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Abstract 

The aboveground biomass (AGB) of grassland, a crucial indicator of productivity, is anticipated to widespread changes 
in key ecosystem attributes, functions and dynamics. Variations in grassland AGB have been extensively documented 
across various spatial and temporal scales. However, a precise method to disentangle long-term effects from short-
term effects on grassland AGB and assess the attribution of explanatory factors for AGB change remains elusive. This 
study aimed to quantify the impact of key climatic factors, soil properties, and grazing intensity on grassland AGB 
changes, utilizing data spanning the 1980s and the 2000s in Northern China. The Co-regression model was explored 
to separate the long-term effects and short-term effects of grassland AGB, while the Generalized Linear Model (GLM) 
was utilized to analyze the contributions of key variables to AGB. This approach effectively avoids issues related 
to regression to the mean and mathematical coupling. The results revealed that the influence of climatic variables, soil 
texture and grazing intensity on grassland AGB changes could be decomposed into long-term, short-term and ran-
dom effects. Long-term effects explained 73.6% of AGB variation, whereas short-term effect only accounted for 5.9% 
of AGB change. Additionally, the short-term effect was divided into direct and indirect effects, with the direct effect 
explaining 1.3% of AGB variation, and the indirect effect explained 4.6% of AGB dynamics. The relative importance 
of key variables in grassland AGB was assessed, identifying soil parameters and precipitation as the main driving fac-
tors in the study area. This study introduces a robust methodology to enhance model performance in distinguishing 
long-term and short-term effects on grassland AGB, contributing to the sustainable development of grassland ecol-
ogy in similar regions.

Highlights 

•	 Co-regression model was effective to separate long- and short- terms impact of AGB.
•	 The effect of long-term factors on AGB was higher than that of short-term factors.
•	 Soil parameter and precipitation were major driving factors to affect AGB change.
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1  Introduction
Aboveground biomass (AGB) is a critical component 
of global carbon cycle and nutrient cycling (Costanza 
et al. 1997; Zhu et al. 2019). Amount in grassland AGB 
widely reflects the productivity and health status of 
grassland, contributing to monitoring grassland eco-
system functions and dynamics (Harris et  al. 2020; 
Huang et al. 2018). Comprehensive dynamics of grass-
land AGB are influenced by key factors, and evaluat-
ing them is pivotal for assessing grassland productivity 
and conducting sustainable management for grassland 

ecosystems (Pan et  al. 2023). While it is common to 
separately discuss the influence of climate or human 
activities on grassland AGB (Zhang et al. 2023a, b), fur-
ther studies are needed to comprehensively consider 
key factors over time (Lei et  al. 2022; Li et  al. 2023). 
Therefore, constructing an accurate estimation model 
for grassland AGB and analyzing long-term and short-
term driving factors, such as temperature, precipita-
tion, soil texture, and grazing intensity that influence 
AGB dynamics in vast regions remain a challenging 
endeavor. Accurately and quantitatively assessing the 
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driving factors of grassland AGB is of great significance 
for comprehending changes in grassland vegetation, 
establishing suitable livestock carrying capacity (He 
et al. 2022), evaluating the status of regional ecological 
environment (Huang et  al. 2015), and promoting sus-
tainable development of grassland resources (Campana 
et al. 2021; Adam et al. 2014; Delgado-Baquerizo et al. 
2020; Godde et al. 2019).

Grassland AGB presents a significant challenge for 
ecologists, due to its rapid variability and the influ-
ence of various factors (Li et al. 2020; Song et al. 2018). 
In addressing this challenge, researchers have focused 
on tackling statistical issues like regression to the mean 
(RtoM) in assessing AGB change (Muha et al. 2012; Wagg 
et  al. 2014). Many studies have emphasized the unsuit-
ability of directly regressing the change value of a vari-
able between two periods on its control variables due to 
the high (negative) correlation propensity to its initial 
value (Stigler 1980; Tu et al. 2005). For instance, Stevens 
and Van Wesemael (2008) addressed this issue in the 
analysis of covariance (ANCOVA) for soil organic car-
bon (SOC) change by using the average of the initial and 
end SOC as the covariate, aiming to mitigate the impact 
of the initial SOC on the SOC change (Tang et al. 2019). 
Moreover, considering the relationship between change 
and the initial value, the impact of control variables on 
AGB change should be intertwined with the influence 
of the initial AGB, rather than directly regressing AGB 
change on its controls, given the existence of RtoM 
(Karambas et al. 2016; Muha et al. 2012). Another chal-
lenge is mathematical coupling (MC), where one variable 
directly or indirectly contains all or part of another, lead-
ing to their joint analysis through correlation or regres-
sion (Dirmeyer et  al. 2013; Wu et  al. 2022). Attempting 
to regress the change value on the initial value along with 
other control variables may render the t test of the coef-
ficient in a regression model inappropriate (Calizza et al. 
2018; Tu et  al. 2005). However, problem of MC persists 
when regressing the change value on the mean AGB, as 
using mean AGB as a covariate involves first regressing it 
by AGB change. The initial value’s influence significantly 
affects the change value, resulting in the RtoM problem. 
Successfully eliminating this influence from the change 
value enables a more effective exploration of the relation-
ship between the adjusted change value and its relevant 
variables through regression.

To address this, the chosen approach and model vali-
dation strategies are crucial. Temporally, we classified 
the effects of driving factors into long-term and short-
term categories, with a particular emphasis on sepa-
rating short-term effects. This study was based on the 
mechanism of ecological disturbance and steady-state 
theory in time scale to distinguish the long-term and 

short-term effects from the perspective of statistics, the 
Co-regression method was employed to mitigate RtoM 
and MC problems and enhance AGB estimation perfor-
mance in grasslands. The primary questions were: (1) 
how can the Co-regression algorithm be utilized to assess 
long-term and short-term effects on grassland AGB 
change, improving model performance by identifying 
and addressing RtoM and MC problems? (2) What fac-
tors drive the variation of grassland AGB, and how can 
optimal variable combinations be determined for mode-
ling grassland AGB? (3) How can the contributions of key 
variables to grassland AGB be quantitatively analyzed? 
This study broadens our understanding of how driving 
factors affect grassland AGB change, paving the way for 
better assessments of grassland AGB in the present and 
future.

2 � Materials and methods
2.1 � Study area
This investigation took place in Northern China, span-
ning latitudes 34.30° to 49.49°N and longitudes 94.34° 
to 126.99°E, covering Hebei Province, Shanxi Prov-
ince, Inner Mongolia Autonomous Region, Ningxia Hui 
Autonomous Region, Liaoning Province, Jilin Province, 
Heilongjiang Province, Shaanxi Province, Gansu Prov-
ince, and Qinghai Province (Fig. 1). The study area’s eleva-
tion ranged from 500 m to 2,000 m. Climatic types in the 
region primarily included temperate continental, temper-
ate monsoon, and cold temperate climates. Climatic con-
ditions transitioned from semi-humid and semi-arid to 
arid areas from east to west, experiencing simultaneous 
rain and heat, along with substantial temperature varia-
tions between day and night. Mean annual temperature 
(MAT) varied between -0.36 °C and 12.23 °C, while mean 
annual precipitation (MAP) ranged from 43.82  mm to 
627.06  mm (statistics are based on meteorological data 
from the 2000s), displaying a decrease from east to west 
(Peng et al. 2019). Soil types were divided into sandy soil, 
clay soil and loam soil according to the influencing fac-
tors of the parent material, among which sandy soil and 
clay soil were the main soil types in the study area.

2.2 � Data sources
The grassland AGB data originated from routine sam-
pling surveys conducted at 243 sample sites across 
Northern China during the peak grass growing period in 
the 1980s and 2000s (supported by the Grassland Branch 
Center of the National Agricultural Science Data Plat-
form). For the investigation of grassland biomass, the 
most important grassland types and groups with the 
largest distribution area in the northern grassland were 
selected (at least relatively homogeneous within the 
surrounding 2  km × 2  km), for  which the geographical 
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location of the center in each sample plot was precisely 
determined by GPS, and the species composition, dis-
tribution pattern, topography and soil conditions in the 
sample plot were determined. Mean AGB was computed 
for the peak season in both the 1980s and 2000s, and 
AGB was expressed as carbon density (g C·m−2) using the 
internationally commonly used conversion rate of 0.45 
(Fang et al. 2007; Piao et al. 2004).

Additionally, climate data, including mean annual tem-
perature and mean annual precipitation for 243 sample 
sites across 56 counties in the study area, were obtained 
from the China Meteorological Administration (http://​
cdc.​cma.​gov.​cn/​home.​do) through spatial analysis and 
statistics in the 1980s and 2000s. Livestock inventory 
data for the 1980s and 2000s were sourced from the Rural 
Socio-economic Survey Team database of the China 
Bureau of Statistics for each county in the study area. The 
number of livestock was used to characterize the influ-
ence of grazing intensity in the two reference periods, 
calculated in terms of DSE hm–2 (DSE representing the 
amount of feed required by a two-year-old, 50 kg Merino 
sheep to maintain its weight).

The two sets of AGBs, climate and soil factors, and 
grazing intensity were utilized to formulate the grassland 
AGB models. The denotation and description of depend-
ent variables in this study are provided in Table 1. The key 
factors included temperature (MAT1, MAT2, ΔMAT), 
precipitation (MAP1, MAP2, ΔMAP), soil texture (SClay, 
SSilt), and grazing intensity (LSK1, LSK2, ΔLSK), which 
collectively referred to the explanatory variables of the 
model (Table 2).

2.3 � Segregating long‑term and short‑term effects
The impacts of long-term and short-term factors on 
grassland AGB were quantitatively investigated using the 
Co-regression model, constructed with IBM SPSS 22.0. 
The Pearson correlation test was employed for correla-
tion analysis, and the model’s fitting degree was enhanced 
by eliminating relationships between observed variables. 
Apart from the long-term effects, the variation in AGBL2 
was also influenced by the short-term effects of key fac-
tors, along with random fluctuations.

To separating long-term effects from short-term effects 
(Fig. 2):

Fig. 1  Geographical location and distribution of sampling sites in Northern China

Table 1  Denotation and description of dependent variables

Variable Description

AGB1 Average grassland AGB in 1980s

AGB2 Average grassland AGB in 2000s

AGBL1 Logarithm of AGB1

AGBL2 Logarithm of AGB2

PREDAGBL2 Predicted value of AGBL2 regressed to AGBL1, also expressed as exp(AGBL2)

PREDAGB2 Predicted value of AGB2 based on PREDAGBL2

CHGT Total change between AGBL2 and AGBL1

CHGL Change incurred by long-term impacts of control variables

CHGS Change incurred by short-term impacts of control variables and random errors

http://cdc.cma.gov.cn/home.do
http://cdc.cma.gov.cn/home.do
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where CHGT represents the total effect, which could 
be divided into change under long-term effect (CHGL), 
and change under short-term effect and random error 
(CHGS).

2.4 � Co‑regression model
The initial AGB served as the covariate, and AGB2 was 
regressed on AGB1 to predict the end AGB, thereby elimi-
nating its impact from the end AGB. Consequently, an 
adjusted change in AGB was generated, as opposed to 
the (direct) change in AGB resulting from subtracting the 
(observed) initial value from the (observed) end value. 
Moreover, the adjusted change in AGB was statistically 
independent of the initial AGB. The Co-regression analysis 
method, akin to variance analysis in ANCOVA, is replaced 
by regression analysis after removing the impact of the 
covariate.

Two consecutive linear models, Regression 1 and Regres-
sion 2, were set up for the Co-regression model. Logarith-
mic values of the initial AGB (AGBL1) and the end AGB 

(1)CHGT = AGBL2 − AGBL1

(2)CHGS = AGBL2 − PREDAGBL2

(3)CHGT = CHGL + CHGs

(AGBL2) were employed in conformity with the normality 
assumption. The first regression (Regression 1) regressed 
AGBL2 on AGBL1, and generated the predicted value of 
AGBL2 (PREDAGBL2). Subsequently, the impact of AGBL1 
(acting as the covariate) on AGBL2 was removed by sub-
tracting the PREDAGBL2 from AGBL2, and the difference 
(CHGS) was taken as adjusted change between the two 
periods, in contrast to the direct difference between AGBL2 
and AGBL1.

CHGS was totally independent of AGBL1, and the second 
regression (Regression 2) could be set up by regressing the 
CHGS on its relevant variables without problems about 
RtoM or MC.

The Co-regression model comprised following two linear 
regressions:

Regression 1: regress the AGBL2 on AGBL1, subtract the 
predicted AGBL2 from the (observed).

AGBL2, thus generated the CHGS. 
Regression 2: regress the CHGS on variables such as tem-

perature, precipitation, soil texture and grazing intensity.

where R2
1 is the R-square of Regression 1 and R2

2 is the 
R-square of Regression 2.

Taking the effect of Regression 1 as the long-term effect, 
Regression 2 as the short-term effect of the model, the fol-
lowing equations were obtained.

(4)Combined_R2 = R2
1 + R2

2(1− R2
1)

Table 2  Denotation and description of explanatory variables (controls)

Category Variable Description

Climate MAT1 Mean annual temperature in 1980s

MAT2 Mean annual temperature in 2000s

ΔMAT The difference of mean annual temperature between 1980 and 2000s

MAP1 Mean annual precipitation in 1980s

MAP2 Mean annual precipitation in 2000s

ΔMAP The difference of mean annual precipitation between 1980 and 2000s

Soil SClay The content of clay in the soil

SSilt The content of silt in the soil

Grazing LSK1 Number of livestock in 1980s

LSK2 Number of livestock in 2000s

ΔLSK The difference in livestock numbers between 1980 and 2000s

Fig. 2  Equations schematic diagram of CHGT, CHGL and CHGS
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where SST is the total sum of square for AGBL2; SSR1 is 
the regression sum of square for Regression 1; SSE1 is 
the error (or residual) sum of square for Regression 1, 
and also the total sum of square for Regression 2; SSR2 is 
the regression sum of square for Regression 2, and SSE2 is 
the error sum of square for Regression 2. SSR2

SSE1
 represents 

coefficient of determination of short-term effect, which 
is SSR2 divided by SSE1 (the total sum of squares of the 
short-term effect). SSE1SST  serves as adjustment factor, which 
equals to 1 minus SSR1

SST  , namely (1—R
2
1).

2.5 � Generalized Linear Model (GLM) and sum of squares 
(type III)

The multiple regression models of target variables on key 
driving factors were established, and then GLM method 
and sum of squares (type III) were applied to assign rele-
vant importance of each factor on target variables.

where parameter θi is a regular parameter, also known as 
identity link function, and variation with the exponent i 
(i = 1, 2, …, n), the disturbance factor � is a constant.

For the ith observation Yi, the linear predicted value of 
the system part was a linear combination of the variables 
under the study.

(5)Long− termeffect =
SSR1

SST
= R2

1

(6)

Short− termeffect =
SSR2

SSE1
×

SSE1

SST
= R2

2(1− R2
1)

(7)Error = SSE2/SST = 1− Combined_R2

(8)f(yi; θi,�) = exp
yiθi − b(θi)

a(�)
+ c(yi,�)

(9)ηi = XT
i β =

∑P

j=1
Xijβj, i = 1, 2, . . .n

where g() is the connection function, which connects 
the expectation of the random part to the system part, 
µi = E(Yi) was the expectation of Yi.

According to the correlation coefficient analysis results, 
different combinations of explanatory variables and 
CHGS were selected for regression analysis, and based on 
the selection criteria of explanatory variables (Table  2), 
the final model was determined. The explanatory varia-
bles under the short-term effect included the initial value, 
the end value, the difference between the end value and 
the initial value of all explanatory variables. According 
to the nature of target variables, MAP2, ΔMAP, MAT2, 
ΔMAT, LSK2, ΔLSK, SClay and SSilt were selected as alter-
native explanatory variables. Finally, the Co-regression 
model’s overall goodness of fit was assessed by applying 
variance decomposition.

3 � Results
3.1 � Decomposition of grassland AGB
Regression to the mean (RtoM) may arise from measure-
ment error or natural causes, including the long-term 
impact of key driving factors on AGB change (Tu et  al. 
2005). In this study, the two AGB variables were posi-
tively correlated (Fig.  3a), suggesting either a genuine 
correlation or non-identical errors in initial and final 
measurements. Furthermore, the effect of RtoM was evi-
dent in the change of AGBL1 (CHGT), which correlates 
negatively with AGBL1 (Fig. 3b).

Due to the presence of RtoM, it was inappropriate to 
directly regress the change of AGBL to its controls before 
the impact of AGBL1 had been removed. It was even chal-
lenging to discern how much of the change was influ-
enced by relevant controls versus RtoM. To focus on the 
influence of control variables on AGBL change, AGBL2 
was regressed to AGBL1. Subsequently, the predicted 
AGBL2 was subtracted from the observed AGB2 to elimi-
nate the effect of RtoM by removing the impact of AGBL1 

(10)g(µi) = ηi = XT
i β, i = 1, 2, . . .n

Fig. 3  The relation of AGBL1 and AGBL2 to CHGT. (a) The relation between AGBL1 and AGBL2; (b) the relation between AGBL1 and CHGT
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from AGBL2. As shown in Fig.  4d, the adjusted change 
(CHGS) was almost entirely uncorrelated with AGBL1, 
indicating successful removal of the effect of RtoM.

The average grassland AGB in Northern China was 
50.59  g·m−2 in the 1980s and 47.33  g·m−2 in the 2000s. 
Spatial distribution patterns showed a consistent decline 
in grassland AGB from east to west during both periods 
(Fig.  4a, b). While the influence of initial AGB on AGB 
variation was mainly attributed to the long-term impact 
of key factors, the adjusted AGB change (Fig. 4c) was cor-
respondingly interpreted as influenced by the short-term 
impact of control variables, including climate, soil texture 
and grazing intensity. In simpler terms, AGB change was 
affected by long-term controls, short-term controls, and 
random factors.

3.2 � Separating long‑term effect from short‑term impact 
on grassland AGB

The adjusted AGB value can be regressed against vari-
ous controls without the bias of initial values, as the 
adjusted AGB change shows minimal correlation with 

the initial AGB value. In Regression 1, the adjusted 
AGB change, denoted as CHGS, was derived after 
removing the impact of AGBL1. The influence of AGB1 
on AGB2 and subsequent AGBL change could stem 
from measurement errors or natural causes, which 
were accounted for in CHGS by considering the natural 
factors affecting AGBL1’s impact on AGBL2 over time. 
CHGS primarily reflects short-term control impacts.

Regression 2 explored the short-term effects of con-
trols on CHGS. Identifying these control factors posed 
a challenge, with temperature, precipitation, soil tex-
ture, and grazing intensity typically being primary 
influencers of grassland AGB. Short-term impacts on 
AGBL change considered both long-term mean values 
and changes in relevant variables.

The combined R-square is the most effective measure 
to assess the Co-regression model’s impact, revealing 
how much of AGBL2’s variation (relative to its mean) is 
explained by the model. As the Co-regression model 
comprised two regressions, the combined R-square inte-
grates two separate R-squares: the R-square of Regression 

Fig. 4  Spatiotemporal trends in 1980s and 2000s, the change and relation of grassland AGB in the Northern China. a Trend of grassland AGB 
in 1980s; (b) trend of grassland AGB in 2000s; (c) changes of grassland AGB in the Northern China between 1980 and 2000s; (d) the relation 
between AGBL1 and CHGS
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1 and product of the R-square of Regression 2 and 
(1-R2) of Regression 1. Figure 5 depicts the relationships 
between multiple sums of squares and R-squares. There-
fore, the Co-regression model clarifies 79.5% of AGBL2’s 
total variation. Additionally, it distinctly distinguishes 
between short-term and long-term control effects, with 
long-term impacts accounting for 73.6% of AGBL2’s varia-
tion, and short-term impacts for only 5.9%.

3.3 � Effects of key variables on grassland AGB
Figure  6a illustrates the relationship between grassland 
AGB change (CHGS) and corresponding driving variables. 
During the study period, grassland AGB showed a posi-
tive correlation with mean annual temperature (Fig.  6d, 
e) and a negative correlation with mean annual precipi-
tation (Fig.  6f, g). The maximum correlation coefficients 
were 0.17 (p < 0.01) and -0.29 (p < 0.01), respectively. The 
association between livestock carrying capacity (Fig. 6b, c) 
and grassland AGB varied over time, with correlation coef-
ficients of -0.13 (p < 0.05) and -0.18 (p < 0.01) in the 1980s 
and 2000s, respectively, and an overall negative correlation 
(Coef. = -0.13, p < 0.05). Additionally, the correlation coeffi-
cient between soil clay content (Fig. 6h) and grassland AGB 

was 0.01, while the correlation coefficient between soil 
sand content (Fig. 6i) and grassland AGB was -0.12.

The CHGS was regressed under various combinations of 
these variables, and the best regression model was chosen 
based on three criteria: a higher R-squared value, signifi-
cant t-values for each coefficient, and ecologically sensible 
explanations. Despite a strong correlation between MAP1 
and ΔMAP (Coef. = -0.462, p < 0.001), no serious issues of 
multicollinearity were found in the regression. Thus, both 
MAP1 and ΔMAP were kept in the model due to their sta-
tistical significance. Moreover, the interactions between 
MAP2 and MAT2 were found to be insignificant. The 
results of the optimal regression, which aimed to reduce 
overfitting and improve transferability, are summarized in 
Table 3.

The short-term change within precipitation (ΔMAP) 
showed significant positive impacts on the short-term 
change of AGBL, with ΔMAP (Beta = 0.232) being the most 
influential factors on CHGS. Although MAT1 is less signifi-
cant (p = 0.089) than MAP1, it still contributed to the short-
term variation of AGBL. Despite its insignificance, MAT2 
was negatively correlated with CHGS (B = -0.766), suggest-
ing that increasing temperatures could lead to a decrease 
in AGB. Soil texture, specifically SSilt, did not significantly 
influence CHGS (Beta = -0.169). While LSK2 was statisti-
cally insignificant in the model (p = 0.136), it showed a neg-
ative correlation with CHGS (Beta = -0.143), aligning with 
the anticipated relationship between grazing intensity and 
CHGS. Although the model’s R-squared value may seem 
relatively low (R2 = 0.161) for explaining the CHGS varia-
tion, the Co-regression model provided a satisfactory over-
all explanation for the variation in AGBL2.

In Regression 2, the main controls for CHGS were 
ΔMAT, MAP2, ΔMAP, LSK2 and SClay. The GLM was used 
to assign relevant importance of these controls. GLM anal-
ysis outcome is showed in Table 4.

Dependent variable was CHGS; R2 = 0.224; Adjusted 
R2 = 0.208; SS equaled to sum of squares (type III) / 
SST × 100%, which was proportion of variances explained 
by the variable.

The total sum of SS (0.178) for intersect and variables 
was less than the R-square or SSR/SST (0.224). This is 
because SS only reflects direct impacts of variables on 
the dependent variable. However, introduced into the 
model, they can indirectly affect the dependent variable 
by influencing other explanatory variables. The difference 

Fig. 5  The relation between multiple sums of squares and R squares. 
SST: sum of squares for total; SSR: sum of squares for regression; SSE: 
sum of squares for residual or error

Fig. 6  The relation between grassland AGB change and key variables. a Pearson correlations between grassland AGB change and the relevant 
variables; (b, c) relationship between AGB change and LSK; (d, e) relationship between AGB change and MAT; (f, g) relationship between AGB 
change and MAP; (h, i) relationship between AGB change and soil texture. The shade of the color and the size of the circle represent the strength 
of the correlation. * indicates the significant correlation at the 0.05 level; ** indicates the significant correlation at the 0.01 level; *** indicates 
the significant correlation at the 0.001 level. DSE represents Dry sheep equivalent

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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(R2 – ΣSS = 0.046) represents total indirect impacts of 
all controls on CHGS. Notably, SClay, ΔMAP and MAP2 
were the most crucial factors, explaining 6.5%, 5.2%, 
and 2.6% of CHGS variation. Short-term precipitation 
changes like ΔMAP directly affect grassland AGB (Welti 
et al. 2020), while long-term changes in precipitation pat-
terns, including alterations in annual precipitation aver-
ages or shifts in the timing and intensity of precipitation 
events, also influence aboveground biomass (Dullinger 
et  al. 2020; Feng et  al. 2021). Conversely, LSK2 had the 
smallest impact (0.6%). Precipitation and soil proper-
ties were identified as primary drivers of AGB dynamics, 
with long-term factors outweighing short-term ones and 
mutually reinforcing impacts.

4 � Discussion
4.1 � The validation and effect of Co‑regression model
Oldham’s (1962) method is utilized to examine the pres-
ence and characteristics of RtoM. It asserts that if the 

actual end AGB value (observed value minus measure-
ment error) is unrelated to the true initial AGB value, 
and if the variances of the initial or end measured val-
ues are identical, then the change in AGB is independent 
of the mean of the initial and end values. The accuracy 
verification of the model demonstrated a strong align-
ment between the estimated grassland biomass data and 
the measured data (Fig.  7a). The target AGB variable, 
influenced by the long-term joint action of all explana-
tory variables, exhibited a stable trend of development 
and change. This stability resulted in a clear correlation 
between the observed AGB values in the 1980s and 2000s 
(Fig.  7b). Subsequently, a linear correlation between 
AGBL1 and AGBL2 was established in Regression 1, gen-
erating an exponential relationship between AGB1 and 
AGB2. The effect of RtoM was shown in Fig.  7b. Let P 
represent an AGB1 value at which PREDAGB2 equaled 
AGB1 (P = 40.33). If AGB1 < P, then PREDAGB2 > AGB1, 
indicating a positive change in AGB; if AGB1 > P, then 
PREDAGB2 < AGB1, indicating a negative change in AGB.

In the Co-regression model, the temporal variation 
of AGB between two periods was investigated. While it 
wasn’t possible to generate a growth curve for each site 
due to the limited two-sample data for each site, spa-
tially distributed data served as the foundation for ana-
lyzing the relationship between AGB and its controls 
for each specific site. Spatial differences were observed 
in the influence of climate drivers on the spatiotempo-
ral dynamics of grassland AGB in the study area. For 
instance, AGBL2 on AGBL1 was regressed based on the 
data from 243 sample sites, and the resulting regres-
sion line illustrated the relationship between AGBL2 and 
AGBL1 for each sample site. It’s important to note that 
although this method adhered to statistical rules and 
assumptions, there was a notable issue of spatial autocor-
relation specific to this study. Fortunately, this challenge 
could potentially be addressed by employing a multilevel 
model that conducts regressions based on different data 

Table 3  The coefficients of Regression 2

Dependent variable was CHGS; R2  = 0.161

Variable Unstandardized 
coefficient

Standardized 
coefficient

t P value

Beta Standard Beta

error

MAT1 0.043 0.025 0.871 1.709 0.089

MAT2 -0.038 0.026 -0.766 -1.453 0.147

MAP1 -0.000 0.000 -0.166 -2.195 0.029

ΔMAP 0.001 0.000 0.232 3.123 0.002

LSK2 -0.000 0.000 -0.143 -1.498 0.136

ΔLSK 0.000 0.000 0.020 0.213 0.831

SClay 0.002 0.002 0.090 0.812 0.418

SSilt -0.002 0.001 -0.169 -1.801 0.073

Intercept 0.143 0.104 1.378 0.170

Table 4  The result of GLM analysis

Variable Sum of squares (type 
III)

Mean square F P value VIF SS (%)

ΔMAT 0.105 0.105 3.316 0.070 1.157 1.1

MAP2 0.252 0.252 7.973 0.005 1.286 2.6

ΔMAP 0.500 0.500 15.823 0.000 1.216 5.2

LSK2 0.055 0.055 1.750 0.187 1.102 0.6

SClay 0.630 0.630 19.914 0.000 1.392 6.5

Intercept 0.178 0.178 5.619 0.019 1.8

SSR 2.166 0.433 13.704 0.000 22.4

SST 9.658

SSE 7.492 0.032
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groups (e.g., forming groups for sample sites with corre-
lated data) (Ishikawa et al. 2021).

4.2 � Driving factors influencing grassland AGB
Climatic changes exert a significant influence on AGB, 
with grassland ecosystems typically maintaining a 
dynamic equilibrium where vegetation growth, death, 
and decomposition balance to sustain a relatively stable 
AGB level (Shabbir et al. 2019). Ongoing climate change 
is a long-term trend that affects the entire productivity 
level of a region, with a stable baseline over a long time 
scale. Empirical studies highlight precipitation as the 
primary climatic factor affecting grassland AGB, influ-
encing various functional and structural aspects (Ghani 
et al. 2022; Ghimire et al. 2019). Temperature is also cru-
cial, shaping AGB responses and driving environmental 
changes like desertification (Ghimire et al. 2019). Short-
term climate fluctuations disrupt ecosystem balance, 
notably impacting grassland AGB (Hossain et  al. 2023). 
Disturbances such as extreme weather events (e.g., rain-
storms, droughts, high temperatures) can damage grass-
land vegetation, reducing ecosystem productivity and 
lowering AGB (Hoover et al. 2014).

Strong correlations between soil parameters and grass-
land AGB have been consistently observed in various 
studies (Graham et  al. 2021). This study underscores 
the significant impact of clay content on grassland AGB, 
attributed to clay’s unique properties. Clay particles pos-
sess a large specific surface area and adsorption capacity, 
enabling them to absorb and retain water. Additionally, 
their negatively charged surface facilitates the absorption 
and retention of vital nutrients like nitrogen, phosphorus, 
and potassium, essential for plant growth (Munira et al. 
2018). The microporous structure between clay particles 
enhances water retention, mitigating water loss, improv-
ing soil resilience to drought, and ensuring a steady water 
supply. Moreover, the adsorption and release of mineral 

elements in clay are integral to soil nutrient cycling, while 
its microporous structure fosters an optimal habitat for 
microbial communities, enhancing soil biodiversity and 
microbial activity (Zia et al. 2021).

The concept of grazing intensity has emerged as a 
scientific approach for understanding grassland AGB 
dynamics, with increased livestock density often linked 
to grassland degradation (Rinot et  al. 2019; Zhao et  al. 
2023), which is not consistent with our result. Sustained 
grazing pressure is a long-term effect, while year-to-year 
grazing fluctuations are a short-term effect. Grazing by 
herbivores is a significant form of land use, impacting 
plant diversity and ecosystem function through livestock 
trampling, selective foraging, and excrement deposition 
(Estes et  al. 2011). The effects of grazing on grassland 
AGB can vary across different succession stages (Zhang 
et  al. 2023a, b). Grazing typically alters plant resources 
availability, fostering a more diverse environment and 
influencing soil nutrient cycling, consequently affecting 
plant productivity (Eskelinen et al. 2022).

4.3 � Implications and limitations
The Co-regression model offers distinct advantages in 
accurately capturing complex nonlinear relationships 
between biophysical parameters and intricate environ-
mental factors (Scheller et  al. 2005; Zeng et  al. 2019). 
Compared to traditional statistical methods, this model 
proves to be an effective and robust algorithm, show-
casing superior abilities in distinguishing long-term 
variables from short-term factors influencing grass-
land AGB while establishing intricate interactions with 
fewer parameters (Kibret et  al. 2016; Lehnert et  al. 
2015). While the Co-regression model tended to under-
estimate high AGB values and overestimate low AGB 
values, a phenomenon likely arising from the algorith-
mic properties and the averaging of single-tree predic-
tions in the Co-regression model (Zwicke et  al. 2013). 

Fig. 7  The validation and relation of grassland AGB. (a) Validation of AGB estimation; (b) the relation between AGB1 and AGB2
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Approximately 2% of extreme values in the dataset con-
tribute to this bias towards average values. While the 
model simplifies complex ecosystem processes and sep-
arates interactions between main factors affecting AGB 
change, this may affect the accuracy of assessing real 
ecological status and the reliability of research results.

Grassland AGB, a vital indicator of complex eco-
logical systems, is influenced by a blend of long-term 
and short-term factors, including climate change, soil 
parameters, and grazing intensity (Epstein et  al. 1997; 
Peng et  al. 2020). The long-term effect is a trend and 
the instinct, and the short-term effect reflects random 
fluctuations in the environment, interannual fluctua-
tions, pulses, or extreme events, disasters, and changes 
in human activity caused by disasters. This study delves 
into effects of key driving factors on grassland AGB, dis-
tinguishing between long-term and short-term impacts, 
and further categorizing short-term effects into direct 
effects and indirect effects to understand the mecha-
nism driving AGB changes. However, the study has 
certain limitations. It primarily considers temperature, 
precipitation and their variations, while other climatic 
factors, including wind direction, relative humidity, sun-
shine duration and other environmental conditions, are 
crucial for quantitative and in-depth study of grassland 
AGB (Gui et al. 2021; Jiang et al. 2021). The impacts of 
climate change on vegetation or AGB vary in different 
regions and time periods. Gui et  al. (2023a, b) studied 
the effects of drought and climate change on vegetation 
dynamics, highlighting the time-delay and time-cumu-
lative effects on vegetation coverage, which pose chal-
lenges for data collection and analysis.

This study further highlights that the contribution 
of climate to grassland AGB outweighs that of grazing 
in Northern China, challenging previous assumptions 
regarding the predominant role of human activities driv-
ing grassland AGB changes (Zhang et al. 2023a, b). Non-
climatic factors may include microbial activity, soil pH, soil 
texture, topographic relief, and various human activities 
(Hu et al. 2020). Gui et al. (2023a, b) revealed that the cli-
matic changes caused by anthropogenic emissions through 
aerosols and clouds affected vegetation photosynthesis 
and carbon flux. They advocate further consideration for 
impacts of climate change on atmospheric circulation and 
water cycle to better understand the impacts of anthropo-
genic emissions on terrestrial ecosystems.

5 � Conclusion
This study effectively differentiated long-term and short-
term impacts on grassland AGB, quantifying contributions 
from climatic factors, soil texture, and grazing intensity. 
Trends in AGB were analyzed using Co-regression and 

Generalized Linear Model methods, highlighting long-
term factors’ predominant influence. Divergent impacts 
from key variables on AGB trends emerged. Soil parame-
ters, notably clay content, explained 6.5% of AGB variation, 
while mean annual precipitation played a substantial role, 
accounting for 5.2% and 2.6% of AGB variation, respec-
tively. Determining grazing intensity’s influence on AGB 
change proved challenging, with only marginal contri-
bution detected. The pivotal role of soil properties and 
climate change in driving grassland AGB dynamics in 
Northern China became evident. Co-regression signifi-
cantly enhanced model performance, mitigating issues 
like regression to the mean. This research expands under-
standing of AGB dynamics, informing grassland ecosystem 
management and conservation efforts.
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