
Vol.:(0123456789)

Discover Data             (2023) 1:2  | https://doi.org/10.1007/s44248-023-00002-y

1 3

Discover Data

Research

Evaluating Word Embedding Feature Extraction Techniques 
for Host‑Based Intrusion Detection Systems

Paul K. Mvula1 · Paula Branco1 · Guy‑Vincent Jourdan1 · Herna L. Viktor1

Received: 20 December 2022 / Accepted: 22 February 2023

© The Author(s) 2023    OPEN

Abstract
Research into Intrusion and Anomaly Detectors at the Host level typically pays much attention to extracting attributes 
from system call traces. These include window-based, Hidden Markov Models, and sequence-model-based attributes. 
Recently, several works have been focusing on sequence-model-based feature extractors, specifically Word2Vec and 
GloVe, to extract embeddings from the system call traces due to their ability to capture semantic relationships among 
system calls. However, due to the nature of the data, these extractors introduce inconsistencies in the extracted features, 
causing the Machine Learning models built on them to yield inaccurate and potentially misleading results. In this paper, 
we first highlight the research challenges posed by these extractors. Then, we conduct experiments with new feature sets 
assessing their suitability to address the detected issues. Our experiments show that Word2Vec is prone to introducing 
more duplicated samples than GloVe. Regarding the solutions proposed, we found that concatenating the embedding 
vectors generated by Word2Vec and GloVe yields the overall best balanced accuracy. In addition to resolving the chal-
lenge of data leakage, this approach enables an improvement in performance relative to other alternatives.

Keywords  Word embedding · Feature extraction · Cyber-security · Intrusion detection · Syscall traces

1  Introduction

Host-based Intrusion Detection Systems (HIDS) may be used to assist organizations in identifying threats within the 
network perimeter by monitoring host devices for malicious activities that could result in massive breaches if left 
unchecked [1]. A HIDS based on Machine Learning (ML) methods analyzes data in the form of logs, file systems, connec-
tions, or kernel (system) calls, which can be seen as an ordered sequence of system calls that a process performs during 
its execution. Kernel or system call (syscall) traces are specific to different processes or applications and of arbitrary 
length, and most ML/DL methods require fixed feature vectors as input for training and detection. Therefore the system 
call traces must be preprocessed and standardized to a fixed length before they are fed to the ML algorithm for training 
and detection.

Speed and reliability matter in cyber-security, thus the feature extraction technique used must standardize the syscall 
trace as fast as possible without losing information before it is sent to the ML algorithm for classification. There exist 
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several feature extraction techniques for system call traces, each with its advantages and peculiarities, but they can be 
divided into window-based or short-sequence, frequency-based, Hidden Markov Models (HMM) and sequence model-
based features. In this research, we introduce the common feature extraction and dimensionality reduction techniques 
used for standardizing system call traces then evaluate approaches based on Natural Language Processing (NLP). We 
focus on sequence model-based extractors because they produce embeddings with implicit relationships that are effec-
tive for training on data that can benefit from contextual information. It has been demonstrated that those embeddings 
improve generalization and performance for HIDS, particularly when there is a lack of training data.

Nevertheless, since we are dealing with sequences of numbers and not text, these feature extraction techniques intro-
duce several duplicates which in the worst case appear both in the training and testing sets. A possible solution would 
be removing the duplicated samples, however, this results in a reduction in variety and the number of samples in the 
datasets. Moreover, our findings show that in addition to the reduction in diversity and the number of training and test-
ing data, the ML model’s performance is also negatively affected when duplicated vectors are deleted from the dataset 
prior to building the intrusion detection model. We, therefore, propose additional methods to prevent the performance 
decline and loss of data diversity, while ensuring that no data leakage occurs.

Below is a summary of our contributions: 

1.	 We show the discrepancies and pitfalls of utilizing word embeddings as features for HIDS.
2.	 We propose the incorporation of new feature sets to mitigate the research challenges introduced by these feature 

extraction techniques.
3.	 We assess the performance of the new feature sets by conducting an extensive set of experiments and we analyze 

the results using statistical tests.
4.	 We provide a set of recommendations on the use of the proposed alternate feature sets.

The remainder of the paper is structured as follows. We begin by introducing the different feature extraction methods 
used for system call traces in Sect. 2. In Sect. 3, we present the research challenges that word-embedding feature extrac-
tors introduce in the data and in Sect. 4, we conduct several experiments using alternative feature sets. Section 5 com-
pares and analyzes the results of the additional feature sets followed by Sect. 6, which concludes the work.

2 � Related Work

Since Forrest [2] stated that system calls may be utilized to detect computer system anomalies two decades ago, several 
implementations of ML-based HIDS from system call traces, each using different feature extractors or representations 
have been proposed. Correspondingly, several benchmark datasets for evaluating syscall-based HIDS have been evalu-
ated in the plethora of studies presented over the past few decades.

Earlier works used short-sequence or window-based feature extractors to extract fixed or variable-length windows 
from the system calls which are used as feature vectors. Sliding-window and n-gram feature representations may be seen 
as window-based features. An n-gram is a contiguous sequence of n system calls and a sliding window extracts n-grams 
from a system-call trace at different time steps. Depending on the context there can either be a single, fixed, window size 
or multiple window sizes as the optimal window size is determined by the syscalls in the modelled sub-sequence [3–5]. 
The short-sequence-based feature extractors tend to be computationally expensive [6]. In contrast, frequency-based 
feature extractors are computationally cheaper than window-based algorithms because they rearrange system call traces 
into equal-sized vectors based on the idea of “frequency” and deal exclusively with the resulting frequency vectors [7–11].

A Hidden Markov Model (HMM) is a doubly embedded stochastic process that incorporates one underlying stochas-
tic process embedded within another set of stochastic processes that generate the observations. Although powerful, 
HMMs are known for often being computationally expensive, having larger storage requirements, especially when syscall 
traces consist of several calls, and yielding sub-optimal accuracy when constructing subject behaviour [12]. They also 
require hyper-parameter tuning for optimal results [6]. The application of HMMs for syscalls feature extraction was first 
introduced by Warrender et al [13], then extended by other authors [14–18].

The sequence models capture the semantic meaning of syscalls by calculating the probability distribution over the 
traces. These include but are not limited to Long-Short Term Memory (LSTM) [19], Gated Recurrent Units (GRUs), Recurrent 
Neural Networks (RNNs) [20], Word2Vec [21], and GloVe embeddings [22]. Sequence models have received much interest 
due to their remarkable ability in capturing inter-word correlations. Mikolov et al. proposed Word2Vec (W2V) [23, 24], 
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a method that produces word vectors depending on their use context. Word vectors may be utilized in the Skip-Gram 
and Continuous Bag-of-Words models (CBOW). CBOW learns target words based on their context. The Skip-Gram model 
operates in the opposite direction, anticipating context from a target word. The fundamental concept underlying W2V 
is to train a neural network, discard the model, and then utilize the learned hidden layer weights as word vectors. Pen-
nington et al. introduced Global Vectors for Word Representation, GloVe (GLV) [25], a count-based model that learns a 
context-sensitive vector representation of words. GLV views context as a co-occurrence matrix and incorporates word 
data accordingly. GLV is subsequently trained with the co-occurrence matrix’s non-zero elements.

These feature extractors all have advantages and peculiarities. Window-based feature extractors tend to require high 
computing costs for extracting features and model training, but they often result in increased detection rates. Although 
frequency-based techniques are less computationally expensive than window-based techniques, they do not necessar-
ily produce high detection rates. Although training an HMM is a computationally expensive procedure, the approach 
frequently produces high detection metrics. W2V is simple and requires little to no preprocessing and low memory. GLV 
requires a lot of memory for storage because it is trained on the co-occurrence matrix, but the word vectors describe 
sub-linear correlations in the vector space, resulting in stronger models. In this paper, we specifically investigate W2V 
and GLV feature extraction techniques as they generate embeddings that provide implicit relationships, which are useful 
when training on data that can benefit from contextual information. The embeddings generated by W2V and GLV have 
been shown to improve generalization and performance for HIDS, especially when training data is scarce. We refer the 
interested reader to recent HIDS’ reviews presented by Liu et al. [26] and Bridges et al [6].

The work by Arp et al. [27] identifies ten common pitfalls of using AI applied to cybersecurity at the different stages 
of an ML workflow. Those pitfalls, however, do not include the discrepancies identified in this paper, which occur during 
the data processing/feature extraction stage. We demonstrate their impact as well as the simplest possible solution in 
the next section.

3 � Discrepancies in Feature Extraction Methods

In this work, we focus on the Australian Defense Force Academy Linux Dataset (ADFA-LD) [4, 28, 29], the Next-Generation 
Intrusion Detection System Dataset (NGIDS-DS) [30], the Web Conference 2019 Dataset (WWW2019) [31] and the Leipzig 
Intrusion Detection Dataset 2021 (LID-DS2021), an updated version of the LID-DS2019 [32]. We have selected these 
four datasets because they contain new and relevant intrusion types and were designed to assess the performance of 
modern HIDS. The ADFA-LD consists of 833 benign training, 4372 benign validation traces, and 746 attack training traces 
from six attack classes, namely, user to root, password brute force (FTP and SSH via the Hydra tool), add new superuser, Java 
Based Meterpreter, Linux Meterpreter Payload, and C100 Webshell. The NGIDS-DS comprises 19,256 benign and 18,121 
attack traces and the WWW2019 dataset comprises 43,725 benign and 108,905 attack traces. The entire LID-DS2021 
dataset is divided into train, validation, and test classes with recordings belonging to one of the four classes: idle, normal, 
attack, and the normal and attack combined. For experimental purposes, we only select the normal and attack record-
ings because they are the only classes of recordings or samples that appear in the other three datasets. We, therefore, 
combine all the partitions and present the original per-class binary compositions of the datasets in Table 1. The “Mean 
Length” column represents the mean length of all the traces in the dataset. In the ADFA-LD dataset, the shortest trace 
contains 76 syscalls and the longest contains 4495 syscalls. In the WWW2019 and NGIDS-DS datasets, the shortest traces 
contain only 1 syscall and the longest contain 349,986 and 471,177 syscalls, respectively. Traces in the LID-DS2021 are 
relatively longer than the ones in the other three datasets with the shortest trace containing 42 syscalls and the longest 
containing 10,698,062 syscalls.

W2V and GLV create embeddings for each call in the trace, therefore, to have fixed-size samples, most researchers 
take the average of all the embeddings of a trace as the final sample. We follow the same approach and use a standard 

Table 1   Composition of the 
datasets

Dataset Total number of traces Benign Attack Mean length

ADFA-LD 5951 5205 746 462.69
NGIDS-DS 37,377 19,256 18,121 2409.34
WWW2019 152,630 43,725 108,905 303.31
LID-DS2021 15,242 14,944 298 452261.96
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value for the vector size v = 128 for the W2V and GLV embeddings. Since we are dealing with sequences of numbers and 
not text, this approach introduces duplicates. This phenomenon is due to the nature of the samples and the vectoriza-
tion technique used. An example is shown in Table 2, where we build a W2V model to generate embedding vectors of 
size v = 4 for each trace. Although traces A and B, and C and D are different samples in the dataset, their embedding 
vectors of size 4, V1–V4, are the same for each pair (A–B and C–D) as we average the embedding vectors generated for 
each syscall. Having duplicate samples in the data is a significant research challenge in ML since it might lead to a data 
leakage scenario, in which the trained ML model is aware of a portion of the test data, that is, having data from the test 
data already present in the training data. One solution to this challenge involves keeping only one of these duplicated 
instances and removing the others. Nonetheless, this results in a loss of diversity and a lower sample size which may 
then lead to poor generalization.

Table 3 shows the number of duplicates introduced by W2V and GLV in the four datasets. The “Benign” (“Attack”) 
column shows the initial number of benign (attack) samples in the dataset, and the “Duplicate Benign” (“Duplicate 
Attack”) column shows the number of duplicate benign (attack) samples after vectorization with the approach in the 
corresponding “Approach” column, the “Duplicate Attack & Benign” column shows the number samples that appear 
in both the benign and attack set after vectorization, and the “Final” column shows the final number of samples in the 
dataset after removing all the duplicates. In all the cases, except for the LID-DS2021 dataset, where the number of 
duplicated attack and benign samples is the same with both vectorization techniques, and the attacks in the ADFA-LD 
dataset, W2V has introduced more duplicates than GLV. As a result of deleting the duplicates, the final datasets contain 
fewer samples after vectorization with W2V.

To illustrate the influence of duplicated samples in the datasets, we constructed two ML models per dataset, one built 
on the data before the duplicated samples were removed and another constructed on the data after the duplicated 
samples were removed. Thus, we constructed a total of eight ML models with eight sets of evaluation metrics described 
in Sect. 3.1; and we present the preliminary results in Sect. 3.2.

3.1 � Experimental Setup

In the experiments conducted throughout the manuscript, we used the Extremely Randomized Trees (ERT) [33] as the 
binary classification algorithm to classify syscall traces as either “attack” or “benign”. The ERT is a tree-based ensemble 
method that builds multiple trees and splits nodes using random subsets of features. In the ERT, sampling is done without 
replacement, and the nodes are split into random splits [33]. This allows the ERT to be more computationally efficient 

Table 2   Toy example of 
duplicate system calls after 
vectorization with Word2Vec

Trace ID Syscalls Embedding vector

V1 V2 V3 V4

A 3 1 3 − 0.652 − 0.579 − 0.074 − 0.647
B 3 3 1 1 3 3 − 0.652 − 0.579 − 0.074 − 0.647
C 1 1 3 3 − 0.588 − 0.550 − 0.092 − 0.689
D 3 3 1 1 − 0.588 − 0.550 − 0.092 − 0.689

Table 3   Quantitative descriptions after vectorization

Approach Dataset Benign Duplicate benign Attack Duplicate attack Duplicate attack 
and benign

Final

W2V ADFA-LD 5205 2459 746 14 3 3475
NGIDS-DS 19,256 7169 18,121 10,382 161 19,665
WWW2019 43,725 12,353 108,905 20,027 45 120,205
LID-DS2021 14,944 29 298 26 0 15,187

GLV ADFA-LD 5205 2105 746 14 2 3830
NGIDS-DS 19,256 5115 18,121 5764 116 26,382
WWW2019 43,725 11,388 108,905 18,474 9 122,759
LID-DS2021 14,944 29 298 26 0 15,187
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than other tree-based ensemble algorithms that split on best splits such as Random Forests [34]. We set the number of 
trees parameter t of the ERT to t = 1000 and leave the other hyper-parameters at their default values.

In terms of performance assessment metrics, we considered the balanced accuracy, macro recall, macro precision, 
macro F1-score, and the Area Under the Receiver Operating Characteristic curve (AUROC). We constructed a robust 
stratified 5-fold cross-validation framework to report reliable metrics and account for potential sampling bias [27]. All 
experiments were conducted on the Digital Research Alliance of Canada (the Alliance), formerly Compute Canada, clusters 
using 4 NVIDIA A100 GPUs (each with a memory of 40 GB) and 48 CPU cores with 128GB of RAM.

3.2 � Preliminary Evaluation

Figure 1 shows the performance of the ERT before (Fig. 1a), and after (Fig. 1b) removing the duplicates introduced by 
W2V and GLV, respectively. The higher results depicted in Fig. 1a, are due to the potential inclusion of duplicate samples 
in the training and testing sets which are often overlooked by researchers [21, 35–37]; this, however, is not a correct form 
of evaluation, the correct results are those shown in Fig. 1b which appear to be lower.

Additionally, Fig. 2 shows the differences between the five pairs of metrics when the model is built after (Fig. 1b) and 
before (Fig. 1a) removing the replicated samples (after–before). Thus, a negative value shows that the model obtained 
without duplicates has a lower performance than the model trained with duplicates. It can be seen that with both feature 
sets, except on the LID-DS2021, we observe a drop in macro precision, recall, F1-score, and AUROC, on all the other 
datasets in the ranges 0.0193–4.3153% with the largest drop of 4.3153% in macro recall and balanced accuracy on the 
WWW2019 dataset with W2V embeddings. The LID-DS2021 dataset produces relatively stable results due to the fact 
that the vectorization techniques do not generate as many duplicates as they do for the other three datasets.

These findings highlight the need to find a more consistent feature set that will help reduce the number of duplicates 
and maintain data variety while also improving the performance of ML models. In the following experiments, we use 

Fig. 1   Performance of the ERT before (a) and after (b) removing the duplicates

Fig. 2   Difference in perfor-
mance between after and 
before removing duplicates
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the results from Fig. 1b as the baseline for comparisons, we will be referring to these feature sets as “baseline W2V” and 
“baseline GLV”.

4 � Experimental Analysis Using Alternate Feature Sets

As mentioned in Sect. 3, using W2V and GLV vectorization techniques on these datasets introduces duplicated instances, 
leading to inaccurate results, especially when those duplicate embedding vectors appear in the training and testing 
partitions. Therefore, we remove the repeated samples and consider the models constructed with these vectors as our 
baselines. Figure 3 shows the experiments we conducted throughout the paper.

In our first set of experiments, we add a “count” feature to the embedding vectors of size 128 extracted for each 
system call trace. The “count” feature counts the total number of calls appearing in each trace to allow distinguishing 
between similar traces that may appear as duplicates after vectorization. The “count” column in Table 4 illustrates this 
new dimension. Although this new “count” feature does not help with traces C and D as they both contain the same 
number of system calls, it still helps to differentiate between traces A and B after vectorization, as we can observe 
in Table 4. Therefore, for each dataset, two feature sets of size 129 are extracted, to which we will be referring to 
as “count W2V” and “count GLV” to represent the usage of W2V and GLV, respectively. The quantitative descriptions 
of the vectorized datasets and the difference in performance metrics are presented in Table 5 and Fig. 4, while the 

Fig. 3   Experiments conducted in the paper

Table 4   Toy example of 
duplicate system calls and 
additional “count” feature

Trace ID Syscalls Embedding vector count

V1 V2 V3 V4

A 3 1 3 − 0.652 − 0.579 − 0.074 − 0.647 3
B 3 3 1 1 3 3 − 0.652 − 0.579 − 0.074 − 0.647 6
C 1 1 3 3 − 0.588 − 0.550 − 0.092 − 0.689 4
D 3 3 1 1 − 0.588 − 0.550 − 0.092 − 0.689 4
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respective evaluation metrics are shown in Fig. 8 in Appendix. As seen in Table 5, adding the “count” feature reduces 
the number of duplicates in all cases thus resulting in larger final sets compared to Table 3.

In Fig. 4, for all the datasets, we notice an increase in all the metrics compared to the baseline when building the 
model with both W2V and GLV embeddings. This indicates that adding the “count” feature is beneficial for these 
datasets when using W2V and GLV embeddings as it helps maintain diversity in the datasets.

In our second set of experiments, we further remove the consecutive calls from a trace and only keep the first 
occurrence. Therefore, after applying this method, traces A and B, in Table 4, will have the exact same embedding 
vector, but the “count” dimension will prevent them from appearing as duplicates after vectorization. As traces are 
shorter, removing consecutive calls speeds up the vectorization process. Similar to our first experiment two feature 
sets of size 129 are generated for each dataset, we refer to those feature sets as “no consec W2V” and “no consec GLV”. 
The quantitative descriptions of the vectorized datasets and the evaluation metrics are presented in Table 6. This 
approach introduces fewer duplicate benign samples for W2V compared to Table 5, but increases the duplicate attacks 
samples and duplicate attack and benign samples in the two datasets expect for WWW2019. As for GLV, this approach 
increases the number of duplicate samples, except for the duplicate attack and benign samples in the NGIDS-DS 
dataset. Therefore, the final datasets obtained with GLV are smaller compared to the ones obtained with only the 
“count” feature in our previous experiment, but they are still larger than the ones obtained using W2V. Figure 5 shows 
the percentage differences between the “no consec” feature sets and the “count” feature sets (Fig. 5a), and between the 
“no consec” feature sets and the baselines (Fig. 5b). The respective evaluation metrics are shown in Fig. 9 in Appendix.

As seen in Fig. 5, on the ADFA-LD and WWW2019 datasets, we observe a significant increase in performance with the 
“no consec W2V” feature sets but no major change in performance with “no consec GLV” feature sets when compared to 
the “baseline GLV” and the “count GLV” feature sets. Similarly, on the NGIDS-DS and LID-DS2021 datasets, there is no 

Table 5   Quantitative descriptions after adding “count” feature

Approach Dataset Benign Duplicate benign Attack Duplicate attack Duplicate attack 
and benign

Final

W2V ADFA-LD 5205 2433 746 14 2 3502
NGIDS-DS 19,256 7161 18,121 10,381 162 19,673
WWW2019 43,725 12,353 108,905 20,027 45 120,205
LID-DS2021 14,944 23 298 25 0 15,194

GLV ADFA-LD 5205 2105 746 14 2 3830
NGIDS-DS 19,256 5101 18,121 5743 124 26,409
WWW2019 43,725 11,388 108,905 18,474 9 122,759
LID-DS2021 14,944 23 298 25 0 15,194

Fig. 4   Difference in perfor-
mance between “baseline” and 
“count” feature set
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significant increase or decrease in performance when compared to the baseline and “count” feature sets. This shows that 
removing the consecutive calls and keeping the “count” feature builds better models only when using W2V embeddings 
but not GLV embeddings.

In the consecutive experiments, whose results are shown in Fig. 10, we concatenate the embedding vectors created 
using W2V and GLV and build models with and without the “count” dimension added in the first experiment. This resulted 
in 4 new feature sets: 

1.	 256 w/ consec: the feature set consisted of the combination of W2V and GLV embeddings with consecutive calls. This 
results from concatenating each of the feature sets used in the baseline, i.e., “baseline W2V” and “baseline GLV” (Fig. 1b).

2.	 256 w/o consec: the feature set consisted of the combination of W2V and GLV embeddings without consecutive calls.
3.	 258 w/ consec: the feature set consisted of the combination of W2V and GLV embeddings with consecutive calls and 

the “count” dimension added in the first experiment. This results from the concatenation of each of the feature set 
used in the first experiment, i.e., “count W2V” and “count GLV”.

4.	 258 w/o consec: the feature set consisted of the combination of W2V and GLV embeddings without consecutive calls 
but with the “count” dimension. This results from concatenating each of the feature sets used in the second experi-
ment, i.e., “no consec W2V” and “no consec GLV”.

Due to the large number of features resulting from the concatenation of the W2V and GLV embeddings, dimensionality 
reduction or feature selection techniques should be applied to further minimize the number of features to only relevant 
features and reduce the computational complexity, speed up both training and detection, and possibly improve the 
model’s performance. This also helps avoid the curse of dimensionality [38, 39]. Feature selection, as the name implies, is 
simply preserving and eliminating specific features from the original dataset without changing them. On the other hand, 
dimensionality reduction discovers a smaller collection of new variables, each of which is a combination of the input 

Table 6   Quantitative descriptions without consecutive calls and “count” feature

Approach Dataset Benign Duplicate benign Attack Duplicate attack Duplicate attack 
and benign

Final

W2V ADFA-LD 5205 2401 746 30 8 3512
NGIDS-DS 19,256 6572 18,121 12,539 183 18,083
WWW2019 43,725 12,178 108,905 25,447 9 120,566
LID-DS2021 14,944 27 298 16 0 15,199

GLV ADFA-LD 5205 2224 746 30 6 3691
NGIDS-DS 19,256 5727 18,121 10,502 121 21,027
WWW2019 43,725 11,389 108,905 18,759 9 122,473
LID-DS2021 14,944 13 298 14 0 15215

Fig. 5   Difference in performance between “no consec” and “count” feature sets (a), and between “no consec” feature sets and “baseline” (b)
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variables and has the same information as the input variables. There exist several feature selection and dimensionality 
reduction methods. Fisher score [40], Backward (Forward) Feature Elimination (Selection) [41], and Missing Value Ratio 
are all examples of feature selection methods [42, 43]. Independent/Principal Component Analysis [44, 45], t-distributed 
Stochastic Neighbor Embedding (t-SNE) [46], Isometric Mapping (ISOMAP) [47], autoencoders [48] and Uniform Manifold 
Approximation and Projection (UMAP) [49] are examples of dimensionality reduction methods.

We therefore further conduct experiments using autoencoders for compressing or decompressing the features 
obtained by concatenating W2V and GLV embeddings. An autoencoder is a type of unsupervised Artificial Neural Net-
work that compresses (or decompresses) data to a lower (or higher) dimension before reconstructing the input. The data 
representation in the lower (or higher) dimension is discovered by focusing on the relevant features and eliminating 
noise and redundancy. It employs an encoder-decoder architecture in which the encoder converts high-dimensional 
data to lower-dimensional data and the decoder attempts to recreate the original high-dimensional data from the 
lower-dimensional data.

For each dataset and feature set, we build several autoencoder architectures and shapes and fine-tune them for the 
smallest reconstruction loss using the python package Hyperas available on GitHub.1 We report the best autoencoder 
architectures and parameters for each feature set in Table 8 in Appendix. Figure 6 shows the percentage differences 
between the four new feature sets and the baselines with W2V and GLV embeddings for each dataset, while we report the 
respective evaluation metrics and percentage differences with the other experiments in Figs. 10, 11 and 12 in Appendix.

As seen in Fig. 6, none of the four feature sets improve the AUROC when compared to the W2V and GLV baselines on 
the NGIDS-DS and the LID-DS2021. However, on the WWW2019, we notice an increase in all metrics when compared 
to baseline W2V but not GLV. We also observe that on the ADFA-LD dataset, the combinations without consecutive calls 

Fig. 6   Difference in performance between the four feature sets and the W2V and GLV baselines on a ADFA-LD, b NGIDS-DS, c WWW2019 
and d LID-DS2021 datasets

1  https://​github.​com/​maxpu​mperla/​hyper​as.

https://github.com/maxpumperla/hyperas
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(“w/o consec”) yielded the highest results when compared to both W2V and GLV baselines. Nevertheless, the count dimen-
sion yielded the highest balanced accuracy, macro precision, recall and F1-score on the NGIDS-DS, while on the LID-
DS2021 dataset, the feature set yielding the results on par with the baselines on all metrics was the one obtained from 
the concatenation of the original W2V and GLV embeddings without the “count” dimension (“256 w/ consec”), whereas 
the “256 w/o consec” and the “258 w/ consec” produced the poorest AUROC compared to both baselines.

Table 7   Q-statistic, p-value 
and critical distance

Dataset Q p-value CD

ADFA-LD 33.82909 0.00009 4.28364
NGIDS-DS 31.77818 0.00021 4.28364
WWW2019 34.17818 0.00008 4.28364
LID-DS2021 23.40881 0.00534 4.28364

Fig. 7   CD diagrams of the ten 
feature sets on a ADFA-LD, b 
NGIDS-DS, c WWW2019, and 
d LID-DS2021 datasets
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Figure 13 in Appendix illustrates the ROC curves and mean AUROCs after stratified fivefold cross-validation with the 
four feature sets on the four datasets. It can be observed, in Fig. 13a–c, that when the FPR is in the range of 10–30%, all 4 
feature sets achieve optimal TPRs on the ADFA-LD, NGIDS-DS and WWW2019 datasets with the “258 w/o consec” feature 
set yielding the highest AUROCs of 96.69%, 96.82%, and 98.84% with standard deviations of ±0.45 , ±0.23 and ±0.05 respec-
tively. As seen in Fig. 13d, on the LID-DS2021, optimal TPR is achieved much faster with the “256 w/o consec” feature 
set yielding an AUROC of 99.46% with a standard deviation of only ±0.03 on the LID-DS2021. It is worth noting that 
the “258 w/o consec” which yielded the highest AUROC on the other three datasets yielded the second highest AUROC on 
the LID-DS2021 dataset and the “258 w/ consec” yielded the lowest AUROCs on all datasets except for the NGIDS-DS.

5 � Analysis and Discussion

This section presents an analysis of the results from the experiments we conducted on the four datasets introduced in 
Sect. 3. On the ADFA-LD dataset, the “256 w/o consec” and “258 w/o consec” feature sets yielded the highest precisions 
(97.093% and 97.16%), recalls (94.31% and 94.38%), F1 (94.31% and 94.38%), balanced accuracies (95.79% and 95.85%) 
and AUROCs (97.65% and 97.69%). It should also be noted that the 4 new feature sets with the autoencoders yielded 
the lowest AUROCs compared to the other feature sets on the NGIDS-DS dataset, this may be due to the lack of benign 
samples in that specific set. On the NGIDS-DS dataset, the “count GLV” feature set yielded the highest precision, recall, 
F1, balanced accuracy and AUROC of 95.73%, 95.64%, 95.68%, 95.64%, and 98.71%. On the WWW2019 dataset, on the 
other hand, the “258 w/o consec” feature set yielded the highest precision, recall, F1, and balanced accuracy of 96.85%, 
91.72%, 93.92% and 95.52% while the “no consec W2V” feature set yielded the highest AUROC of 99.53%. On the LID-
DS2021 dataset, the “no consec GLV” feature set yielded the highest precision of 99.63%, the “256 w/ consec” and the “258 
w/o consec” feature sets yielded the best accuracies (99.96%), the “count W2V” feature set yielded the highest AUROC of 
99.9998% but none of the features and approaches outperformed the baseline in terms of F1 and recall with the “baseline 
W2V” feature set yielding the highest F1 of 99.71% and recall of 99.8081%.

These results show that despite not outperforming the baselines on all metrics on the LID-DS2021 datasets, the new 
feature sets increase the performance of the ML models relative to the baselines, especially on the other three datasets 
where the “258 w/o consec” feature set has yielded relatively high results. In addition to the performance improvement, 
they help reduce the number of duplicated samples and maintain data diversity, as stated in Sect. 4.

We further performed the Friedman test [50, 51], which is the non-parametric equivalent of the repeated-measure 
Analysis Of Variance (ANOVA) for statistical hypothesis testing and determining whether there are any significant differ-
ences among the measures obtained in our experiments Fig. 3. Table 7 provides the Q-statistics, p-values, and Critical 
Distances (CD) of the four groups of evaluation metrics yielded by the ten feature sets, i.e., the baselines (Fig. 1b), the 
added count dimensions (“count” feature sets, Fig. 8), the added count dimension without the consecutive calls (“no 
consec” feature sets, Fig. 9) and the four combinations (Fig. 10) on the four experimental datasets. We can see that the 
Q-statistics for the ADFA-LD, NGIDS-DS, WWW2019, and LID-DS2021 datasets come out to be equal to 33.82909, 
31.77818, 34.17818, and 23.40881 and the respective p-values are 0.00009, 0.00021, 0.00008 and 0.00534. Since these 
p-values are all less than 0.05 at our confidence level of 0.95, we can reject the null hypothesis that the obtained metrics 
are the same for all ten groups of feature sets. In simple words, we have enough proof to say that the differences among 
the ten feature sets’ results are statistically significant.

We, therefore, conducted the Nemenyi test [52, 53] to find precisely which feature sets have different means. As seen 
in Table 7, the CD is 4.28364 for all four datasets, in other words, there is a statistically significant difference between the 
feature sets if their average ranks differ by at least 4.28364. These comparisons are depicted on critical distance diagrams 
(Fig. 7). A connecting line between feature sets indicates that the null hypothesis that they are significantly different can-
not be rejected. On the ADFA-LD dataset, Fig. 7a, we observe that the “258 w/o consec” feature set ranked first and the 
“256 w/o consec” ranked second. This shows that concatenating the two feature sets without consecutive provides better 
rankings overall on this dataset. In Fig. 7b, the “count GLV” feature set ranked first on the NGIDS-DS which was followed by 
the “baseline GLV” and “no consec GLV”. It can be inferred that the GLV embeddings provide better overall rankings for this 
dataset. Similar to the ADFA-LD, Fig. 7c shows that the “258 w/o consec” also ranked first on the WWW2019 along with the 
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“count GLV” feature set which also ranked first on the NGIDS-DS. The “baseline W2V” feature set ranked first on the LID-
DS2021 and the “count W2V” ranked second (Fig. 7d). This is the only dataset in which the baseline ranked first. We posit 
that this is because the number of replicas was already low, to begin with, thus the extra features had no large impact on 
the performance of the models. The “258 w/o consec” feature set ranked first on both the ADFA-LD and WWW2019 datasets, 
the “count GLV” feature set ranked first on the NGIDS-DS and second on the WWW2019; the baseline W2V feature set ranked 
first on the LID-DS2021 dataset and second on the NGIDS-DS. These results demonstrate that by using the new feature 
sets, it is possible to preserve data variety, reduce the number of redundant samples, and achieve high performance.

6 � Conclusion

In this paper, we have demonstrated how word-embedding-based feature extraction techniques, namely W2V and 
GLV, can lead to a loss of diversity and the introduction of replicas in the data from Host-Based Intrusion Detectors. 
These issues are frequently overlooked by researchers. However, the replicated instances can end up appearing in 
both the training and testing sets, leading ML models to provide overly optimistic and inaccurate results, rendering 
the ML-based Intrusion Detector ineffective. We have used the ADFA-LD, NGIDS-DS, WWW2019, and LID-DS2021 
datasets for experimentation and demonstrated that W2V introduces more replicated samples than GLV, which 
results in a greater performance decline when those samples are removed. We have therefore conducted extensive 
experiments using alternate feature sets that consisted of adding new dimensions and concatenating the features 
extracted by W2V and GLV to simultaneously tackle the issue of duplicated samples and improve the performance 
of the models. Experimental results show that, from the ten feature sets, concatenating embeddings from W2V and 
GLV and counting the number of syscalls in a trace could increase the performance of the ERT in three out of the four 
datasets. Nonetheless, there is no universally suitable feature set that can be used across all the experimental datasets 
as they have all yielded different results on the datasets. Selecting the ideal feature set for a specific dataset should 
therefore be based on the user’s preference. Finally, as seen in Table 4, our proposed feature sets are still limited 
in the sense that duplicate traces may still appear in the datasets even with the alternate feature sets. Future work 
will include addressing the duplicate samples that our feature sets were unable to handle, generating a universally 
applicable feature set, evaluating our feature sets on additional HIDS datasets and looking into data augmentation 
techniques to solve the data imbalance issue. An additional research direction would be evaluating our proposed 
feature sets on multi-class scenarios.
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Fig. 8   Performance of the ERT 
with “count” feature (count 
feature set)

Fig. 9   Performance of the 
ERT without consecutive calls 
and “count” feature (no consec 
feature set)

Fig. 10   Performance of combining Autoencoders and ERT on a ADFA-LD, b NGIDS-DS, c WWW2019 and d LID-DS2021 datasets using 
the 4 new feature sets

Appendix: Performance Metrics and Parameters

Additional Performance Metrics Results

This section shows the different metrics yielded by the ERT on the additional feature sets. Figure 8 shows the performance of 
the ERT with the “count” feature set added in Experiments 1. Figure 9 shows the performance of the ERT with the “no consec” 
feature set built in Experiments 2. Figure 10 shows the respective performance metrics for each dataset using the four feature 
sets built in Additional Experiments. Figures 11 and 12 show the percentage differences between the four new feature sets 
and the “count” and “no consec” feature sets respectively.
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Fig. 11   Difference in performance between the four feature sets and the W2V and GLV “count” feature sets on a ADFA-LD, b NGIDS-DS, c 
WWW2019 and d LID-DS2021 datasets
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Fig. 12   Difference in performance between the four feature sets and the W2V and GLV “no consec” feature sets on a ADFA-LD, b NGIDS-
DS, c WWW2019 and d LID-DS2021 datasets
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Best Parameters of Different Auto‑Encoder Architectures

Table 8, shows the best autoencoder architectures and parameters from Hyperas that we used to compress/decom-
press the data before building the intrusion detection models we evaluated in Fig. 10. The hidden neurons column 
represents the neurons after (before) the input (output) layers which are 256 or 258 depending on the feature set.

Fig. 13   ROC curves of the combination of autoencoders and ERT on a ADFA-LD, b NGIDS-DS, c WWW2019 and (d) LID-DS2021 datasets
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Table 8   Best autoencoder architecture per feature set

h_n: hidden neurons

Feature set Activation Alpha Batch_size Dropout h_n l2 Optimizer

ADFA256_consec sigmoid 0.7623 256 0.1576 [128, 64, 128] 2e−06 rmsprop
ADFA256_noconsec relu 0.3841 8 0.0738 [128, 64, 32, 16, 8, 16, 32, 64, 128] 2e−02 adam
ADFA258_consec relu 0.2222 16 0.2549 [512, 1024, 1024, 512] 5e−05 rmsprop
ADFA258_noconsec sigmoid 0.9524 8 0.5507 [128, 64, 32, 16, 8, 8, 16, 32, 64, 128] 2e−02 sgd
WWW256_consec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 5e−07 adam
WWW256_noconsec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 1e−05 adam
WWW258_consec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 1e−05 adam
WWW258_noconsec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224] 1e−05 adam
NGIDS256_consec tanh 0.2181 256 0.7916 [128, 64,32,32, 64, 128] 1e−05 adam
NGIDS258_consec tanh 0.6267 256 0.0167 [224, 192, 160, 128, 160, 192, 224 2e−05 rmsprop
NGIDS256_noconsec sigmoid 0.9028 16 0.2094 [256, 512, 1024, 1024, 512, 256] 3e−05 adam
NGIDS258_noconsec sigmoid 0.9028 16 0.2094 [256, 512, 1024, 1024, 512, 256 3e−05 adam
LIDDS256_consec tanh 0.3346 64 0.4032 [2048,1024,512, 1024, 1024,2048] 1e−04 rmsprop
LIDDS258_consec tanh 0.9387 32 0.4577 [1024, 1024, 1024] 2e−05 sgd
LIDDS256_noconsec tanh 0.5799 128 0.6749 [1024, 2048, 1024] 2e−04 adam
LIDDS258_noconsec tanh 0.6300 256 0.1742 [512, 1024, 2048, 1024, 512] 4e−06 adam
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