplicates as they do for the other three datasets.

These findings highlight the need to find a more consistent feature set that will help reduce the number of duplicates
and maintain data variety while also improving the performance of ML models. In the following experiments, we use

Fig. 1   Performance of the ERT before (a) and after (b) removing the duplicates

Fig. 2   Difference in perfor-
mance between after and
before removing duplicates

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

the results from Fig. 1b as the baseline for comparisons, we will be referring to these feature sets as “baseline W2V” and
“baseline GLV”.

4 � Experimental Analysis Using Alternate Feature Sets

As mentioned in Sect. 3, using W2V and GLV vectorization techniques on these datasets introduces duplicated instances,
leading to inaccurate results, especially when those duplicate embedding vectors appear in the training and testing
partitions. Therefore, we remove the repeated samples and consider the models constructed with these vectors as our
baselines. Figure 3 shows the experiments we conducted throughout the paper.

In our first set of experiments, we add a “count” feature to the embedding vectors of size 128 extracted for each
system call trace. The “count” feature counts the total number of calls appearing in each trace to allow distinguishing
between similar traces that may appear as duplicates after vectorization. The “count” column in Table 4 illustrates this
new dimension. Although this new “count” feature does not help with traces C and D as they both contain the same
number of system calls, it still helps to differentiate between traces A and B after vectorization, as we can observe
in Table 4. Therefore, for each dataset, two feature sets of size 129 are extracted, to which we will be referring to
as “count W2V” and “count GLV” to represent the usage of W2V and GLV, respectively. The quantitative descriptions
of the vectorized datasets and the difference in performance metrics are presented in Table 5 and Fig. 4, while the

Fig. 3   Experiments conducted in the paper

Table 4   Toy example of
duplicate system calls and
additional “count” feature

Trace ID Syscalls Embedding vector count

V1 V2 V3 V4

A 3 1 3 − 0.652 − 0.579 − 0.074 − 0.647 3
B 3 3 1 1 3 3 − 0.652 − 0.579 − 0.074 − 0.647 6
C 1 1 3 3 − 0.588 − 0.550 − 0.092 − 0.689 4
D 3 3 1 1 − 0.588 − 0.550 − 0.092 − 0.689 4

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

respective evaluation metrics are shown in Fig. 8 in Appendix. As seen in Table 5, adding the “count” feature reduces
the number of duplicates in all cases thus resulting in larger final sets compared to Table 3.

In Fig. 4, for all the datasets, we notice an increase in all the metrics compared to the baseline when building the
model with both W2V and GLV embeddings. This indicates that adding the “count” feature is beneficial for these
datasets when using W2V and GLV embeddings as it helps maintain diversity in the datasets.

In our second set of experiments, we further remove the consecutive calls from a trace and only keep the first
occurrence. Therefore, after applying this method, traces A and B, in Table 4, will have the exact same embedding
vector, but the “count” dimension will prevent them from appearing as duplicates after vectorization. As traces are
shorter, removing consecutive calls speeds up the vectorization process. Similar to our first experiment two feature
sets of size 129 are generated for each dataset, we refer to those feature sets as “no consec W2V” and “no consec GLV”.
The quantitative descriptions of the vectorized datasets and the evaluation metrics are presented in Table 6. This
approach introduces fewer duplicate benign samples for W2V compared to Table 5, but increases the duplicate attacks
samples and duplicate attack and benign samples in the two datasets expect for WWW2019. As for GLV, this approach
increases the number of duplicate samples, except for the duplicate attack and benign samples in the NGIDS-DS
dataset. Therefore, the final datasets obtained with GLV are smaller compared to the ones obtained with only the
“count” feature in our previous experiment, but they are still larger than the ones obtained using W2V. Figure 5 shows
the percentage differences between the “no consec” feature sets and the “count” feature sets (Fig. 5a), and between the
“no consec” feature sets and the baselines (Fig. 5b). The respective evaluation metrics are shown in Fig. 9 in Appendix.

As seen in Fig. 5, on the ADFA-LD and WWW2019 datasets, we observe a significant increase in performance with the
“no consec W2V” feature sets but no major change in performance with “no consec GLV” feature sets when compared to
the “baseline GLV” and the “count GLV” feature sets. Similarly, on the NGIDS-DS and LID-DS2021 datasets, there is no

Table 5   Quantitative descriptions after adding “count” feature

Approach Dataset Benign Duplicate benign Attack Duplicate attack Duplicate attack
and benign

Final

W2V ADFA-LD 5205 2433 746 14 2 3502
NGIDS-DS 19,256 7161 18,121 10,381 162 19,673
WWW2019 43,725 12,353 108,905 20,027 45 120,205
LID-DS2021 14,944 23 298 25 0 15,194

GLV ADFA-LD 5205 2105 746 14 2 3830
NGIDS-DS 19,256 5101 18,121 5743 124 26,409
WWW2019 43,725 11,388 108,905 18,474 9 122,759
LID-DS2021 14,944 23 298 25 0 15,194

Fig. 4   Difference in perfor-
mance between “baseline” and
“count” feature set

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

significant increase or decrease in performance when compared to the baseline and “count” feature sets. This shows that
removing the consecutive calls and keeping the “count” feature builds better models only when using W2V embeddings
but not GLV embeddings.

In the consecutive experiments, whose results are shown in Fig. 10, we concatenate the embedding vectors created
using W2V and GLV and build models with and without the “count” dimension added in the first experiment. This resulted
in 4 new feature sets:

1.	 256 w/ consec: the feature set consisted of the combination of W2V and GLV embeddings with consecutive calls. This
results from concatenating each of the feature sets used in the baseline, i.e., “baseline W2V” and “baseline GLV” (Fig. 1b).

2.	 256 w/o consec: the feature set consisted of the combination of W2V and GLV embeddings without consecutive calls.
3.	 258 w/ consec: the feature set consisted of the combination of W2V and GLV embeddings with consecutive calls and

the “count” dimension added in the first experiment. This results from the concatenation of each of the feature set
used in the first experiment, i.e., “count W2V” and “count GLV”.

4.	 258 w/o consec: the feature set consisted of the combination of W2V and GLV embeddings without consecutive calls
but with the “count” dimension. This results from concatenating each of the feature sets used in the second experi-
ment, i.e., “no consec W2V” and “no consec GLV”.

Due to the large number of features resulting from the concatenation of the W2V and GLV embeddings, dimensionality
reduction or feature selection techniques should be applied to further minimize the number of features to only relevant
features and reduce the computational complexity, speed up both training and detection, and possibly improve the
model’s performance. This also helps avoid the curse of dimensionality [38, 39]. Feature selection, as the name implies, is
simply preserving and eliminating specific features from the original dataset without changing them. On the other hand,
dimensionality reduction discovers a smaller collection of new variables, each of which is a combination of the input

Table 6   Quantitative descriptions without consecutive calls and “count” feature

Approach Dataset Benign Duplicate benign Attack Duplicate attack Duplicate attack
and benign

Final

W2V ADFA-LD 5205 2401 746 30 8 3512
NGIDS-DS 19,256 6572 18,121 12,539 183 18,083
WWW2019 43,725 12,178 108,905 25,447 9 120,566
LID-DS2021 14,944 27 298 16 0 15,199

GLV ADFA-LD 5205 2224 746 30 6 3691
NGIDS-DS 19,256 5727 18,121 10,502 121 21,027
WWW2019 43,725 11,389 108,905 18,759 9 122,473
LID-DS2021 14,944 13 298 14 0 15215

Fig. 5   Difference in performance between “no consec” and “count” feature sets (a), and between “no consec” feature sets and “baseline” (b)

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

variables and has the same information as the input variables. There exist several feature selection and dimensionality
reduction methods. Fisher score [40], Backward (Forward) Feature Elimination (Selection) [41], and Missing Value Ratio
are all examples of feature selection methods [42, 43]. Independent/Principal Component Analysis [44, 45], t-distributed
Stochastic Neighbor Embedding (t-SNE) [46], Isometric Mapping (ISOMAP) [47], autoencoders [48] and Uniform Manifold
Approximation and Projection (UMAP) [49] are examples of dimensionality reduction methods.

We therefore further conduct experiments using autoencoders for compressing or decompressing the features
obtained by concatenating W2V and GLV embeddings. An autoencoder is a type of unsupervised Artificial Neural Net-
work that compresses (or decompresses) data to a lower (or higher) dimension before reconstructing the input. The data
representation in the lower (or higher) dimension is discovered by focusing on the relevant features and eliminating
noise and redundancy. It employs an encoder-decoder architecture in which the encoder converts high-dimensional
data to lower-dimensional data and the decoder attempts to recreate the original high-dimensional data from the
lower-dimensional data.

For each dataset and feature set, we build several autoencoder architectures and shapes and fine-tune them for the
smallest reconstruction loss using the python package Hyperas available on GitHub.1 We report the best autoencoder
architectures and parameters for each feature set in Table 8 in Appendix. Figure 6 shows the percentage differences
between the four new feature sets and the baselines with W2V and GLV embeddings for each dataset, while we report the
respective evaluation metrics and percentage differences with the other experiments in Figs. 10, 11 and 12 in Appendix.

As seen in Fig. 6, none of the four feature sets improve the AUROC when compared to the W2V and GLV baselines on
the NGIDS-DS and the LID-DS2021. However, on the WWW2019, we notice an increase in all metrics when compared
to baseline W2V but not GLV. We also observe that on the ADFA-LD dataset, the combinations without consecutive calls

Fig. 6   Difference in performance between the four feature sets and the W2V and GLV baselines on a ADFA-LD, b NGIDS-DS, c WWW2019
and d LID-DS2021 datasets

1  https://​github.​com/​maxpu​mperla/​hyper​as.

https://github.com/maxpumperla/hyperas

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

(“w/o consec”) yielded the highest results when compared to both W2V and GLV baselines. Nevertheless, the count dimen-
sion yielded the highest balanced accuracy, macro precision, recall and F1-score on the NGIDS-DS, while on the LID-
DS2021 dataset, the feature set yielding the results on par with the baselines on all metrics was the one obtained from
the concatenation of the original W2V and GLV embeddings without the “count” dimension (“256 w/ consec”), whereas
the “256 w/o consec” and the “258 w/ consec” produced the poorest AUROC compared to both baselines.

Table 7   Q-statistic, p-value
and critical distance

Dataset Q p-value CD

ADFA-LD 33.82909 0.00009 4.28364
NGIDS-DS 31.77818 0.00021 4.28364
WWW2019 34.17818 0.00008 4.28364
LID-DS2021 23.40881 0.00534 4.28364

Fig. 7   CD diagrams of the ten
feature sets on a ADFA-LD, b
NGIDS-DS, c WWW2019, and
d LID-DS2021 datasets

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

Figure 13 in Appendix illustrates the ROC curves and mean AUROCs after stratified fivefold cross-validation with the
four feature sets on the four datasets. It can be observed, in Fig. 13a–c, that when the FPR is in the range of 10–30%, all 4
feature sets achieve optimal TPRs on the ADFA-LD, NGIDS-DS and WWW2019 datasets with the “258 w/o consec” feature
set yielding the highest AUROCs of 96.69%, 96.82%, and 98.84% with standard deviations of ±0.45 , ±0.23 and ±0.05 respec-
tively. As seen in Fig. 13d, on the LID-DS2021, optimal TPR is achieved much faster with the “256 w/o consec” feature
set yielding an AUROC of 99.46% with a standard deviation of only ±0.03 on the LID-DS2021. It is worth noting that
the “258 w/o consec” which yielded the highest AUROC on the other three datasets yielded the second highest AUROC on
the LID-DS2021 dataset and the “258 w/ consec” yielded the lowest AUROCs on all datasets except for the NGIDS-DS.

5 � Analysis and Discussion

This section presents an analysis of the results from the experiments we conducted on the four datasets introduced in
Sect. 3. On the ADFA-LD dataset, the “256 w/o consec” and “258 w/o consec” feature sets yielded the highest precisions
(97.093% and 97.16%), recalls (94.31% and 94.38%), F1 (94.31% and 94.38%), balanced accuracies (95.79% and 95.85%)
and AUROCs (97.65% and 97.69%). It should also be noted that the 4 new feature sets with the autoencoders yielded
the lowest AUROCs compared to the other feature sets on the NGIDS-DS dataset, this may be due to the lack of benign
samples in that specific set. On the NGIDS-DS dataset, the “count GLV” feature set yielded the highest precision, recall,
F1, balanced accuracy and AUROC of 95.73%, 95.64%, 95.68%, 95.64%, and 98.71%. On the WWW2019 dataset, on the
other hand, the “258 w/o consec” feature set yielded the highest precision, recall, F1, and balanced accuracy of 96.85%,
91.72%, 93.92% and 95.52% while the “no consec W2V” feature set yielded the highest AUROC of 99.53%. On the LID-
DS2021 dataset, the “no consec GLV” feature set yielded the highest precision of 99.63%, the “256 w/ consec” and the “258
w/o consec” feature sets yielded the best accuracies (99.96%), the “count W2V” feature set yielded the highest AUROC of
99.9998% but none of the features and approaches outperformed the baseline in terms of F1 and recall with the “baseline
W2V” feature set yielding the highest F1 of 99.71% and recall of 99.8081%.

These results show that despite not outperforming the baselines on all metrics on the LID-DS2021 datasets, the new
feature sets increase the performance of the ML models relative to the baselines, especially on the other three datasets
where the “258 w/o consec” feature set has yielded relatively high results. In addition to the performance improvement,
they help reduce the number of duplicated samples and maintain data diversity, as stated in Sect. 4.

We further performed the Friedman test [50, 51], which is the non-parametric equivalent of the repeated-measure
Analysis Of Variance (ANOVA) for statistical hypothesis testing and determining whether there are any significant differ-
ences among the measures obtained in our experiments Fig. 3. Table 7 provides the Q-statistics, p-values, and Critical
Distances (CD) of the four groups of evaluation metrics yielded by the ten feature sets, i.e., the baselines (Fig. 1b), the
added count dimensions (“count” feature sets, Fig. 8), the added count dimension without the consecutive calls (“no
consec” feature sets, Fig. 9) and the four combinations (Fig. 10) on the four experimental datasets. We can see that the
Q-statistics for the ADFA-LD, NGIDS-DS, WWW2019, and LID-DS2021 datasets come out to be equal to 33.82909,
31.77818, 34.17818, and 23.40881 and the respective p-values are 0.00009, 0.00021, 0.00008 and 0.00534. Since these
p-values are all less than 0.05 at our confidence level of 0.95, we can reject the null hypothesis that the obtained metrics
are the same for all ten groups of feature sets. In simple words, we have enough proof to say that the differences among
the ten feature sets’ results are statistically significant.

We, therefore, conducted the Nemenyi test [52, 53] to find precisely which feature sets have different means. As seen
in Table 7, the CD is 4.28364 for all four datasets, in other words, there is a statistically significant difference between the
feature sets if their average ranks differ by at least 4.28364. These comparisons are depicted on critical distance diagrams
(Fig. 7). A connecting line between feature sets indicates that the null hypothesis that they are significantly different can-
not be rejected. On the ADFA-LD dataset, Fig. 7a, we observe that the “258 w/o consec” feature set ranked first and the
“256 w/o consec” ranked second. This shows that concatenating the two feature sets without consecutive provides better
rankings overall on this dataset. In Fig. 7b, the “count GLV” feature set ranked first on the NGIDS-DS which was followed by
the “baseline GLV” and “no consec GLV”. It can be inferred that the GLV embeddings provide better overall rankings for this
dataset. Similar to the ADFA-LD, Fig. 7c shows that the “258 w/o consec” also ranked first on the WWW2019 along with the

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

“count GLV” feature set which also ranked first on the NGIDS-DS. The “baseline W2V” feature set ranked first on the LID-
DS2021 and the “count W2V” ranked second (Fig. 7d). This is the only dataset in which the baseline ranked first. We posit
that this is because the number of replicas was already low, to begin with, thus the extra features had no large impact on
the performance of the models. The “258 w/o consec” feature set ranked first on both the ADFA-LD and WWW2019 datasets,
the “count GLV” feature set ranked first on the NGIDS-DS and second on the WWW2019; the baseline W2V feature set ranked
first on the LID-DS2021 dataset and second on the NGIDS-DS. These results demonstrate that by using the new feature
sets, it is possible to preserve data variety, reduce the number of redundant samples, and achieve high performance.

6 � Conclusion

In this paper, we have demonstrated how word-embedding-based feature extraction techniques, namely W2V and
GLV, can lead to a loss of diversity and the introduction of replicas in the data from Host-Based Intrusion Detectors.
These issues are frequently overlooked by researchers. However, the replicated instances can end up appearing in
both the training and testing sets, leading ML models to provide overly optimistic and inaccurate results, rendering
the ML-based Intrusion Detector ineffective. We have used the ADFA-LD, NGIDS-DS, WWW2019, and LID-DS2021
datasets for experimentation and demonstrated that W2V introduces more replicated samples than GLV, which
results in a greater performance decline when those samples are removed. We have therefore conducted extensive
experiments using alternate feature sets that consisted of adding new dimensions and concatenating the features
extracted by W2V and GLV to simultaneously tackle the issue of duplicated samples and improve the performance
of the models. Experimental results show that, from the ten feature sets, concatenating embeddings from W2V and
GLV and counting the number of syscalls in a trace could increase the performance of the ERT in three out of the four
datasets. Nonetheless, there is no universally suitable feature set that can be used across all the experimental datasets
as they have all yielded different results on the datasets. Selecting the ideal feature set for a specific dataset should
therefore be based on the user’s preference. Finally, as seen in Table 4, our proposed feature sets are still limited
in the sense that duplicate traces may still appear in the datasets even with the alternate feature sets. Future work
will include addressing the duplicate samples that our feature sets were unable to handle, generating a universally
applicable feature set, evaluating our feature sets on additional HIDS datasets and looking into data augmentation
techniques to solve the data imbalance issue. An additional research direction would be evaluating our proposed
feature sets on multi-class scenarios.

Acknowledgements  We thank the anonymous reviewers, the editor and the assistant editor for their constructive comments and sugges-
tions. We are also grateful to the Digital Research Alliance of Canada (the Alliance) for access to their High-Performance Computing clusters.

Author contributions  P.M. worked on the conceptualization, methodology, software, visualization, and writing of the original draft. P.B., G.-V.
J. and H.V. aided in the conceptualization, supervision, validation, reviewing and editing of the final manuscript.

Funding  This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Vector Institute, and The IBM
Center for Advanced Studies (CAS) Canada within Research Project 1059.

Data availability  The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Declarations 

Competing interests  The authors would like to declare that they have no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

Fig. 8   Performance of the ERT
with “count” feature (count
feature set)

Fig. 9   Performance of the
ERT without consecutive calls
and “count” feature (no consec
feature set)

Fig. 10   Performance of combining Autoencoders and ERT on a ADFA-LD, b NGIDS-DS, c WWW2019 and d LID-DS2021 datasets using
the 4 new feature sets

Appendix: Performance Metrics and Parameters

Additional Performance Metrics Results

This section shows the different metrics yielded by the ERT on the additional feature sets. Figure 8 shows the performance of
the ERT with the “count” feature set added in Experiments 1. Figure 9 shows the performance of the ERT with the “no consec”
feature set built in Experiments 2. Figure 10 shows the respective performance metrics for each dataset using the four feature
sets built in Additional Experiments. Figures 11 and 12 show the percentage differences between the four new feature sets
and the “count” and “no consec” feature sets respectively.

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

Fig. 11   Difference in performance between the four feature sets and the W2V and GLV “count” feature sets on a ADFA-LD, b NGIDS-DS, c
WWW2019 and d LID-DS2021 datasets

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

Fig. 12   Difference in performance between the four feature sets and the W2V and GLV “no consec” feature sets on a ADFA-LD, b NGIDS-
DS, c WWW2019 and d LID-DS2021 datasets

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

Best Parameters of Different Auto‑Encoder Architectures

Table 8, shows the best autoencoder architectures and parameters from Hyperas that we used to compress/decom-
press the data before building the intrusion detection models we evaluated in Fig. 10. The hidden neurons column
represents the neurons after (before) the input (output) layers which are 256 or 258 depending on the feature set.

Fig. 13   ROC curves of the combination of autoencoders and ERT on a ADFA-LD, b NGIDS-DS, c WWW2019 and (d) LID-DS2021 datasets

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

Table 8   Best autoencoder architecture per feature set

h_n: hidden neurons

Feature set Activation Alpha Batch_size Dropout h_n l2 Optimizer

ADFA256_consec sigmoid 0.7623 256 0.1576 [128, 64, 128] 2e−06 rmsprop
ADFA256_noconsec relu 0.3841 8 0.0738 [128, 64, 32, 16, 8, 16, 32, 64, 128] 2e−02 adam
ADFA258_consec relu 0.2222 16 0.2549 [512, 1024, 1024, 512] 5e−05 rmsprop
ADFA258_noconsec sigmoid 0.9524 8 0.5507 [128, 64, 32, 16, 8, 8, 16, 32, 64, 128] 2e−02 sgd
WWW256_consec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 5e−07 adam
WWW256_noconsec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 1e−05 adam
WWW258_consec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 1e−05 adam
WWW258_noconsec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 1e−05 adam
NGIDS256_consec tanh 0.2181 256 0.7916 [128, 64,32,32, 64, 128] 1e−05 adam
NGIDS258_consec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224 2e−05 rmsprop
NGIDS256_noconsec sigmoid 0.9028 16 0.2094 [256, 512, 1024, 1024, 512, 256] 3e−05 adam
NGIDS258_noconsec sigmoid 0.9028 16 0.2094 [256, 512, 1024, 1024, 512, 256 3e−05 adam
LIDDS256_consec tanh 0.3346 64 0.4032 [2048,1024,512, 1024, 1024,2048] 1e−04 rmsprop
LIDDS258_consec tanh 0.9387 32 0.4577 [1024, 1024, 1024] 2e−05 sgd
LIDDS256_noconsec tanh 0.5799 128 0.6749 [1024, 2048, 1024] 2e−04 adam
LIDDS258_noconsec tanh 0.6300 256 0.1742 [512, 1024, 2048, 1024, 512] 4e−06 adam

References

	 1.	 Boer PD, Pels M. Host-based intrusion detection systems. Amsterdam: Amsterdam University; 2005.
	 2.	 Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self for unix processes. In: Proceedings 1996 IEEE symposium on security

and privacy. IEEE Comput. Soc. Press; 1996. p. 120–8. https://​doi.​org/​10.​1109/​SECPRI.​1996.​502675.
	 3.	 Shin Y, Kim K. Comparison of anomaly detection accuracy of host-based intrusion detection systems based on different machine

learning algorithms. Int J Adv Comput Sci Appl. 2020. https://​doi.​org/​10.​14569/​IJACSA.​2020.​01102​33.
	 4.	 Creech G, Hu J. A semantic approach to host-based intrusion detection systems using contiguousand discontiguous system call

patterns. IEEE Trans Comput. 2013;63(4):807–19. https://​doi.​org/​10.​1109/​TC.​2013.​13.
	 5.	 Doyle W. Classifying system call traces using anomalous detection.
	 6.	 Bridges RA, Glass-Vanderlan TR, Iannacone MD, Vincent MS, Chen QG. A survey of intrusion detection systems leveraging host data.

Comput Surv. 2019;52(6):1–35. https://​doi.​org/​10.​1145/​33443​82.
	 7.	 Haider W, Hu J, Xie M. Towards reliable data feature retrieval and decision engine in host-based anomaly detection systems. In: 2015

IEEE 10th conference on industrial electronics and applications (ICIEA). IEEE; 2015. p. 513–7. https://​doi.​org/​10.​1109/​ICIEA.​2015.​
73341​66.

	 8.	 Xie M, Hu J. Evaluating host-based anomaly detection systems: a preliminary analysis of ADFA-LD. In: 2013 6th international congress
on image and signal processing (CISP), vol. 03. 2013. p. 1711–6. https://​doi.​org/​10.​1109/​CISP.​2013.​67439​52.

	 9.	 Xie M, Hu J, Slay J. Evaluating host-based anomaly detection systems: application of the one-class SVM algorithm to ADFA-LD. In:
2014 11th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE; 2014. p. 978–82. https://​doi.​org/​10.​
1109/​FSKD.​2014.​69809​72.

	10.	 Xie M, Hu J, Yu X, Chang E. Evaluating host-based anomaly detection systems: application of the frequency-based algorithms to
ADFA-LD. In: Au MH, Carminati B, Kuo CCJ, editors. Network and system security, vol. 8792. Lecture notes in computer science. New
York: Springer; 2013. p. 542–9. https://​doi.​org/​10.​1007/​978-3-​319-​11698-3_​44.

	11.	 Aghaei E. Machine learning for host-based misuse and anomaly detection in UNIX environment (Doctoral dissertation, University of
Toledo).

	12.	 Haider W, Hu J, Xie Y, Yu X, Wu Q. Detecting anomalous behavior in cloud servers by nested-arc hidden SEMI-Markov model with state
summarization. 2017;5(3):305–16. https://​doi.​org/​10.​1109/​tbdata.​2017.​27365​55.

	13.	 Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: alternative data models. In: Proceedings of the 1999 IEEE
symposium on security and privacy (Cat. No. 99CB36344). IEEE Comput. Soc. 1999. p. 133–45. https://​doi.​org/​10.​1109/​SECPRI.​1999.​766910.

	14.	 Murtaza SS, Khreich W, Hamou-Lhadj A, Gagnon S. A trace abstraction approach for host-based anomaly detection. In: 2015 IEEE
symposium on computational intelligence for security and defense applications (CISDA). 2015. p. 1– 8. https://​doi.​org/​10.​1109/​
CISDA.​2015.​72086​44.

	15.	 Gao D, Reiter MK, Song D. Behavioral distance measurement using hidden Markov models. In: Recent advances in intrusion detection,
vol. 4219. Lecture notes in computer science. Berlin: Springer; 2010. p. 19–40. https://​doi.​org/​10.​1007/​11856​214_2.

https://doi.org/10.1109/SECPRI.1996.502675
https://doi.org/10.14569/IJACSA.2020.0110233
https://doi.org/10.1109/TC.2013.13
https://doi.org/10.1145/3344382
https://doi.org/10.1109/ICIEA.2015.7334166
https://doi.org/10.1109/ICIEA.2015.7334166
https://doi.org/10.1109/CISP.2013.6743952
https://doi.org/10.1109/FSKD.2014.6980972
https://doi.org/10.1109/FSKD.2014.6980972
https://doi.org/10.1007/978-3-319-11698-3_44
https://doi.org/10.1109/tbdata.2017.2736555
https://doi.org/10.1109/SECPRI.1999.766910
https://doi.org/10.1109/CISDA.2015.7208644
https://doi.org/10.1109/CISDA.2015.7208644
https://doi.org/10.1007/11856214_2

Vol:.(1234567890)

Research	 Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y

1 3

	16.	 Hoang XA, Hu J. An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based
on system calls. In: Proceedings of 2004 12th IEEE international conference on networks (ICON 2004) (IEEE Cat. No. 04EX955), vol. 2.
2004. p. 470–4. https://​doi.​org/​10.​1109/​ICON.​2004.​14092​10.

	17.	 Hoang XD, Hu J, Bertok P. A program-based anomaly intrusion detection scheme using multiple detection engines and fuzzy infer-
ence. J Netw Comput Appl. 2009;32(6):1219–28. https://​doi.​org/​10.​1016/j.​jnca.​2009.​05.​004.

	18.	 Hu J, Yu X, Qiu D, Chen H-H. A simple and efficient hidden Markov model scheme for host-based anomaly intrusion detection. IEEE
Netw. 2009;23(1):42–7. https://​doi.​org/​10.​1109/​MNET.​2009.​48043​23.

	19.	 Kim G, Yi H, Lee J, Paek Y, Yoon S. LSTM-based system-call language modeling and robust ensemble method for designing host-based
intrusion detection systems. arXiv. 2016. https://​doi.​org/​10.​48550/​arXiv.​1611.​01726.

	20.	 Chawla A, Lee B, Fallon S, Jacob P. Host based intrusion detection system with combined CNN/RNN model. In: Alzate C, Monreale A,
Assem H, Bifet A, Buda TS, Caglayan B, Drury B, García-Martín E, Gavaldà R, Koprinska I, Kramer S, Lavesson N, Madden M, Molloy I,
Nicolae M-I, Sinn M, editors. ECML PKDD 2018 workshops. Lecture notes in computer science. Springer; 2019. p. 149–58. https://​doi.​
org/​10.​1007/​978-3-​030-​13453-2_​12.

	21.	 Corizzo R, Zdravevski E, Russell M, Vagliano A, Japkowicz N. Feature extraction based on word embedding models for intrusion
detection in network traffic. J Surveill Secur Saf. 2020;1:1. https://​doi.​org/​10.​20517/​jsss.​2020.​15.

	22.	 Kumar Y, Subba B. Stacking ensemble-based HIDS framework for detecting anomalous system processes in windows based operating
systems using multiple word embedding. Comput Secur. 2023;125:102961. https://​doi.​org/​10.​1016/j.​cose.​2022.​102961.

	23.	 Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint. 2013. arXiv:​ org/​
abs/​1301.​3781.

	24.	 Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. Adv
Neural Inf Process Syst. 2013. https://​doi.​org/​10.​48550/​ARXIV.​1310.​4546.

	25.	 Pennington J, Socher R, Manning C. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). Association for Computational Linguistics; 2014. p. 1532–43. https://​doi.​org/​10.​3115/​
v1/​D14-​1162.

	26.	 Liu M, Xue Z, Xu X, Zhong C, Chen J. Host-based intrusion detection system with system calls: review and future trends. ACM Comput
Surv. 2018;51(5):98–136. https://​doi.​org/​10.​1145/​32143​04.

	27.	 Arp D, Quiring E, Pendlebury F, Warnecke A, Pierazzi F, Wressnegger C, Cavallaro L, Rieck K. Dos and don’ts of machine learning in computer
security. In: Proc. of USENIX security symposium; 2022.

	28.	 Creech G, Hu J. Generation of a new IDS test dataset: time to retire the KDD collection. In: 2013 IEEE wireless communications and net-
working conference (WCNC). 2013; p. 4487–92. https://​doi.​org/​10.​1109/​WCNC.​2013.​65553​01.

	29.	 Creech G. Developing a high-accuracy cross platform host-based intrusion detection system capable of reliably detecting zero-day
attacks. (Doctoral dissertation, UNSW Sydney); 2014. https://​doi.​org/​10.​26190/​UNSWO​RKS/​16615.

	30.	 Haider W, Hu J, Slay J, Turnbull BP, Xie Y. Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling. J
Netw Comput Appl. 2017;87:185–92. https://​doi.​org/​10.​1016/j.​jnca.​2017.​03.​018.

	31.	 Li Y-F, Gao Y, Ayoade G, Tao H, Khan L, Thuraisingham B. Multistream classification for cyber threat data with heterogeneous feature space.
In: The world wide web conference on—WWW ’19. ACM Press; 2019. p. 2992–8. https://​doi.​org/​10.​1145/​33085​58.​33135​72.

	32.	 Grimmer M, Röhling MM, Kreußel D, Ganz S. A modern and sophisticated host based intrusion detection data set. IT-Sicherheit als Voraus-
setzung für eine erfolgreiche Digitalisierung. 2019;11:135–45.

	33.	 Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42. https://​doi.​org/​10.​1007/​s10994-​006-​6226-1.
	34.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://​doi.​org/​10.​1023/A:​10109​33404​324.
	35.	 Wunderlich S, Ring M, Landes D, Hotho A. Comparison of system call representations for intrusion detection. In: International joint confer-

ence: 12th international conference on computational intelligence in security for information systems (CISIS 2019) and 10th international
conference on European transnational education (ICEUTE 2019). Cham: Springer; 2020. p. 14– 24.

	36.	 Lu Y, Teng S. Application of sequence embedding in host-based intrusion detection system. In: 2021 IEEE 24th international conference
on computer supported cooperative work in design (CSCWD). 2021. p. 434–9. https://​doi.​org/​10.​1109/​CSCWD​49262.​2021.​94376​83.

	37.	 Wunderlich S, Ring M, Landes D, Hotho A. The impact of different system call representations on intrusion detection. Logic J IGPL.
2020;30(2):239–51. https://​doi.​org/​10.​1093/​jigpal/​jzaa0​58.

	38.	 Bellman R. Dynamic programming. Princeton: Princeton University Press; 1966.
	39.	 Bellman R. Adaptive control processes: a guided tour. Princeton University Press. OCLC: 1001637406.
	40.	 Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2012.
	41.	 Ferri FJ, Pudil P, Hatef M. Comparative study of techniques for large-scale feature selection, vol. 16. 1994. https://​doi.​org/​10.​1016/​B978-

0-​444-​81892-8.​50040-7.
	42.	 Little RJA, Rubin DB. Statistical analysis with missing data. Wiley series in probability and statistics. 3rd ed. Hoboken: Wiley; 2020.
	43.	 Buuren S, Groothuis-Oudshoorn C. MICE: multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67. https://​doi.​org/​

10.​18637/​jss.​v045.​i03.
	44.	 Lee T-W. Independent component analysis. In: Lee T-W, editor. Independent component analysis: theory and applications. Berlin: Springer;

2009. p. 27–66. https://​doi.​org/​10.​1007/​978-1-​4757-​2851-4_2.
	45.	 Pearson K. LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci. 1901;2(11):559–72.

https://​doi.​org/​10.​1080/​14786​44010​94627​20.
	46.	 Maaten LVD, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(86):2579–605.
	47.	 Tenenbaum JB, Silva VD, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290(5500):2319–

23. https://​doi.​org/​10.​1126/​scien​ce.​290.​5500.​2319.

https://doi.org/10.1109/ICON.2004.1409210
https://doi.org/10.1016/j.jnca.2009.05.004
https://doi.org/10.1109/MNET.2009.4804323
https://doi.org/10.48550/arXiv.1611.01726
https://doi.org/10.1007/978-3-030-13453-2_12
https://doi.org/10.1007/978-3-030-13453-2_12
https://doi.org/10.20517/jsss.2020.15
https://doi.org/10.1016/j.cose.2022.102961
http://arxiv.org/1301.3781
http://arxiv.org/1301.3781
https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/3214304
https://doi.org/10.1109/WCNC.2013.6555301
https://doi.org/10.26190/UNSWORKS/16615
https://doi.org/10.1016/j.jnca.2017.03.018
https://doi.org/10.1145/3308558.3313572
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/CSCWD49262.2021.9437683
https://doi.org/10.1093/jigpal/jzaa058
https://doi.org/10.1016/B978-0-444-81892-8.50040-7
https://doi.org/10.1016/B978-0-444-81892-8.50040-7
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1007/978-1-4757-2851-4_2
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1126/science.290.5500.2319

Vol.:(0123456789)

Discover Data (2023) 1:2 | https://doi.org/10.1007/s44248-023-00002-y	 Research

1 3

	48.	 Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Parallel distributed processing: explora-
tions in the microstructure of cognition, vol. 1. Cambridge: MIT Press; 1986. p. 318–62.

	49.	 McInnes L, Healy J, Saul N, Großberger L. UMAP: uniform manifold approximation and projection. Open J. 2018;3(29):861. https://​doi.​
org/​10.​21105/​joss.​0086.

	50.	 Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat. 1940;11(1):86–92. https://​
doi.​org/​10.​1214/​aoms/​11777​31944.

	51.	 Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–
701. https://​doi.​org/​10.​1080/​01621​459.​1937.​10503​522.

	52.	 Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30. https://​doi.​org/​10.​5555/​12485​47.​
12485​48.

	53.	 Benavoli A, Corani G, Mangili F. Should we really use post-hoc tests based on mean-ranks? The Journal of Machine Learning Research.
2016;17(1):152–61 arXiv:​ org/​abs/​1505.​02288.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21105/joss.0086
https://doi.org/10.21105/joss.0086
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.5555/1248547.1248548
https://doi.org/10.5555/1248547.1248548
http://arxiv.org/abs/org/abs/1505.02288

	Evaluating Word Embedding Feature Extraction Techniques for Host-Based Intrusion Detection Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Discrepancies in Feature Extraction Methods
	3.1 Experimental Setup
	3.2 Preliminary Evaluation

	4 Experimental Analysis Using Alternate Feature Sets
	5 Analysis and Discussion
	6 Conclusion
	Acknowledgements
	Appendix: Performance Metrics and Parameters
	Additional Performance Metrics Results
	Best Parameters of Different Auto-Encoder Architectures

	References

