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Biochar mitigates the mineralization 
of allochthonous organic matter and global 
warming potential of saltmarshes by influencing 
functional bacteria
Yiyi Zhang1, Yuzhou Huang1,2, Jing Hu1, Tao Tang1, Caicai Xu1,3, Kokoette Sunday Effiong4 and Xi Xiao1,5,6,7,8*    

Abstract 

Saltmarshes are suffering from severe degradation due to anthropogenic activities, leading to the loss of blue carbon 
and greenhouse gas (GHG) emissions. Given the significant potential of biochar in mitigating climate change, adding 
biochar to saltmarshes would alleviate this situation. This study investigated the effects of different biochar (made 
from Spartina alterniflora, corn straw, and Laminaria japonica) and their aged biochar on the carbon fraction contents, 
GHG emissions, and microbial community structure of saltmarsh soils with allochthonous organic matter (Entero-
morpha prolifera) addition. After 60 days of incubation, total organic carbon (TOC) loss and global warming potential 
(GWP) of biochar-amended soils were reduced by 67.29–124.33% and 4.91–123.24%, respectively (p < 0.05). Biochar 
reduced the proportion of labile carbon (dissolved organic carbon (DOC) and microbial biomass carbon (MBC)) 
in organic carbon by 61.92–86.15% (p < 0.05). In addition, biochar reduced the relative abundance of specific func-
tional bacteria (inc. cellulolysis, aromatic compound degradation, and xylanolysis) involved in organic carbon decom-
position by 20.02–37.82% (p < 0.05). These results suggest that even in the presence of high levels of liable organic 
matter, the application of biochar to saltmarshes has a sustained effect in promoting carbon accumulation and reduc-
ing GHG emissions, and this effect is regulated by a decrease of functional bacteria associated with carbon metabo-
lism. Therefore, the in situ study of biochar on restoring carbon sink function of saltmarshes is proposed for practical 
engineering in future.

Highlights 

• Both fresh and aged biochar from different materials had promising potential in enhancing carbon sequestration 
and mitigating global warming potential of saltmarsh soils.

• Biochar inhibited the mineralization of allochthonous organic matter in saltmarshes.

• Biochar reduced the abundance of functional bacteria involved in organic carbon decomposition by 20.02–37.82%.
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Graphical Abstract

1  Introduction
Saltmarshes, one of the blue carbon ecosystems, have 
a high carbon sequestration capacity of 10.1 Tg C yr−1 
(McLeod et al. 2011; Macreadie et al. 2019; Human et al. 
2022). However, the global extent of saltmarshes has 
decreased by 25–50% in recent decades due to sea level 
rise, invasive alien species, and land reclamation (Burden 
et  al. 2013; Ruiz-Fernandez et  al. 2018; Gu et  al. 2018). 
The degradation of saltmarshes resulted in 16.3 Tg CO2 
eq (million tons of CO2 equivalent) emissions and a 
reduction in carbon sequestration of 0.045 Tg CO2 eq per 
year from 2000 to 2019 (Campbell et al. 2022). Further-
more, in saltmarshes, allochthonous particulate organic 
matter may account for over 50% of the carbon trapped 
in the sediment, originating from drifting seaweed and 
terrestrial organic debris transported by coastal cur-
rents and tides (McLeod et al. 2011; Sasmito et al. 2020). 

Once saltmarshes are degraded, the liable organic carbon 
stored in the sediment is preferentially to be decomposed 
and released as greenhouse gases (Yang et al. 2021; Rah-
man et al. 2021). Currently, biochar is widely considered 
as an effective soil amendment for mitigating climate 
change (Jiang et al. 2023; Shikha et al. 2023). Therefore, 
we suspect that adding biochar to saltmarshes would also 
alleviate the increasing global warming potential of salt-
marsh degradation. Biochar is a carbon-rich and porous 
material produced by pyrolysis or hydrothermal car-
bonization of biomass (Feng et al. 2022), and it contains 
approximately more than 50% carbon that can be stably 
stored in the soil (Shikha et al. 2023). Moreover, biochar 
has been demonstrated to alter the soil microbial com-
munity structure (Ma et al. 2023; Qiu et al. 2023), which 
could indirectly affect the mineralization and immobili-
zation of soil organic carbon (SOC) (Qiu et al. 2023).
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The dynamics of soil carbon pool depend on the 
inputs and outputs of SOC (Song et al. 2023). Soil labile 
organic carbon fractions, such as microbial biomass car-
bon (MBC) and dissolved organic carbon (DOC), are 
valid indicators for the ability of carbon pools to resist 
SOC mineralization (Ding et  al. 2023). Previous studies 
showed that biochar induced a negative priming effect 
on the native SOC mineralization, which promoted SOC 
accumulation (Zheng et al. 2018; Yin et al. 2022; Huang 
and Xiao 2023). This can be explained by the following 
reasons: (1) biochar adsorbs carbon on its surface or 
forms microaggregates with soil organo-mineral, which 
enhances the physical protection of SOC (Weng et  al. 
2022); (2) toxic substances released from biochar may 
inhibit the microbial activity on SOC degradation (Li 
et al. 2018; Yin et al. 2022). However, it remains unclear 
whether this inhibitory effect can be sustained when large 
amounts of particulate organic matter are trapped in salt-
marshes. The performance of biochar is mainly deter-
mined by feedstocks and production conditions (Luo 
et  al. 2016; Yang et  al. 2020; Tan et  al. 2023). Further-
more, biochar aging in the soil leads to alterations in soil 
properties, which has either positive or negative effects 
on the soil (Wang et  al. 2021; Yang et  al. 2022b, 2022a; 
Qiu et al. 2023). Soil microorganisms dominate the car-
bon cycle (Yu et al. 2022), and their composition, struc-
ture, and characterization are interfered by biochar (Cai 
et  al. 2021; Deshoux et  al. 2023). Besides, periodic high 
and low tides keep the salt marshes in alternating wet and 
dry conditions, which affects the microbial community 
(Yin and Yan 2020). Compared to the flooding condition, 
the abundance of Gram-negative bacteria and actinobac-
teria increased while the abundance of fungi decreased 
under no flooding condition (Zhang et al. 2022b).

Several studies have shown that biochar promotes 
plant growth by increasing nutrient content and improv-
ing soil structure in coastal wetlands (Cai et  al. 2021; 
Cui et al. 2021). In a 90-day laboratory experiment, bio-
char prepared from Phragmites communis and Spartina 
alterniflora reduced the GWP of the Yellow River Delta 
wetland soil by 27.6–87.3% (Yan et  al. 2020). In addi-
tion, Zheng et  al. (2018) found that biochar decreased 
SOC mineralization of coastal wetland soil by promot-
ing the formation of stable agglomerates. However, few 
studies focused on the effects of fresh and aged biochar 
on carbon pools and GHG emissions of saltmarsh soil 
with allochthonous organic matter addition, as well as 
the dynamics of functional microorganisms driving the 
changes in carbon sequestration and emission. There-
fore, to comprehensively investigate the role of biochar in 
restoring and improving carbon storage of saltmarshes, 
we prepared three types of biochar (from Spartina 
alterniflora, corn straw, and Laminaria japonica) and 

their aged biochar. Then the prepared fresh and aged bio-
char was added to saltmarsh soil mixed with Enteromor-
pha prolifera as allochthonous organic matter, and these 
treatments were incubated for 60  days. The objectives 
of this study were to investigate: (1) the effects of fresh 
and aged biochar on soil carbon fraction contents, green-
house gas emissions, and microbial community structure 
of saltmarsh soil under allochthonous organic matter 
addition; (2) the correlation between soil carbon con-
tent, carbon mineralization, and functional bacteria. We 
hypothesized that (1) both fresh and aged biochar could 
sequester SOC and reduce GHG emissions by protecting 
allochthonous organic matter from mineralization, and 
(2) biochar could inhibit the activity of microorganisms 
involved in soil carbon degradation. This study provided 
a theoretical basis for practical engineering about restor-
ing and improving carbon sink capacity of saltmarshes, 
which is conducive to the enhancement of saltmarsh eco-
logical function and carbon neutrality. Nevertheless, we 
are not capable of reproducing all the conditions of real 
environment in a laboratory simulation experiment, so 
in  situ experiments will be necessary afterwards to fur-
ther evaluate the effects of biochar.

2 � Materials and methods
2.1 � Sample preparation
The soil samples were collected from the intertidal high 
tide zone of the saltmarsh (Scirpus mariqueter) located in 
Hangzhou Bay, Ningbo City (30°20′55″N, 121°08′11″E). 
The seawater is about 100 m from the sampling area. Soil 
samples were first collected randomly from the topsoil 
(0–20  cm), then stored in boxes and transported to the 
laboratory. The collected soil was sieved to pass through a 
2 mm mesh, and then oven-dried (2 days, 40 °C). Biochar 
was produced by pyrolysis of Spartina alterniflora, corn 
straw and Laminaria japonica at 600 °C for 2 h (labeled 
as SBC, CBC, and ABC, respectively) (Yang et al. 2018). 
To investigate the effect of biochar on the saltmarshes 
after 100 years, 5% H2O2 was used to accelerate the aging 
of biochar according to the method described by Jing 
et  al. (2018). The aged biochar was labeled as OSBC, 
OCBC and OABC, respectively. Air-dried Enteromorpha 
prolifera was ground, passed through a 0.25  mm sieve, 
and added to the soil to simulate fresh allochthonous 
matter that accumulates in saltmarshes. The properties 
of saltmarsh soil, biochar, and Enteromorpha prolifera are 
presented in Table 1.

2.2 � Incubation experiment
The incubation experiment consisted of seven treat-
ments: (1) soil with 0.5 wt% Enteromorpha prolifera, (2) 
soil amended with 3 wt% SBC and 0.5 wt% Enteromor-
pha prolifera, (3) soil amended with 3 wt% CBC and 0.5 
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wt% Enteromorpha prolifera, (4) soil amended with 3 
wt% ABC and 0.5 wt% Enteromorpha prolifera, (5) soil 
amended with 3 wt% OSBC and 0.5 wt% Enteromorpha 
prolifera, (6) soil amended with 3 wt% OCBC and 0.5 
wt% Enteromorpha prolifera, (7) soil amended with 3 
wt% OABC and 0.5 wt% Enteromorpha prolifera.

To revive the soil microbial activity, the soil was pre-
incubated at 25 °C for 7 days at 70% water holding capac-
ity (WHC) before starting the experiment (You et  al. 
2023). Biochar and Enteromorpha prolifera powder were 
then mixed with the pre-incubated soil. Subsequently, 
each sample (150  g dry soil, 0.5% Enteromorpha pro-
lifera powder with/without 3 wt% biochar) was placed 
in an uncapped 1 L glass bottle and incubated at 25  °C 
for 60 days in a climatic incubator (4800  lx illumination 
intensity on a 12/12-h light/dark cycle). A rubber stop-
per was used to seal each bottle for 24 h on days 1, 4, 7, 
10, 15, 20, 30, 40, and 60. Gas samples with four repli-
cates were taken from the headspace of the bottle with 
a syringe throughout the entire incubation. Soil mois-
ture content of all the treatments was maintained at 32%, 
consistent with that of collected soils in Hangzhou Bay. 
Water evaporation was compensated by weighing the 
bottle every two days. Soil samples were destructively 
sampled on days 1, 7, 15, 30, and 60 in three replicates. In 
general, there are seven bottles for each treatment, with 
four bottles for gas emission monitoring and three bot-
tles for the analysis of soil properties.

2.3 � GHG and soil properties analysis
Soil total carbon (TC) and total nitrogen (TN) contents 
were measured by elemental analyzer (Vario Macro 
Cube, Elementar, Germany) (Cui et al. 2021). After acid-
washing soil samples with 12  M HCl (10  mL/g soil) to 
remove carbonates, total organic carbon content (TOC) 

of soil was determined using an elemental analyzer 
according to the method from Gross et  al. (2022). Dis-
solved organic carbon (DOC) content in the solution was 
determined in 0.5 M K2SO4 (5 mL/g soil) with an organic 
carbon autoanalyzer (TOC-VCPH, Shimadzu, Japan) (Luo 
et al. 2016). Microbial biomass carbon (MBC) was meas-
ured using the fumigation extraction method (Cui et al. 
2021).

Greenhouse gas concentration was measured using a 
gas chromatograph (Agilent 7890B, USA). The emission 
flux (F) of CO2, CH4, or N2O was estimated by Eq.  (1) 
(Han et al. 2022b):

where ρ is the density of each greenhouse gas under 
standard conditions; dc/dt is the change in concentration 
of the gas per unit time; T is the incubation temperature; 
and M is the weight of the soil.

The cumulative emission amounts of three gases 
throughout the entire incubation period were calculated 
based on the following equation (You et al. 2023):

where S is the cumulative emission of CO2, CH4 or N2O, 
Fi is the emission flux described in Eq.  (1),  and ti is the 
incubation days of collected gas sample.

The global warming potential (GWP) of the cumulative 
emission of CO2, CH4, and N2O in 100-year time series 
was calculated by Eq. (3) (Han et al. 2022b):

where S is the cumulative emission described in Eq. (2).

(1)F =
ρ dc

dt
V

273

273+T

M

(2)S = 24
(Fi+1 + Fi)

2
(ti+1 − ti)

(3)
GWP = S(CO2)+ 265× S(N2O)+ 28× S(CH4)

Table 1  Properties (mean ± standard error, n = 3) of the saltmarsh soil, biochar and Enteromorpha prolifera 

a SBC: Spartina alterniflora derived biochar, CBC: corn straw derived biochar, ABC Laminaria japonica derived biocharm, OSBC: aged Spartina alterniflora derived 
biochar, OCBC: aged corn straw derived biochar, OABC: aged Laminaria japonica derived biochar

Samplesa pH EC (mS/cm) Total C (g/kg) Total N (g/kg) DOC (dissolved 
organic carbon) 
(mg/kg)

Soil 8.55 ± 0.02 2.03 ± 0.04 10.46 ± 0.31 0.35 ± 0.03 20.67 ± 1.44

Enteromorpha prolifera 6.53 ± 0.00 13.69 ± 0.04 296.98 ± 0.31 37.20 ± 0.08 38,991.67 ± 1282.17

SBC 10.77 ± 0.01 11.18 ± 0.68 636.59 ± 20.07 11.08 ± 0.55 137.47 ± 10.55

CBC 10.75 ± 0.01 8.53 ± 0.11 701.38 ± 24.42 10.00 ± 0.43 640.95 ± 63.71

ABC 10.64 ± 0.01 43.73 ± 1.36 187.42 ± 11.19 12.44 ± 0.75 251.63 ± 11.47

OSBC 9.95 ± 0.01 9.17 ± 0.68 614.73 ± 8.18 9.59 ± 1.39 449.45 ± 55.08

OCBC 9.46 ± 0.01 3.34 ± 0.80 678 ± 7.83 7.50 ± 0.87 2016.33 ± 521.88

OABC 10.57 ± 0.01 39.45 ± 0.35 159.38 ± 8.03 10.64 ± 0.76 346.20 ± 13.52
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2.4 � Soil bacterial community analysis
Total genomic DNA was extracted from the samples 
using the TGuide S96 Magnetic Soil /Stool DNA Kit 
(Tiangen Biotech (Beijing) Co., Ltd.) according to the 
manufacturer’s instructions. The V3 and V4 hyper-
variable region of the bacterial 16S rRNA gene was 
amplified using primer pairs 338F: 5’-ACT​CCT​ACG​
GGA​GGC​AGC​A-3’ and 806R: 5’-GGA​CTA​CHVGGG​
TWT​CTAAT-3’ (You et  al. 2023). High-throughput 
sequencing analysis of bacterial 16S rRNA genes was 
performed based on the Illumina HiSeq 6000 platform 
(2 × 250 paired ends) at Biomarker Technologies Cor-
poration (Beijing, China). The raw data were quality 
filtered, trimmed, merged, and clustered into opera-
tional taxonomic units (OTUs) at 97% similarity. The 
OTUs were used for bioinformatics analysis. Alpha 
diversity (Chao1 and Shannon index) was calculated 
and plotted by QIIME2 software (version 2020.6.0) and 
R software (version 4.1.2) to assess the richness and 
diversity of microbial communities (Zhu et  al. 2019). 
Beta diversity was determined to evaluate the degree 
of similarity of microbial communities from differ-
ent samples using QIIME2 (Ibáñez et  al. 2024). Prin-
cipal coordinate analysis (PCoA) was used to analyze 
the beta diversity based on Bray–Curtis dissimilarity 
(Yang et al. 2022b). The function of bacteria was predi-
cated by FAPROTAX (version 1.2.6) (Tong et al. 2023).

2.5 � Statistical analysis
SPSS 26.0 (SPSS Inc., Chicago, IL, USA) statistical analy-
sis software was used to process the measured data, and 
Origin 2022 (OriginLab Corp., Northern, MA, USA) 
software was used for graphing. The data were shown as 
mean values and error bars represented standard error. 
Significant differences between the treatments were ana-
lyzed by one-way analysis of variance (ANOVA) with a 
Duncan’s multiple range test (p = 0.05), and were marked 
by different lowercase letters. The correlations between 
soil carbon fraction, greenhouse gases and microbial 
community were analyzed by Pearson’s test.

3 � Results
3.1 � Soil carbon pool
The addition of biochar (p < 0.05) increased the soil TC 
and TOC content by 30.02–193.85% and 87.33–684.28%, 
respectively (p < 0.05, Table 2 and Fig. 1a and b). Through-
out the incubation period, biochar reduced the loss of soil 
TOC by 67.29–124.33% (p < 0.05). The soil TC and TOC 
contents of all the treatments followed the descending 
order of CBC/OCBC-amended soil (TC: 29.07–33.16 g/
kg; TOC: 23.15–26.06  g/kg) > SBC/OSBC-amended soil 
(TC: 27.04–30.62  g/kg; TOC: 21.53–25.56  g/kg) > ABC/
OABC-amended soil (TC: 14.12–17.94 g/kg; TOC: 7.01–
9.79  g/kg) > the control (TC: 10.40–11.92  g/kg; TOC: 
3.32–4.76 g/kg).

Table 2  TC (total carbon) content (g/kg soil) of different treatments on day 1, 7, 15, 30 and 60

a CK: soil amended with Enteromorpha prolifera, SBC: soil amended with SBC and Enteromorpha prolifera, CBC: soil amended with CBC and Enteromorpha prolifera, ABC: 
Soil amended with ABC and Enteromorpha prolifera, OSBC: soil amended with OSBC and Enteromorpha prolifera, OCBC: soil amended with OCBC and Enteromorpha 
prolifera, OABC: soil amended with OABC and Enteromorpha prolifera. Values are means ± standard error (n = 3). Lowercase letters indicate statistically significant 
differences (p < 0.05) between treatments at the same sampling time

Treatmentsa Day 1 Day 7 Day 15 Day 30 Day 60

Fresh biochar

  CK 11.92 ± 0.10d 10.40 ± 0.40d 10.69 ± 0.64c 10.86 ± 0.20c 11.03 ± 0.32d

  SBC 30.62 ± 0.72b 27.65 ± 1.09b 29.82 ± 0.81a 29.57 ± 1.57a 28.37 ± 0.55b

  CBC 33.16 ± 0.63a 30.15 ± 0.47a 30.87 ± 1.07a 30.14 ± 0.98a 30.99 ± 0.21a

  ABC 17.94 ± 1.10c 15.23 ± 0.98c 14.92 ± 0.58b 15.99 ± 0.21b 16.37 ± 0.59c

Aged biochar

  CK 11.92 ± 0.10d 10.40 ± 0.40d 10.69 ± 0.64c 10.86 ± 0.20d 11.03 ± 0.32d

  OSBC 29.76 ± 1.08b 27.69 ± 0.48b 27.73 ± 1.59a 27.04 ± 0.76b 27.59 ± 0.63b

  OCBC 31.57 ± 1.40a 30.56 ± 0.92a 29.07 ± 1.67a 29.89 ± 0.26a 29.93 ± 0.94a

  OABC 16.38 ± 0.81c 13.76 ± 0.48c 14.68 ± 1.54b 14.12 ± 0.72c 14.84 ± 0.52c

Fig. 1  TOC (total organic carbon) content (a and b), DOC (dissolved organic carbon) content (c and d) and MBC (microbial biomass carbon) 
content (e and f) of different treatments on day 1, 7, 15, 30 and 60. CK: soil amended with Enteromorpha prolifera; SBC: soil amended with SBC 
and Enteromorpha prolifera; CBC: soil amended with CBC and Enteromorpha prolifera; ABC: soil amended with ABC and Enteromorpha prolifera; 
OSBC: soil amended with OSBC and Enteromorpha prolifera; OCBC: soil amended with OCBC and Enteromorpha prolifera; OABC: soil amended 
with OABC and Enteromorpha prolifera. Bars with different lowercase letters indicate statistically significant differences (p < 0.05) between treatments 
at the same sampling time. Error bars represent means ± standard error (n = 3)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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The addition of aged biochar and ABC increased the 
DOC (dissolved organic carbon) content by 13.16–
43.65% on day 60 (p < 0.05, Fig. 1c and d). In addition, the 
DOC content was higher in the ABC/OABC treatments 
(82.84–163.72 mg/kg) compared to the other treatments. 
As shown in Fig. 1e and f, the SBC/CBC/OSBC treatment 
increased the MBC content by 8.42–16.72% (p < 0.05). 
The lowest MBC content (0.61–0.94  g/kg) occurred on 
day 15. Compared to the control, the percentage of DOC 
and MBC content in the TOC content was reduced by 
61.92–86.15% after biochar application (p < 0.05, Fig. S1).

3.2 � GHG emissions
As shown in Fig.  2a and b, all biochar except OSBC 
increased soil cumulative CH4 emissions by 17.98–
36.27% compared to the control at the end of the incu-
bation (p < 0.05). The soil cumulative CH4 emissions of 
the OSBC treatment (6.16  μg/kg soil) were the lowest 
among all the treatments. Biochar decreased the soil 
cumulative CO2 emissions by 25.42–153.70% (Fig.  2c 
and d, p < 0.05). Compared to fresh biochar, OSBC and 
OABC reduced the soil cumulative CO2 emissions by 
60.72–80.49%, while OCBC promoted the soil cumula-
tive CO2 emissions. Except for the OSBC treatment, the 
soil cumulative N2O emissions of the biochar treatments 
were 42.26–91.05% lower than the control (Fig. 2e and f, 
p < 0.05). The soil cumulative N2O emissions of fresh bio-
char treatments were decreased by 25.52–119.02% com-
pared to aged biochar treatments.

Fresh and aged biochar decreased soil global warming 
potential (GWP) by 94.27–123.24% and 4.91–93.93%, 
respectively (Fig.  2g and h, p < 0.05). The GWP for all 
the treatments followed the order of ABC-amended soil 
(− 38.88  mg/kg soil) < SBC-amended soil (− 17.46  mg/
kg soil) < CBC-amended soil (9.59 mg/kg soil) ≈ OCBC-
amended soil (10.16  mg/kg soil) < OABC-amended soil 
(81.11  mg/kg soil) < OSBC-amended soil (159.12  mg/kg 
soil) < the control (167.34 mg/kg soil).

3.3 � Soil bacterial community and functions
On day 60, after biochar addition, the abundance of 
Chloroflexi, Acidobacteriota, and Myxococcota was 
decreased by 23.75–38.58%, 43.00–45.76%, and 39.27–
47.47%, respectively, while the abundance of Proteobac-
teria and Desulfobacterota was increased by 6.19–9.85% 

and 46.63–131.07%, respectively (Fig.  3a–f). Overall, 
biochar decreased bacterial richness (Chao1 index) and 
diversity (Shannon index) by 3.30–3.55% and 7.68–
11.60%, respectively (Fig.  3g and h). The PCoA analysis 
showed that the SBC/OSBC treatment changed bacterial 
composition (Fig. 3i).

On day 60, biochar increased functional bacteria 
involved in carbon cycle by 4.91–6.02 (Fig.  4a and c, 
p < 0.05). The carbon cycle was mainly driven by aero-
bic chemoheterotrophy (32.23–42.84%) and chemohet-
erotrophy (18.61–36.63%) for all the treatments. The 
relative abundance of cellulolysis bacteria, aromatic 
compound degradation bacteria, and xylanolysis bacte-
ria were significantly reduced by 20.02–37.82% with bio-
char addition throughout the experiment (p < 0.05). The 
addition of SBC increased functional bacteria involved 
in nitrogen cycle by 76.01–181.99%, while OSBC had 
the opposite effect (decreased by 64.4–80.85%) (p < 0.05, 
Fig. 4b and d).

3.4 � Correlation analysis
As shown in Fig.  5a, there was a positive correlation 
between DOC content and soil CO2 emission rate 
(r = 0.45, p < 0.001). There was a significant positive cor-
relation between soil CO2 emission rate and the abun-
dance of Actinobacteriota (r = 0.79, p < 0.001), Chloroflexi 
(r = 0.84, p < 0.001), Acidobacteria (r = 0.97, p < 0.001) and 
Myxococcota (r = 0.96, p < 0.001), and the abundance of 
Proteobacteria was negatively correlated with soil CO2 
emission rate (r = −0.83, p < 0.001, Fig. 5b). The soil CO2 
emission rate was positively correlated with the abun-
dance of cellulolysis bacteria (r = 0.69, p < 0.01), aromatic 
compound degradation bacteria (r = 0.64, p < 0.01) and 
xylanolysis bacteria (r = 0.67, p < 0.01, Fig. 5c).

4 � Discussion
4.1 � The role of biochar in protecting allochthonous 

organic matter
In our study, the addition of biochar reduced the soil 
cumulative CO2 emissions and TOC loss, which was 
attributed to the negative priming effect on the minerali-
zation of SOC (Zheng et al. 2018, 2021). Both fresh and 
aged biochar inhibited SOC mineralization, indicating 
that the negative priming effect induced by biochar could 
persist for a long time and promote the accumulation of 

(See figure on next page.)
Fig. 2  The cumulative CH4 (a and b), CO2 (c and d), N2O (e and f) and GWP (global warming potential) (g and h) emissions of different 
treatments. CK: soil amended with Enteromorpha prolifera; SBC: soil amended with SBC and Enteromorpha prolifera; CBC: soil amended with CBC 
and Enteromorpha prolifera; ABC: soil amended with ABC and Enteromorpha prolifera; OSBC: soil amended with OSBC and Enteromorpha prolifera; 
OCBC: soil amended with OCBC and Enteromorpha prolifera; OABC: soil amended with OABC and Enteromorpha prolifera. Error bars represent 
means ± standard error (n = 4)
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Fig. 2  (See legend on previous page.)



Page 9 of 15Zhang et al. Carbon Research             (2024) 3:6 	

SOC. However, contrary to our results, the addition of 
walnut shell biochar increased cumulative CO2 emissions 
by 50.7–73.4% in a field experiment (Sial et al. 2022). A 
possible reason is that saltmarshes soils contain more 
iron minerals than terrestrial soils (Zhao et al. 2023), and 
these minerals promote the formation of organic-mineral 

and organic coatings on the surface and in the pores of 
biochar, mainly through the attraction of negatively 
charged organic molecules by mineral cations adsorbed 
on the biochar (Wang et al. 2022; Weng et al. 2022), thus 
protecting SOM from decomposition. Similarly, bio-
char modified with iron minerals promoted the stability 

Fig. 3  Relative abundance of bacterial community at phyla level in samples on day 15 (a, b and c) and day 60 (d, e and f). The value of Chao1 (g) 
and Shannon (h) of bacteria in soils under different treatments. Unconstrained principal coordinate analysis (PCoA) of the soil bacterial communities 
based on Bray–Curtis difference (i). CK-15d: soil amended with Enteromorpha prolifera on day 15; SBC-15d: soil amended with SBC and Enteromorpha 
prolifera on day 15; OSBC-15d: soil amended with OSBC and Enteromorpha prolifera on day 15; CK-60d: soil amended with Enteromorpha prolifera 
on day 60; SBC-60d: soil amended with SBC and Enteromorpha prolifera on day 60; OSBC-60d: soil amended with OSBC and Enteromorpha prolifera 
on day 60. Bars with different lowercase letters indicate statistically significant differences (p < 0.05) between treatments at the same sampling time
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of soil aggregate and inhibited SOC mineralization (Liu 
et al. 2020). Hence, it can be inferred that iron minerals 
in saltmarshes are a major factor in improving the per-
formance of biochar in sequestering carbon and reducing 
GHG emissions. Liu et al. (2019) proposed that biochar 
reduced the activity of enzymes involved in SOM deg-
radation. However, our results showed no reduction in 
the MBC content of biochar-amended soils (Fig. 2e and 
f ). The reason may be that biochar selectively adsorbs 
the aliphatic carbon component of SOC and reduces the 
accessibility of the liable carbon to microorganisms (Zhu 
et  al. 2019), which increases the proportion of recalci-
trant carbon in the soil carbon pool and thus facilitates 

carbon sequestration. In addition, microbial necromass 
is preserved by the organic-mineral complexes of biochar 
(Weng et al. 2022). After biochar addition, the proportion 
of labile carbon in total organic carbon was reduced by 
61.92–86.15%. Biochar contains 60–80% stable aromatic 
carbon (Brassard et al. 2016) and is much less mineralized 
than biomass (Enteromorpha prolifera) with abundant 
aliphatic and ester carbon structures (Zhu et  al. 2019). 
Therefore, the addition of biochar dilutes some SOM that 
is sensitive to microbial activities, thereby enhancing the 
stability of the carbon pool (Yang et al. 2022b).

The aging of SBC and ABC weakened their ability to 
mitigate CO2 emissions. Similarly, Feng et  al. (2022) 

Fig. 4  Relative abundance of functional bacteria associated with the carbon (a and c) and nitrogen (b and d) cycles. CK-15d: soil amended 
with Enteromorpha prolifera at day 15; SBC-15d: soil amended with SBC and Enteromorpha prolifera at day 15; OSBC-15d: soil amended 
with OSBC and Enteromorpha prolifera at day 15; CK-60d: soil amended with Enteromorpha prolifera at day 60; SBC-60d: soil amended with SBC 
and Enteromorpha prolifera at day 60; OSBC-60d: soil amended with OSBC and Enteromorpha prolifera at day 60. Bars with different lowercase letters 
indicate statistically significant differences (p < 0.05) between treatments
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Fig. 5  Pearson’s correlation between CO2 emission rate and carbon fraction content (a), abundance of major bacterial phyla (b), as well 
as abundance of functional bacteria (c) (* p < 0.05, ** p < 0.01, and *** p < 0.001). The values in the graph are Pearson’s correlation coefficients



Page 12 of 15Zhang et al. Carbon Research             (2024) 3:6 

showed that biochar aged for more than a year increased 
soil CO2 emissions by 44.3% compared to fresh biochar. 
This may be due to aged biochar releasing more DOM 
that is easily utilized by microorganisms (Quan et  al. 
2020; Yang et  al. 2022a), and the speculation was sup-
ported by the remarkable (p < 0.001) positive correlation 
between soil CO2 emission rate and DOC content in 
our study. Additionally, the aging effect gave biochar a 
larger surface area to fix more carbon, which provided an 
attractive habitat for microorganisms and boosted SOM 
mineralization (Feng et al. 2022).

4.2 � Changes in bacterial communities and functions 
under biochar amendments

Our results showed biochar shifted bacterial diversity 
and composition, which is closely related to the transfor-
mation of SOC (Sun et al. 2020; Yang et al. 2022a; Yu et al. 
2022). The abundance of Proteobacteria was increased 
with biochar addition and was negatively correlated with 
soil CO2 emission rate. Proteobacteria, the dominant 
phylum in all samples, are copiotrophic bacteria essential 
for soil carbon fixation (Zheng et al. 2022a; Zhang et al. 
2023). Biochar reduced the abundance of Chloroflexi and 
Acidobacteria which are oligotrophic bacteria found in 
low-nutrient environments (Yang et al. 2021; Zhang et al. 
2022a). The oligotrophic bacteria that depend on recalci-
trant carbon tend to decompose carbon at a low rate, so 
the presence of massive oligotrophic bacteria in the envi-
ronment can promote carbon accumulation (Zheng et al. 
2022b). However, there is a significant positive correla-
tion between CO2 emission rate and the abundance of 
Chloroflexi and Acidobacteria (p < 0.001), suggesting that 
the reduction of Chloroflexi and Acidobacteria instead 
inhibited SOC mineralization in our study.

Contrary to previous studies of a steady rise in the soil 
cumulative CO2 emissions (Yang et al. 2022b, 2022a), our 
research found a significant decrease in the soil cumula-
tive CO2 emissions from day 15 to 30 and the negative 
CO2 emissions in the biochar treatments. (Fig. 2c and d). 
The soil CO2 released by the decomposition of organic 
matter in the early stage could be absorbed by the alka-
line soil through abiotic processes (Gao et  al. 2020). In 
addition, it was observed that biocrust such as mosses 
grew on the soil surface during the incubation period, 
which absorbed CO2 through photosynthesis, and bio-
char stimulated the growth of mosses and accelerated the 
efficiency of photosynthesis. Moreover, about 90% of Pro-
teobacteria are detected to have phosphoenolpyruvate 
carboxylase and pyruvate carboxylase genes (Akinyede 
et  al. 2022), and thus abundant Proteobacteria favored 
the tricarboxylic acid cycle (carbon fixation pathway). 
As nutrients were depleted later, the activity of organ-
isms involved in CO2 fixation was inhibited, therefore, 

the soil cumulative CO2 emissions began to increase after 
30 days.

Biochar has a significant effect on carbon metabolism 
and synthesis (Zhang et al. 2023). The relative abundance 
of cellulolysis bacteria, aromatic compound degrada-
tion bacteria, and xylanolysis bacteria was lower in the 
biochar treatments than in the control on day 60. This 
indicated that biochar inhibited SOC mineralization by 
regulating functional microorganisms, as demonstrated 
by a significant (p < 0.01) positive correlation between 
the relative abundance of cellulolysis bacteria, aromatic 
compound degradation bacteria, xylanolysis bacteria and 
soil CO2 emission rate. Furthermore, biochar suppressed 
the degradation of cellulose and hemicellulose containing 
large amounts of O-alkyl C (Dou et al. 2023), thus result-
ing in the production of fewer nutrients (glucose and 
monosaccharides), which inhibited the activity of micro-
organisms to degrade SOM.

The functional bacteria associated with denitrification 
participate in the complete reduction of NO3

− to NO2
−, 

NO, N2O and N2. The relative abundance of nitrous oxide 
denitrification bacteria was the highest in the SBC treat-
ment (p < 0.05, Fig. 4d), which could explain the reduced 
soil cumulative N2O emissions in the SBC treatment. 
Our results confirmed previous findings that biochar 
increased N2O reductase activity and facilitated the 
reduction of N2O to N2, thereby mitigating N2O emis-
sions (Dong et  al. 2020; Han et  al. 2022a). Feng et  al. 
(2022) revealed that aged biochar stimulated the coloni-
zation of nitrifying bacteria (AOA) and accelerated the 
process of nitrification, thus promoting soil N2O emis-
sions. In our study, the abundance of nitrous oxide deni-
trification bacteria was the lowest in the OSBC-amended 
soils (Fig. 4d), which resulted in massive N2O emissions 
that could not be converted to N2. This indicates that 
nitrous oxide denitrification bacteria are not adapted to 
an environment altered by aged biochar.

4.3 � Inadequacies and prospects
The study only investigated areas less affected by tidal 
action, but did not consider what the effects of biochar 
on saltmarshes would be in a flooding state. Besides, due 
to the limited conditions, we did not accurately distin-
guish the source of carbon using isotopic labeling meth-
ods, and the results defaulted to CO2 originating mainly 
from liable organic matter (Enteromorpha prolifera). 
Future research will focus on exploring the feasibility of 
applying biochar in practical engineering.

5 � Conclusion
Biochar is an effective amendment for mitigating carbon 
loss due to the degradation of saltmarshes. However, lim-
ited studies have investigated the effects of biochar on 
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the carbon pool, GHG emissions and functional micro-
organisms of saltmarsh soil with allochthonous organic 
matter addition. Therefore, in this study, we added fresh 
biochar or aged biochar to saltmarsh soils mixed with 
Enteromorpha prolifera, and investigated the effects of 
biochar on soil carbon content, greenhouse gases, and 
microorganisms by a 60-day laboratory simulation. Our 
results suggested that both fresh and aged biochar miti-
gated SOC mineralization and global warming potential. 
This is mainly attributed to allochthonous organic matter 
protection from mineralization and reduction of bacteria 
involved in carbon decomposition. Further in situ studies 
will be conducted to evaluate the effects of biochar appli-
cation on the carbon sinks, global warming potential, and 
ecological functions in saltmarshes.
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