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Abstract 

With the fast development of agriculture, industrialization and urbanization, large amounts of different (in)organic 
pollutants are inevitably discharged into the ecosystems. The efficient decontamination of the (in)organic contami-
nants is crucial to human health and ecosystem pollution remediation. Covalent organic frameworks (COFs) and 
metal–organic frameworks (MOFs) have attracted multidisciplinary research interests because of their outstanding 
physicochemical properties like high stability, large surface areas, high sorption capacity or catalytic activity. In this 
review, we summarized the recent works about the elimination/extraction of organic pollutants, heavy metal ions, 
and radionuclides by MOFs and COFs nanomaterials through the sorption-catalytic degradation for organic chemicals 
and sorption-catalytic reduction-precipitation-extraction for metals or radionuclides. The interactions between the (in)
organic pollutants and COFs/MOFs nanomaterials at the molecular level were discussed from the density functional 
theory calculation and spectroscopy analysis. The sorption of organic chemicals was mainly dominated by electro-
static attraction, π-π interaction, surface complexation and H-bonding interaction, whereas the sorption of radio-
nuclides and metal ions was mainly attributed to surface complexation, ion exchange, reduction and incorporation 
reactions. The porous structures, surface functional groups, and active sites were important for the sorption ability and 
selectivity. The doping or co-doping of metal/nonmetal, or the incorporation with other materials could change the 
visible light harvest and the generation/separation of electrons/holes (e−/h+) pairs, thereby enhanced the photocata-
lytic activity. The challenges for the possible application of COFs/MOFs nanomaterials in the elimination of pollutants 
from water were described in the end.
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Highlights 

1. Sorption of (in)organic pollutants by metal–organic frameworks/covalent organic frameworks nanomaterials was 
reviewed.

2. Photocatalytic degradation of organic pollutants by metal–organic frameworks/covalent organic frameworks was 
discussed.

3. Photocatalytic reduction of metal ions using metal–organic frameworks/covalent organic frameworks was 
described.

4. Electrocatalytic extraction of radionuclides using metal–organic frameworks/covalent organic frameworks was 
compared.

5. Challenges for real application of metal–organic frameworks/covalent organic frameworks was provided.

Keywords  Covalent organic frameworks, Metal–organic frameworks, Sorption, Catalytic reduction/degradation, 
Environmental pollutants

1  Introduction
Environmental pollution is one of the most critical global 
challenges to the human society. With the fast develop-
ment of urbanization, agriculture and industrialization, 
and the high requirement of human life quality, different 
kinds of organic chemicals such as antibiotics, pesticides, 
persistent organic pollutants (POPs), inorganic pollut-
ants such as metal ions (Pb(II), Cd(II), As(III), Cr(VI), 
Hg(II) etc.) and radionuclides (235U(VI), 99TcO4

−, 129I2, 
137Cs+, 90Sr2+ and actinides etc.) in unclear energy utili-
zation processes are inevitably discharged into the natu-
ral systems (Chen et al. 2022c; Huang et al. 2022; Liu et al. 
2022e; Lu et  al. 2022; Wang et  al. 2022b). They are not 
easily degraded or removed from ecosystems and thereby 
exist in the environment for a long time. Such pollutants 
in the environments are toxicity to human health even at 
ultralow concentrations because they can enter human 
body and then accumulate in human body across the 
food chain. For example, the Cd(II) poisoning could cause 
the injuries to skeletal and renal function systems (Zhao 
et  al. 2011), the Pb(II) poisoning could cause the dam-
age to cardiovascular and cranial nerve systems (Rouhani 
and Morsali 2018). Meanwhile, the presence of organic 
chemicals in environment could also result in toxicity on 
nervous systems (Liu et al. 2021a). Thereby, it is critical to 
eliminate the pollutants to avoid the potential pollution 
to human ecosystems. Many methods such as membrane, 
adsorption, filtration, ion exchange, (co)precipitation, 
(photo)degradation, (photo)reduction, (electro)extrac-
tion and biological treatment have been investigated in 
the elimination of (in)organic pollutants from solutions 
(Chen et al. 2022a; Liu et al. 2022a; Wang et al. 2023; Xu 
and Tsang 2022; Yang et al. 2022; Zhang et al. 2022b; Zhu 
et al. 2022). These techniques for the removal of pollut-
ants are generally dependent on the polluted water con-
ditions such as the pollutant concentrations, coexisted 
pollutants, pH, temperature, etc. and the properties of 

the pollutant itself. Each technique has its advantages 
and disadvantages for real applications, which is normally 
related to the requirement of wastewater treatment and 
the species or structures of pollutants. More importantly, 
the structures and surface properties of the materials are 
most important parameters for the elimination of (in)
organic contaminants (Yu et al. 2022; Zhang et al. 2022c). 
The nanomaterials have been studied extensively in pol-
lution management because they have super advanced 
properties such as high surface areas, abundant active 
sites, porous structures, physical and chemical stability at 
extreme conditions and multifunctional groups for sorp-
tion-catalytic activities, etc. Mauter and Elimelech (2008) 
reviewed different carbon-based nanomaterials such as 
fullerene, carbon onion, carbon nanotubes and graphene 
for pollution treatment. The nanomaterials as adsor-
bents, membranes, filters and antimicrobial agents for 
the elimination and separation of (in)organic contami-
nants were described, and the authors concluded that the 
porous structures/sizes, surface functional groups and 
surface properties were critical for the selective and effi-
cient removal of organic molecules and metal ions. Gupta 
and Saleh (2013) summarized the sorption of (in)organic 
pollutants from wastewater by carbon nanotubes, porous 
carbon materials and fullerene as adsorbents. The sorp-
tion of pollutants by the carbon materials was not only 
related to solution conditions such as pH, temperature, 
salt concentrations, but also dependent on the proper-
ties of pollutants and the nanomaterials such as species 
and microstructures of pollutants, surface charge, surface 
groups and active sites of materials etc.

Covalent organic frameworks (COFs) have well-defined 
crystal porous structures and are easily modified with 
functional groups, which offer the superior properties 
in multidisciplinary areas such as gas storage, cataly-
sis, sorption and electricity etc. Ding and Wang (2013) 
reviewed the synthesis and application of COFs in gas 
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storage, photoelectricity and catalysis, and concluded 
that COFs were promising materials in future if they 
could be mass-produced at a  low price. The H2 storage, 
methane storage, ammonia storage, photoelectric and 
photocatalytic applications in pollution decontamina-
tion were summarized. Xu et  al. (2022) reviewed the 
radionuclides removal by COFs, and found that COFs 
could selectively adsorb radionuclides if the pore sizes, 
skeletons and active sites could be precisely predesigned 
and constructed. Gu et al. (2022) reviewed the synthesis 
and application of COFs and COFs-based composites for 
the sorption and reduction of metals and radionuclides 
from solutions. The COFs could selectively remove target 
metals and radionuclides because the porous structures 
and the surface functional groups could form strong 
surface complexes and reduce the metals and radionu-
clides through redox reactions. More importantly, COFs 
could preconcentrate radionuclides through sorption-
photocatalytic reduction processes to immobilize radio-
nuclides in natural systems. Liu et  al. (2021b) reviewed 
the different methods for COFs synthesis and modifica-
tion of surface properties. The remediations of organic 
molecules and metal elements from solutions by COFs 
through sorption, precipitation and catalytic reduction/
degradation were summarized and the interaction mech-
anisms of pollutant molecules with COFs were discussed 
from the viewpoint of advanced spectral techniques and 
computational simulation at molecular level. The authors 
concluded that COFs-based nanocomposites not only 
can adsorb organic molecules, but also can photocata-
lytically degrade organic chemicals under natural sun-
light conditions because the COFs-based catalysts could 
absorb visible light and generate/separate the electrons/
holes (e−/h+) pairs efficiently. For metal ions, the high 
valent metals adsorbed on COFs can also be reduced to 
low valent metals and thereby form precipitates on COFs 
or COFs-based materials.

Metal–organic frameworks (MOFs) with controlled 
pore sizes and structural tailorability are considered suit-
able materials for the remediation of pollutants from 
the natural environmental systems (Li et al. 2018a; Kita-
gawa 2014; Tchinsa et al. 2021). Li et al. (2009) summa-
rized the gas purification and separation from the special 
properties of MOFs. The distinguished special proper-
ties of MOFs such as the adjustable pore structures and 
sizes, large surface areas and thermal chemical stabil-
ity, assured the separation of gases from their molecule 
structures. Czaja et  al. (2009) discussed the possible 
industrial application of MOFs in the areas of gas stor-
age, separation and purification, and the heterogeneous 
catalysis of organic molecules. Liu et  al. (2022b) sum-
marized the different strategies for MOFs synthesis and 

their applications in energy conversion, gas storage and 
pollutants’ remediation. The authors found that the dop-
ing of single metals could enhance the photogenera-
tion of the active free species radicals and improve the 
degradation of the organic molecules or reduction of 
metal ions. The porous structures, surface group modi-
fication and metal oxide-loading are efficient methods 
to improve the sorption and catalytic activities of MOFs. 
Zhang et  al. (2022d) reviewed the synthesis and func-
tionalization of COFs and MOFs, and their applications 
in hydrogen generation, carbon dioxide reduction and 
pollutants’ remediation. The interaction of organic mol-
ecules with the nanomaterials was mainly dominated by 
H-bonding, electrostatic attention, π-π interaction, and 
surface complexation. The removal efficiency of metal 
ions was affected by the conditions of solution such as 
pH, temperature, ionic strength, etc., and the properties 
of MOFs/COFs such as surface functional groups, active 
sites and doping/co-doping of metals/nonmetals and 
metal oxides. The binding of (in)organic contaminants 
was affected by the porous structures, inner pore sizes, 
and surface groups. The MOFs and COFs can not only 
adsorb the (in)organic contaminants, but also degrade 
organic molecules or reduce the metal ions under natu-
ral sunlight conditions. The shape and size selectivity, 
and the enhanced catalytic activity provided the potential 
possibility of bare MOFs or MOF-based composites in 
chemical industries’ applications.

From the abovementioned results, one can see that 
MOFs and COFs have been extensively studied in the 
separation and purification of gases, in the removal of (in)
organic contaminants through sorption and catalysis strat-
egies. However, the review for the decontamination of 
pollutants and selective extraction of target elements still 
has not been fully discussed, especially the mechanism 
discussion at the molecular level from the advanced spec-
troscopic measurements and computational simulation 
together with batch and column experimental results is 
still not available. In this review, the authors mainly sum-
marized the decontamination of organic/inorganic pollut-
ants, the in-situ immobilization and selective separation of 
target metals or radionuclides from complicated systems. 
The mechanism was discussed and the challenges for 
potential applications were described in the end.

2 � Synthesis of MOFs and COFs nanomaterials
Yaghi’s group for the first time synthesized COFs through 
condensation reaction. The crystal structure was formed 
by strong bonds among C, O and B atoms with the inner 
pore sizes of 7–27 angstroms, with high thermal stabil-
ity, high surface area and porosity (Cote et  al. 2005). 
The authors used simple “one-pot” process under mild 
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condition. From molecular dehydration reaction, three 
C6H5B(OH)2 was converged to form B3O3 ring. The 
cyclotrimerized boronic acids were then reacted with 
1,4-benzenediboronic acid for 74  h at 120  oC in mesi-
tylene-dioxane solution to form COFs-1. Since then, the 
COFs had been synthesized by different techniques such 
as microwave technique (Ren et al. 2012), sonochemical 
technique (Tuziuti et  al. 2008), ionothermal technique 
(Maschita et  al. 2020), mechanochemical technique 
(Biswal et  al. 2013), solvothermal technique (Guo et  al. 
2021), etc. Hao et  al. (2023) synthesized COFs by the 
addition of 5,5’-(diazene-1,2-diyl)bis(2-aminobenzoni-
trile), 4,4’-(thiazolo[5,4-d]thiazole-2,5-diyl)dianiline and 
2,4,6-triformylphloroglucinol in orthodichlorobenzene/
n-butanol/acetic acid (volume ratio of 5:5:1) mixture 
solution. The solution was frozen in N2 liquid bath and 
then heated at 120  °C for 3 days, and  thus achieved the 
COF-1 nanomaterial. Feng et  al. (2012) summarized 
the synthesis of COFs and concluded that geometry 
retention, building block diversity and covalent reac-
tion reversibility were the three critical factors, which 
affected the design and synthesis of COFs. According to 
the requirement, the COFs could be designed using dif-
ferent chemicals under different conditions. The pore 
sizes and porosities could be adjusted, which is impor-
tant for the special applications of COFs and COF-based 
nanomaterials.

MOFs was also for the first time reported by Yaghi’s 
group (Yaghi et  al. 1995). They synthesized MOFs with 
microporous structures by diffusion method and applied 
for aromatic molecules capture selectively. They used the 
symmetry of starting building molecular to react with 
metals for the covalent solid formation with open frame-
work. The 1,3,5-benzenerricarboxylate and Co(NO3)2 
were mixed in alcohol for 3 days to achieve the pink and 
cubic crystals, which were stable in water and organic 
solvents. The XRD analysis revealed the structure of 
CoC6H3(COOH1/3)3(NC5H5)2·2/3NC5H5. Zhou and 
Kitagawa (2014) summarized the MOFs synthesis meth-
ods, which were classified as: coordination-bonding or 
metal-containing node; post-modification of ligands; 
and symmetry-assistant synthesis. The doping of metal 
clusters could significantly improve the MOFs stabil-
ity and porosity. The cation exchange at metal-contain-
ing nodes could construct the conceptual framework to 
form metal–ligand bond cleavage. The functional groups 
could be attached on MOFs by pre-synthetic or post-syn-
thetic modification. The MOFs can be applied in energy 
transfer, CO2 reduction, H2 generation and storage, pho-
tocatalysis degradation of organic molecules, photore-
duction-immobilization of metal ions (Barea et al. 2014; 
Canivet et  al. 2014; Voorde et  al. 2014; Zhang and Lin 
2014).

The properties of MOFs and COFs synthesized under 
different conditions using different techniques are dif-
ferent. The synthesis methods, the surface areas, pore 
volumes, pore sizes, crystal structures and zeta potential 
values of MOFs and COFs synthesized under different 
conditions are tabulated in Tables  1 and 2. The synthe-
sis of MOFs and COFs nanomaterials have been reported 
and summarized extensively. The price for the synthesis 
of MOFs and COFs, their application for U(VI) extraction 
are summarized in Table  3. From the values in Table  3, 
one can see that the price for MOFs or COFs synthesis 
is relatively higher than that of  most commercial car-
bon materials such as active carbon and biochar materi-
als. However, the high sorption ability and reusability of 
MOFs and COFs will decrease the relative cost of MOFs 
and COFs in possible applications. The main purpose of 
this review is the usage of MOFs and COFs nanomateri-
als in the remediation of organic pollutants, metals and 
radionuclides. Thereby, the synthesis of these nanomate-
rials was not summarized in detail in this work. From the 
web of science knowledge, the key research points about 
the synthesis of MOFs and COFs, and the application 
in the remediation of environmental (in)organic pollut-
ants are given in Fig. 1 (Chen et al. 2019; Cote et al. 2005; 
Mahata et al. 2006; Niu et al. 2014; Shen et al. 2013; Yaghi 
et al. 1995).

3 � Organic pollution treatment
The organic contaminants mainly include dyes, antibiot-
ics and other organic chemicals produced in the chemi-
cal industry processes. The organic pollutants could be 
eliminated by MOFs and COFs nanomaterials through 
adsorption, photocatalytic degradation, chemical and 
biological treatments. In this section, the adsorption and 
photocatalytic degradation of organic chemicals using 
COFs and MOFs nanomaterials as adsorbents or cata-
lysts were mainly discussed.

3.1 � Adsorption
Yuan et al. (2019) summarized the preparation of COF 
membranes and their application for dye separation 
in wastewater treatment. Through adjusting the tun-
able porous structures and inner sizes, the functional-
ity and hydrophobicity/hydrophilicity, the dyes could 
be separated from wastewater efficiently. The sorption 
of antibiotics on the nanomaterials was dependent on 
the nanomaterial surface properties and porous struc-
tures (Ahmed et al. 2015). Kong et al. (2022) prepared 
COP-NH2, which had flexible hydrophobic triptycene 
and multi-amines. The sorption of dichromate and 
perfluorooctane sulfonate (PFOS) showed the sorp-
tion capacities of 1.4  mmol/g for PFOS and 3.5  mg/g 
for dichromate. The high sorption capacity was mainly 
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dominated by the amine protonation and electrostatic 
reaction, which resulted in the simultaneous high 
removal efficiency of > 99% in electroplating wastewater. 
Wang et al. (2022a) prepared OH-rich COFs and used 
them  for the adsorption of azo dyes like eriochrome 
black T (EBT), congo red (CR) and eriochrome blue 
R (EBR) from solutions. The COF-OH exhibited the 
sorption capacities of the three dyes ranging from 91 
to 229 mg/g with the removal efficiency > 76%. The dif-
ference in the sorption of the three dyes was described 
in detail. However, the reason and interaction mecha-
nism for the sorption difference of three dyes were 
not investigated and discussed in detail in this work. 

The steam activation, chemical activation, alkali treat-
ment, or acidic treatment could improve the surface 
functionalities, porous structures, and active sites, and 
thereby could enhance the sorption abilities of different 
organic contaminants from wastewater (Ahmed et  al. 
2016). Wang et al. (2013) reviewed the sorption of pol-
lutants in wastewater treatment and concluded that the 
surface strong acidity and abundant functional groups 
of nanomaterials could bind pollutants through sur-
face complexation and strong π-π reaction. The load-
ing of graphene in porous nanomaterials is a promising 
method to enhance the sorption ability of environmen-
tal pollutants in wastewater decontamination.

Table 1  The properties of the COFs materials

COFs Synthesis 
method

Critical parameters BET 
surface 
(m2/g)

Pore 
volume 
(cm3/g)

Pore size Zeta potential Crystal 
structure

Ref

PS-COF-1 solvothermal 80°, 72 h 2703 2.68  ~ 4.5 nm - 2D layered 
crystal

Hao et al. (2022a)

o-GS-COF solvothermal 120°, 12 h 51.5 - - - 2D layered 
crystal

Wen et al. (2018)

COF-HAP solvothermal 120°, 72 h 26.9 0.14 15 Å - crystalline You et al. (2020)

COF-HHTF-AO solvothermal 
and amidoxi-
mation

120° for 72 h, and then 
amidoximation at 70°

275 - 0.2 nm 1.3 2D layered 
crystal

Cheng et al. 
(2021)

TaTp-1 COF/
CDs

hydrothermal room temperature 76 - 2.59 nm - Core–shell, 2D 
layered crystal

Qin et al. (2022)

TAPB-BMTTPA-
COF

solvothermal 
and in situ 
growth

120°, 72 h 1934 1.03 3.2 nm - Core–shell, 2D 
layered crystal

Huang et al. 
(2017)

Fe3O4/TpPa-1 solvothermal 120°, 72 h 485.2 0.34 2 nm - Core–shell, 2D 
layered crystal

Zhong et al. 
(2020)

TpPa-1 solvothermal 120°, 72 h 688.8 0.42 2 nm 5.63 2D layered 
crystal

Zhong et al. 
(2020)

Fe0/TpPa-1@
DOPA

solvothermal 120°, 72 h 103 - 20.234 Å 3.9 - Shen et al. (2022)

AO-COF-ben solvothermal 120°,72 h,Amidoximated 
by treatment with 
hydroxylamine

218 0.16 12.8 Å - 2D layered 
structure

Chen et al. 
(2022b)

AO-COF-tri solvothermal 120°,72 h,Amidoximated 
by treatment with 
hydroxylamine

203 0.17 21.3 Å - 2D layered 
structure

Chen et al. 
(2022b)

COF@PDA high-tempera-
ture condensa-
tion polymeri-
zation

180°, 72 h 118.2 - - - Core–shell 
structure, 
amorphous

Xiao et al. (2021)

SCU-COF-2 solvothermal 120°, 72 h 413.4 - - - 2D layered 
crystal

He et al. (2021)

COF/GO solvothermal 120°, 24 h 179 0.24 1.36 nm - 39.3 mV 3D macropo-
rous structure

Li et al. (2022a, 
b, c)

Fe3O4@COFs in situ growth room temperature 55.7 0.12 - - Core–shell 
structure

Li et al. (2019)

FeOOH@Tz-
COF

solvothermal 30°, 72 h, and then 
In situ growth core–shell 
structure

892 - 1.4 - Core–shell 
structure

Guillem-Navajas 
et al. (2022)
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Li et  al. (2022c) constructed ultrathin COFs on gra-
phene (GO) to prepare COF/GO composites with 3D 
macroporous structures (1.36 nm) and excellent-exposed 
sorption sites, which permitted the rapid diffusion and 
sorption of organic pollutants (i.e., methylene blue (MB), 
Rhodamine B (RhB) and crystal violet (CV)) from solu-
tions. Due to the macroporous channels, the organic pol-
lutant molecules could diffuse into the channels rapidly, 
thereby the COF/GO showed rapid removal kinetics of 
organic molecules. However, the COFs only allowed the 
MB (the molecule size smaller than the pore size) to enter 
into the COF channel, whereas the dyes with large mole-
cule sizes (RhB and CV) were rejected to enter into COF 
channel and could only be adsorbed on the crystallite 

surface (Fig.  2a). However, the ultrathin COFs provided 
abundant sorption sites and thereby exhibited high sorp-
tion capacities for the dyes (Fig. 2b). The COF/GO com-
posites exhibited the sorption capacities of 328  mg/g 
for CV, 334 mg/g for MB and 368 mg/g for RhB, which 
were much higher than the bulk COFs (178 mg/g for CV, 
308 mg/g for MB and 130 mg/g for RhB). The ultrathin 
COF/GO could extremely shorten the reaction time to 
achieve the sorption equilibration (Fig. 2c) and the sorp-
tion capacity was about 3 times higher than that of COFs 
(Fig.  2d). DFT calculation showed that the RhB inter-
acted with COFs to form N–H···Cl H-bond (H-bond 
energy of -6.69 kcal/mol) through H atom to N atom of 
COFs with Cl− atom of RhB, and form S–O···H H-bond 

Table 2  The properties of the MOFs materials

MOFs Synthesis method Critical parameters BET (m2/g) Pore 
volume 
cm3/g

Pore size (nm) Crystal structure Ref

ZJU-X11 solvothermal 95°, 24 h - - - Cationic monoclinic Kang et al. (2021)

SCU-103 solvothermal 140°, 72 h - - - - Shen et al. (2020)

UiO-66-QU solvothermal 130°, 48 h 83.27 0.166 7.98 crystalline and cubic 
skeleton structure

Hu et al. (2023b)

MOFL-TpBD solvothermal 120°, 1 h 535 - 1.5 2D layered crystal Li et al. (2021c)

MFC-N hydrothermal 110° 722 0.42 4.1 Core–shell structure, 
Crystal

Huang et al. (2018)

Fe3O4@MIL-101(Cr) solvothermal 210°,8 h, in situ 
synthesis

2270 1.04 - Core–shell, truncated 
octahedral morphol-
ogy

Folens et al. (2016)

Fe3O4@MIL-101(Cr) solvothermal 210°,8 h, in situ 
synthesis

2270 1.04 - Core–shell, truncated 
octahedral morphol-
ogy

Folens et al. (2016)

MFC-N hydrothermal 110° 722 0.42 4.1 Core–shell structure, 
Crystal

Huang et al. (2018)

MFC-O hydrothermal 110° 782 0.47 3.8 Core–shell structure, 
Crystal

Huang et al. (2018)

GO–COOH/UiO-66 solvothermal 100°, 8 h 731.08 0.17 1.30 Crystal structure Yang et al. (2017)

Table 3  Cost estimation for preparing the materials and for applying U extraction from seawater

Materials Cost estimation for preparing the 
materials

Cost estimation for U extraction from 
seawater

Ref

MOF-NH2 $150/kg - Gong et al. (2021)

MOF-OH $150/kg - Gong et al. (2021)

PS-COF-1  ~ $64,500/kg - Hao et al. (2022a)

MoO3-biochar $1/kg - Li et al. (2022a, b, c)

commercial activated carbon $1.8–3.9/kg - Li et al. (2022a, b, c)

ion exchange resin $9–15.7/kg - Li et al. (2022a)

In − Nx − C − R $41,000/kg $806/kg U Liu et al. (2022d)

TpPa-1 $7520/kg - Karak et al. (2017)

Land uranium reserves - $100–335/kg U Li et al. (2020)

PAF-170-AO - $189.77/kg U Li et al. (2020)
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(H-bond energy of -12.01  kcal/mol) through O atom of 
–SO3 of COFs and H atom of –COOH in RhB. The DFT 
calculation also indicated that electrostatic interaction, 
H-bond, π-π interaction contributed to the RhB sorption 
on COF/GO composites.

Muslim et  al. (2022) synthesized bifunctional MOFs 
materials for the sorption of methylene blue (MB) and 
methyl orange (MO) from wastewater, and achieved the 
sorption capacities of 116 mg/g for MB and 103 mg/g for 
MO. The anionic and cationic dyes could be simultane-
ously removed from solutions, which was attributed to 
the non-covalent reactions of dyes with the porous mate-
rials. Huang et  al. (2018) investigated the removal abili-
ties of metal ions and dyes from wastewater by Zr-MOFs. 
The amine-loaded MOFs had the sorption capacities of 
102 mg/g for Pb(II), 128 mg/g for MB and 219 mg/g for 
MO. Different types of dyes could be selectively sepa-
rated from complex solutions through adjusting solution 
pH. The adsorption mechanisms were generally attrib-
uted to cationic and ionic exchange, electrostatic inter-
action, H-bonding, pore filling, n-π and π-π interaction 
(Tran et al. 2017; 2020). If the adsorption was affected by 
pH and ionic strength obviously, electrostatic attraction 
would play primary role in the adsorption process. The 
reversible adsorption–desorption could be attributed to 
cationic or ionic exchange, whereas irreversible adsorp-
tion–desorption could rule out the cationic or ionic 
exchange mechanism. The -OH peak shifting in FTIR 
before and after adsorption could provide some informa-
tion of H-bonding interaction. The n-π interaction could 
be derived from the C-O peak shifting in FTIR before and 
after adsorption, whereas the π-π interaction could be 

derived from the FTIR analysis if the C = C peak intensity 
decreased and upshifted after adsorption. The decrease 
of SBET and Vtotal after adsorption suggested the possibil-
ity of pore filling mechanism. From the above-mentioned 
results, it is clear that the COFs or MOFs nanomaterials 
showed very high sorption capacities for organic contam-
inants from wastewater. The selectivity of target organic 
molecules in the presence of different organic pollutants 
with different molecular structures was relatively weak, 
which was mainly due to the functional groups on porous 
structures of nanomaterials and the organic molecule 
structures. Without special functional groups and tun-
able porous structures, the MOFs or COFs nanomaterials 
could adsorb the organic molecules with high sorption 
capacity, but the selectivity was weak. The surface special 
functional groups, active sites and tunable porous struc-
tures could improve the binding of special organic mol-
ecules, thereby improved the sorption selectivity.

3.2 � Photocatalytic degradation
Besides the elimination of organic molecules through 
sorption process, the photocatalytic degradation can 
also degrade organic pollutants efficiently, especially at 
low concentrations under complicated systems. Wang 
et  al. (2020a) reviewed and compared the synthesis of 
B-containing and N-containing COFs. The structures 
and morphologies of COFs could be easily adjusted 
through controlling different reaction conditions and 
synthesis methods. The effect of porous structures and 
morphologies of COFs on the photocatalytic decontami-
nation of organic contaminants was discussed in detail. 
The authors concluded that the π-stacking interlayer 

Fig. 1  The synthesis and application of MOFs and COFs
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Fig. 2  Diffusion and surface adsorption of MB, RhB and CV on bulk COFs (a) and ultrathin COFs (b); The reaction time was shortened to achieve the 
sorption equilibration (c) and sorption capacity increased on ultrathin COFs (d) (Li et al. 2022a). ESR spectra of DMPO-●OH/SO4

●− (e), DMPO-O2
●− 

(f) and TEMP-1O2 signals (g) in Co-doped COFs (Cao et al. 2022); ESR spectra of DMPO-O2
●− (h), DMPO-●OH (i) and TEMPO-h.+ (j) in Fe-based MOFs 

in dark and visible light conditions (Wang et al. 2018)
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structures exhibited high light absorption and excellent 
charge carriers transfer, which enhanced the photocata-
lytic activity for organic molecules degradation. Cao et al. 
(2022) prepared Co-doped COFs with Co-Nx sites, which 
exhibited high catalytic ability in the removal of levoflox-
acin (> 94%) in 2 h for peroxymonosulfate (PMS) activa-
tion. The Co-doped COFs had high stability and recycle 
ability in a wide pH range from 3 to 9. The electron spin 
resonance (ESR) technique was applied to verify the 
formation and contribution of reactive oxygen species 
(ROSs). The 2,2,6,6-tetramethyl-4-piperidinol (TEMP) 
and 5,5-dimethyl-1-pyrroline (DMPO) were used as trap-
ping agents to capture singlet oxygen (1O2) active species 
and short lifetime radicals, respectively. With only PMS, 
no DMPO-O2

●− and DMPO-●OH/SO4
●− was observed. 

The oxidation of DMPO by reactive oxygen species 
(ROSs) generated hydroxyl radial (●OH) and SO4

●− spe-
cies (Fig. 2e). The strong signal of DMPO-O2

●− indicated 
the formation of superoxide radial (O2

●−) active species 
(Fig. 2f ). The strong TEMP-1O2 signal suggested the for-
mation of 1O2 species. However, the addition of benzo-
quinone (BQ) for the quenching of O2

●− active species 
showed the weaken of the signal, suggesting the genera-
tion of 1O2 was related to O2

●− active species (Fig. 2g). 
The Co-Nx sites and C = O groups were favorable for the 
generation of 1O2, O2

●− and ●OH free radicals, which 
were the main active species for levofloxacin degradation. 
The metal-doping and introduction of surface groups on 
COFs are efficient methods to improve the catalytic abil-
ity of COFs in the photo-degradation of organic mole-
cules. Tan et al. (2016) found that the abundant functional 
groups, porous structures, and active sites could enhance 
the photogeneration and e−/h+ separation, which was 
helpful to construct the catalysts with enhanced photo-
catalytic activity in organic contaminants’ degradation. 
The electrostatic attraction, π-π interaction, surface com-
plexation and H-bonding interaction were important 
sorption mechanisms for the removal of organic mol-
ecules from wastewater to nanomaterials. The Fe-based 
MOFs were applied for the photocatalytic degradation 
of tetracycline (TC) and the Fe-based MOFs exhibited 
the removal efficiency of 96% at TC initial concentration 
of 50 mg/L. The ESR analysis showed no O2

●− signal in 
dark, and DMPO-O2

●− signal was detected under vis-
ible light conditions (Fig. 2h). No ●OH signal was found 
in dark. The DMPO-●OH signal was detected under 
visible light condition, and the peak intensity enhanced 
with the increase of irradiation time (Fig.  2i). The simi-
lar results for 2,2,6,6-Tetramethylpiperidine 1-oxyl-h+ 
(TEMPO-h+) signals were also achieved (Fig.  2j). The 
results revealed that O2

●−, ●OH and h+ active species 
contributed to TC photocatalytic degradation, which was 
in good agreement with quenching experimental results 

(Wang et al. 2018). The removal mechanism and sorption 
abilities of different organic pollutants by different kinds 
of MOFs and COFs nanomaterials, and comparison with 
carbon nanomaterials, are summarized in Table  4. The 
applications of MOF-based composites for the removal 
of organic pollutants were reviewed (Wang et al. 2020b), 
and the authors summarized that the carbon material 
incorporated MOFs, metal-doped MOFs, COFs/MOFs 
composites, and semiconductor incorporated MOFs had 
higher visible light harvest, generation and separation of 
e−/h+ pairs, higher stability and excellent reusability. The 
MOFs-based composites showed more practical applica-
tions in organic contaminants adsorption and photocata-
lytic degradation.

4 � Heavy metal pollution treatment
Heavy metals such as Pb(II), As(III), Cr(VI), Zn(II), 
Cd(II), Hg(II), Cu(II), are released to the environment 
with the rapid development of industrialization, min-
ing activities and municipal engineering. The metal ions 
are persisted in rivers, lakes or groundwaters for a  long 
time and are impossible to be degraded without human 
initiatives. They could be accumulated in the living crea-
tures, and result in serious human health risks (Zahed 
et al. 2021; Zaynab et al. 2022). Thereby, it is important 
to eliminate the heavy metal ions from eco-systems. The 
sorption method is efficient to remove the metal ions 
from water. However, the in-situ precipitation and immo-
bilization are more efficient to reduce the toxicity and 
mobilization of heavy metals for very complicated condi-
tions. In this section, we described the recent works for 
the sorption and photocatalytic reduction-precipitation 
of metals using MOFs and COFs nanomaterials.

4.1 � Sorption of metal ions
Sorption of metal ions from wastewater is widely used 
in wastewater treatment because of its easy operation on 
large scale. Ding et al. (2016) constructed thioether-func-
tional COFs for the selective detection/removal of Hg(II) 
ions in wastewater. The COFs exhibited high removal 
efficiency of Hg(II) with high selectivity and excellent 
sensitivity. The high selective and strong interaction of 
Hg(II) with COFs were dominated by the formation of 
Hg-thioether complexes, which highlighted the applica-
tion of COFs for the simultaneous fluorescence sensing 
and elimination of Hg(II) ions in environmental pollution 
treatment. Huang et  al. (2017) synthesized stable COFs 
through structural skeleton adjusting, pore walls, porous 
sizes, mesopores and high specific surface areas, which 
had high stability in strong basic or acidic solutions. The 
prepared COFs showed high efficiency, selectivity, effec-
tivity and reusability removal of Hg(II), which offered a 
molecule platform for the removal of target metal ions 
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Table 4  Summary of Langmuir maximum adsorption capacity and the related interaction/degradation mechanisms

Materials 
categories

Name Application Maximum 
adsorption 
capacity (mg/g)

pH Co range (ppm) Temperature Interaction or 
degradation 
mechanism

Ref

COF PS-COF-1 ReO4/99TcO4 1262 6 0 -800 298 K Anion exchange, 
electrostatic inter-
action

Hao et al. (2022a)

MOF ZJU-X11 ReO4/99TcO4 518 - 100–536 298 K Anion-Exchange Kang et al. (2021)

MOF SCU-103 ReO4/99TcO4 318 7 5–400 298 K Anion-Exchange Shen et al. (2020)

COF o-GS-COF U(VI) 144.2 4.5 0–220.1 298 K Oxygen atoms 
coordination 
interactions

Wen et al. (2018)

COF COF-HAP U(VI) 392.2 3 0.25–1000 298 K Surface precipitate, 
surface compl-
exation, and ion 
exchange

You et al. (2020)

COF COF-HHTF-AO U(VI) 550.1 6 0–100 298 K Coordination 
interaction

Cheng et al. (2021)

Biochar BC@LDH@HAP Eu(III) 714 6 60–140 318 K Surface complexa-
tion, ion exchange, 
and precipitation

Dong et al. (2021)

MOF UiO-66-QU Hg(II) 556 3 100–600 298 K Monolayer chemi-
cal adsorption

Hu et al. (2023b)

COF TaTp-1 COF/CDs Hg(II) 235 7 0.01–0.15 298 K Affinity for nitro-
gen and oxygen 
atoms

Qin et al. (2022)

Biochar BMS-biochar Hg(II) 320.1 7 1.0–25 298 K Surface adsorp-
tion, electrostatic 
attraction, surface 
adsorption, and 
electrostatic attrac-
tion

Lyu et al. (2020)

Biochar HCB Hg(II) 5 - 0.1–5 298 K C = C and 
C = O induced 
Hg-πbinding

Xu et al. (2016)

COF TAPB-BMTTPA-COF Hg(II) 734 7 - 298 K Pore filling, coordi-
nation interactions, 
charge-transfer 
interaction

Huang et al. (2017)

COF Fe3O4/TpPa-1 Cr(VI) 245.5 1 - 298 K Hydrogen -bond-
ing and π-π inter-
action, occupied in 
the pore cages

Zhong et al. (2020)

COF TpPa-1 Cr(VI) 310.8 1 - 298 K Hydrogen -bond-
ing and π-π inter-
action, occupied in 
the pore cages

Zhong et al. (2020)

COF Fe0/TpPa-1@DOPA Cr(VI) 516 2.6 20–80 298 K Electrostatic 
adsorption, 
reduction, and 
coprecipitation

Shen et al. (2022)

Biochar BC@EDTA-LDH Cr(VI) 52.22 3 20–250 300 K Surface adsorp-
tion and interlayer 
anion exchanges

Huang et al. (2019)

Biochar MMABC Cr(VI) 25.3 3 5–200 298 K Adsorption-reduc-
tion-adsorption

Zhang et al. (2018)

Biochar ZnO/ZnS modified 
biochar

Cr(VI) 24.5 6 5–400 298 K Complex with 
hydroxyl groups

Li et al. (2018b)

MOF MOFL-TpBD Pb(II) 21.7 6 0.05–50 298 K Chemisorption Li et al. (2021c)

Biochar ZnO/ZnS modified 
biochar

Pb(II) 135.8 6 5–400 298 K Complex with 
hydroxyl groups

Li et al. (2018b)
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Table 4  (continued)

Materials 
categories

Name Application Maximum 
adsorption 
capacity (mg/g)

pH Co range (ppm) Temperature Interaction or 
degradation 
mechanism

Ref

Biochar MoO3-biochar Pb(II) 229.87 4 5–120 298 K Surface electro-
static attraction, 
ion exchange and 
surface complexa-
tion

Li et al. (2022b)

MOF MFC-N Pb(II) 102 6 - 298 K Chelating Huang et al. (2018)

MOF Fe3O4@MIL-101(Cr) As(III) 121.5 7 - 298 K Redox reactions 
and binding on 
terephthalate 
ligands

Folens et al. (2016)

MOF Fe3O4@MIL-101(Cr) As(V) 80 7 - 298 K Redox reactions 
and binding on 
terephthalate 
ligands

Folens et al. (2016)

COF AO-COF-ben ROX 732 4 - 298 K Intermolecular 
hydrogen bonding 
and π-π electron 
donor–acceptor 
interactions

Chen et al. (2022b)

COF AO-COF-tri ROX 787 4 - 298 K Intermolecular 
hydrogen bonding 
and π-π electron 
donor–acceptor 
interactions

Chen et al. (2022b)

Biochar BC-450 Ni(II) 24.8 8.3 50–400 298 K Surface complexa-
tion

Amin and Chetpat-
tananondh (2019)

COF COF@PDA Ni(II) 207.5 6 - 303 K Phenolic hydroxyl 
groups participate

Xiao et al. (2021)

Biochar ZnO/ZnS modified 
biochar

Cu(II) 91.2 6 5–400 298 K Complex with 
hydroxyl groups

Li et al. (2018b)

COF COF@PDA Fe(II) 204.9 6 - 303 K Phenolic hydroxyl 
groups participate

Xiao et al. (2021)

COF COF@PDA Co(II) 194.2 6 - 303 K Phenolic hydroxyl 
groups participate

Xiao et al. (2021)

COF SCU-COF-2 CH3I 1450 - - 298 K Charge conversion, 
anion-exchange

He et al. (2021)

COF SCU-COF-2 I2 6000 - - 298 K Eactive pyridine 
nitrogen atoms

He et al. (2021)

COF COF/GO MB 328 - 20–900 298 K Electrostatic inter-
action, H-bond, 
π-π interaction

Li et al. (2022a, b, c)

COF COF/GO CV 334 - 20–900 298 K Electrostatic inter-
action, H-bond, 
π-π interaction

Li et al. (2022a, b, c)

COF COF/GO RhB 368 - 20–900 298 K Electrostatic inter-
action, H-bond, 
π-π interaction

Li et al. (2022a, b, c)

COF Fe3O4/TpPa-1 BPA 1220.97 6 - 298 K Hydrogen -bond-
ing and π-π inter-
action, occupied in 
the pore cages

Zhong et al. (2020)

COF TpPa-1 BPA 1424.27 6 - 298 K Hydrogen -bond-
ing and π-π inter-
action, occupied in 
the pore cages

Zhong et al. (2020)
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from solutions. Hussain et  al. (2022) synthesized thiou-
rea-based COFs, which had enol and keto tautomeric 
structures. The prepared COFs exhibited ultrahigh 
Hg(II) adsorption capacity (> 4200  mg/g) owing to the 
large amounts of chelating available sites. More impor-
tantly, the COFs were very stable with high removal 
efficiency and high selectivity in strong acidic solutions 
(1–3 mol/L HCl). The high selectivity of Hg(II) removal 
over other competing metals was attributed to the soft–
soft reactions of Hg(II) ions with sulfur in COFs. Zhao 
et  al. (2022) prepared bipyridine-based 2D COFs and 
applied them  for Pd(II) elimination from aqueous solu-
tion. The COFs exhibited high selectivity and excellent 
sorption efficiency, with high selectivity of 92% and the 
sorption capacity of 532  mg/g. The theoretical calcula-
tion showed that the coordination of oxygen and pyridine 
nitrogen with Pd(II) was the main adsorption process. Li 
et  al. (2022a) constructed COFs with -SO3H functional 
groups, which had high porosity and crystallinity. The 
material exhibited high removal efficiency for multiple 
metal ions, such as Cr(III), Cd(II) and Fe(III) ions from 
complex solutions. The synergistic effect of crystallin-
ity and -SO3H functionalization contributed to  the high 
sorption of metal ions. However, the selectivity of the 
COFs for target materials was not reported in this work. 
Jin et al. (2022) prepared O,N-rich COFs, which had large 
porphyrin center space and enough coordination sites. 
The O,N-rich COFs had high sorption of Cd(II) ions with 
excellent stability and reusability. The reaction of Cd(II) 
with porphyrin ring promoted the binding of Cd(II) to 
the porphyrin-based COFs.

Zhang et  al. (2022a) prepared COF TpPa@rGO com-
posites and used them as cathode for electric sorption of 
Pb(II) ions from complex solutions. The rGO had the elec-
trical conductivity to provide electrical layers to attract 
Pb(II) ions, whereas the COF TpPa had enough redox 
active sites for Pb(II) capture. The rGO and COF TpPa 
properties resulted in > 99% Pb(II) selective removal from 
complex solutions with the sorption capacities of 95 mg/g 
Pb(II) in single solutions and 130 mg/g Pb(II) in multicom-
ponent systems. The complex of COFs with other materi-
als provided promising technique for selective adsorption 
of metal ions from complex solutions. The modification of 
special functional groups or porous structure adjust could 
improve the selective binding of Pb(II) from complex solu-
tions (Ghorbani et al. 2020). Guillem-Navajas et al. (2022) 
loaded iron oxyhydroxide on COFs to prepare FeOOH@
COF composites, which exhibited remarkable sorption 
efficiency of 98% As(III) in several minutes at pH 5–11. 
The FeOOH@COF had high selectivity of As(III) removal 
efficiency rather than other metal ions such as Hg(II) and 
Pb(II) ions. The imine-lined COFs doped with carbon 
dots (TaPa-1 COF/CD) composites exhibited high effi-
ciency in the detection and sorption of Hg(II). The com-
posites showed excellent fluorescence detection of Hg(II) 
and sorption capacity of 235 mg/g (Qin et al. 2022). Folens 
et al. (2016) prepared Cr-based MOFs for the simultane-
ous sorption of As(III) and As(V) from aqueous solution, 
with the sorption capacities of 122  mg/g for As(III) and 
80 mg/g As(V). The existence of Mg2+, Ca2+, phosphates 
and natural organic materials in solution did not affect 
the removal selectivity and efficiency of As(III) and As(V) 

Table 4  (continued)

Materials 
categories

Name Application Maximum 
adsorption 
capacity (mg/g)

pH Co range (ppm) Temperature Interaction or 
degradation 
mechanism

Ref

COF Fe3O4@COFs TCS 5481 7 250–2000 298 K Space embedding 
effect, van der 
Waals forces, and 
benzene ring π − π 
stacking

Li et al. (2019)

COF Fe3O4@COFs TCC​ 2085 7 125–2000 298 K Space embedding 
effect, van der 
Waals forces, and 
benzene ring π − π 
stacking

Li et al. (2019)

MOF MFC-N MB 128 11 - 298 K Electrostatic and 
p-p stacking 
interaction

Huang et al. (2018)

MOF MFC-O MO 219 3 - 298 K Electrostatic and 
p-p stacking 
interaction

Huang et al. (2018)

COF FeOOH@Tz-COF As(III) 272 7 0.5–120 303 K Multilayer sorption Guillem-Navajas 
et al. (2022)
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species from wastewater. However, the mechanism of the 
high selectivity of As(III) and As(V) removal was not dis-
cussed in detail. The sorption capacities of different metals 
by COFs and MOFs nanomaterials, and the comparison 
with carbon materials are summarized in Table 4. One can 
see that the sorption capacities of MOFs and COFs nano-
materials were much higher than those of carbon nanoma-
terials. For the environmental metal pollution treatment, 
the selective elimination/removal of heavy metal ions from 
complex wastewater is crucial for the pollutant elimina-
tion. The porous structures, the surface functional groups, 
the active sites and incorporation with other nanomateri-
als could change and enhance the sorption properties of 
the nanomaterials.

4.2 � Photocatalytic reduction
The in-situ reduction of high valent metal elements to 
form precipitate is effective to reduce the toxicity and 
concentration of high valent metal elements (Liu et  al. 
2023; Wang et al. 2019). Zhong et al. (2020) constructed 
magnetic COFs (Fe3O4/TpPa-1) composites, which 
showed high sorption capacity of Cr(VI) (245 mg/g) with 
high reusability and stability. The XPS analysis and mate-
rials Studio calculation showed that the imine and car-
bonyl groups acted as the platform for Cr(VI) binding. 
The high toxic Cr(VI) could also be reduced to less toxic 
Cr(III) by the efficient separation and transport of charge 
carriers. Shi et  al. (2022) constructed Ag/AgBr/TzDa 
COF catalyst and applied it  for Cr(VI) photocatalytic 
reduction and extraction under visible light conditions. 
The composites showed higher catalytic activity in Cr(VI) 
reduction than AgBr, TzDa and their mixtures. The pho-
tocatalytic reduction of high toxic Cr(VI) to less toxic 
Cr(III) was mainly attributed to the photogenerated elec-
trons. Yang et al. (2019) constructed CdS/MOFs compos-
ites and applied it for Cr(VI) removal. The photocatalytic 
activity of CdS/MOFs for Cr(VI) reduction was 5 times 
higher than that of CdS. The CdS/MOFs had higher 
light absorption and efficient charge transfer/separation 
ability than CdS and MOFs, thereby exhibited higher 
photocatalytic activity. The MIL-53(Fe) MOFs catalysts 
showed excellent photocatalytic ability for Cr(VI) reduc-
tion. About 100% Cr(VI) was reduced in 40  min under 
visible light conditions and also exhibited high reduc-
tion ability of Cr(VI) (60% removal) and degradation of 
dyes (RhB) (80% removal) in 6  h. The iron-oxo cluster 
adsorbed the incident photons and then the charge car-
riers transported to MIL-53(Fe) MOFs surface. The syn-
ergetic effect of electrons and holes contributed to Cr(VI) 
reduction and dyes degradation (Liang et al. 2015). Wen 
et  al. (2022) constructed TiO2@COFs composites and 
used them for Cr(VI) photocatalytic reduction. The for-
mation of C-O-Ti bond enabled the photoelectrons to 

transfer from TiO2 to COFs, and enhanced the separation 
of photogenerated carriers. The composites also showed 
high visible light harvest and excellent Cr(VI) reduc-
tion. The quenching tests showed that Cr(VI) reduction 
was suppressed significantly after the addition of K2S2O8, 
whereas the addition of other scavengers did not decrease 
Cr(VI) reduction obviously (Fig. 3a). The quenching tests 
indicated that electrons played a  major role in Cr(VI) 
photocatalytic reduction, whereas the other active spe-
cies such as O2

●−, ●OH and h+ did not play important 
roles in Cr(VI) reduction. From the energy band charac-
terization, the Z-scheme mechanism of Cr(VI) reduction 
by TiO2@COFs was proposed (Fig. 3b). The e−/h+ pairs 
were generated under visible light irradiation, and elec-
trons in conduction band (CB) of TiO2 were transferred 
to valence band (VB) of COFs, forming build-in field. The 
high reduction potential of Z-scheme was retained on CB 
of COFs, and thereby reduced Cr(VI) to Cr(III) by the 
photoinduced electrons.

Yao et al. (2022b) investigated the extraction of Cr(VI) 
through photocatalytic reduction strategy under differ-
ent pH values. After 6  h irradiation, the extraction effi-
ciencies of Cr(VI) from solution increased from 9.1% to 
97.5% when the pH decreased from 10 to 4. Cr(VI) was 
reduced to trivalent Cr(III) with very high selectivity. 
They firstly used isopropanol as electron donor to photo-
catalytic extract Cr(VI) from complicated solutions (Yao 
et  al. 2022a). The formation of insoluble polyhydroxy 
Cr(V) intermediate contributed to the photocatalytic 
reduction of Cr(VI) and did not form Cr2O3 precipi-
tate by adjusting pH values in the existence of compet-
ing other metal ions. Through controlling the electric 
neutrality and inter-molecule reaction, the di-nuclear 
Cr(V) (Cr2(μ-O)2(OH)4[OCH(CH3)2]2) complexes were 
formed as the final products. This method could effi-
ciently extract Cr(VI) from Cr-plating wastewater and 
stainless steel, and selectively recover Cr(VI) from com-
plicated wastewater (Figs.  3c and d). This technique is 
also efficient for the success removal of Cr(VI) from real 
Cr-plating aqueous solution. This work provided a use-
ful method to selectively extract Cr(VI) from wastewater 
using natural biomaterials through adjusting pH values 
under visible light conditions. Photocatalytic reduction 
of the metal ions from high valence to low valence, and 
the subsequent formation of the precipitates are efficient 
in decreasing the immobilization of metals in environ-
ment, reducing the toxicity of the metals and separating 
the target metals from complex systems.

5 � Radionuclide pollution treatment
Nuclear energy is a distinguished energy and is consid-
ered efficient in solving energy crisis. The enrichment of 
235U from salt lakes, ocean and radioactive wastewater 
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is important for the continuous development of nuclear 
energy peaceful utilization (Cai et  al. 2023). However, 
radionuclides are inevitably released into environment 
during the whole development of nuclear energy. The 
release of radioactive gases such as 85Kr, 127Xe, 129I2 vapor 
into the atmosphere, the release of 235U(VI), 99TcO4

− and 
other actinides in mining process or spent fuel treatment. 
The radiotoxicity of radionuclides, especially their irra-
diation in human body, is much higher than nonradioac-
tive metal ions even though  their concentration is 1000 

times lower than metal ions. Thereby, the elimination of 
radionuclides is significant for environment protection 
and public human safety.

5.1 � Sorption
Di et  al. (2022) reviewed the removal of 99TcO4

− by 
COFs as adsorbents from solutions, and found that COFs 
were suitable materials for 99TcO4

− removal from aque-
ous solutions with high stability and selectivity. Hao 
et  al. (2022a) synthesized ionic COFs, which had high 

Fig. 3  Photocatalytic reduction of Cr(VI) by TiO2@COFs by the addition of different scavengers under visible light conditions (a) and proposed 
mechanism of Cr(VI) reduction (b) (Wen et al. 2022); The elimination of Cr(VI) by photocatalytic precipitation from real Cr-plating wastewater (c) and 
from discarded stainless steel (d) (Yao et al. 2022a)
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Brunner-Emmet-Teller (BET) surface area (> 2700 m2/g), 
ordered porous structures, high radiation and chemi-
cal stability. The ionic COFs exhibited high selectivity 
for ReO4

− and 99TcO4
− sorption in high other anions’ 

concentrations, with the sorption capacity of 1262 mg/g 
for ReO4

−. The density functional theory (DFT) calcula-
tions further evidenced the strong binding of ReO4

− and 
99TcO4

− on the COFs, suggesting the selective sorption 
over other anions. The single-exchange COFs modified 
with alkyl groups were applied to remove 99TcO4

− from 
aqueous solutions. They found that the COFs exhibited 
high selectivity and sorption ability, which was attrib-
uted to hydrophobicity reaction and steric effect (Li 
et  al. 2021a). Cheng et  al. (2021) synthesized amidox-
ime-modified COFs and used them as adsorbent for the 
extraction of U(VI) from wastewater and seawater. The 
prepared COFs exhibited high selectivity and efficiency 
of U(VI) sorption, with the sorption capacity of 5.1 mg/g 
from ocean water, 1.6 times higher than V(V) from natu-
ral seawater. The DFT calculation further revealed that 
the binding energy between COFs and U(VI) was much 
higher than those of V(V), and the bond distances of 
U(VI) with COFs were shorter than that of V(V) with 
COFs. The theoretical simulation results indicated the 
higher selectivity of U(VI) than V(V) in seawater. Yang 
et  al. (2017) constructed GO-COOH/UiO-66 MOFs 
composites for U(VI) separation from simulated seawa-
ter, and found that the composites achieved the sorp-
tion capacity of 188  mg/g, which was attributed to the 
sorption sites of GO-COOH sheets. The XPS and FTIR 
analysis indicated  that the ion exchange and chela-
tion occurred on the GO-COOH nanosheets, thereby 
increased the sorption ability and selectivity. The sepa-
ration of U(VI)/Ln(III) by Fe3O4@ZIF-8 MOFs com-
posites showed ultrahigh sorption capacity of U(VI) 
(523 mg/g) with remarkable selectivity of U(VI) from lan-
thanides containing solutions. The spectroscopy analy-
sis and theoretical calculation showed that H-bonding 
together with the coordination of Zn centers and U(VI) 
ions contributed to the high U(VI) uptake (Min et  al. 
2017). Liu et  al. (2022c) synthesized CuxPc-COFs com-
posites using microwave irradiation technique. The pre-
pared CuxPc-COFs had high iodine capture ability with 
492 mg/g iodine from cyclohexane solution and 2.99 g/g 
iodine vapor. The DFT calculation showed high sorp-
tion if iodine was related to the charge transfer and 
π-conjugated structures of CuxPc-COFs with iodine 
molecules. The selective removal of radionuclides from 
wastewater is mainly dependent on the strong complexes 
ability of the surface functional groups with the target 
radionuclide. The porous structures and inner channels 
also contribute to the selective binding of the target radi-
onuclides. COFs nanomaterials with designed structures, 

active sites and special functional groups could achieve 
the selective extraction of radionuclides from solutions.

5.2 � Photocatalytic reduction
Photocatalytic reduction of U(VI) is one efficient tech-
nique for U(VI) extraction from wastewater or ocean 
(Chen et  al. 2022b; Hu et  al. 2023a). Li et  al. (2021b) 
found that U(VI) could be  photocatalytically extracted 
from solution without using catalyst under visible light 
conditions. In the existence of organics such as alco-
hol, U(VI) could form unstable U(V), which was further 
transformed to U(IV) precipitates through dispropor-
tionation reactions at optimal pH conditions. This work 
provided a facile method to extract U(VI) selectively 
from complex solutions under solar irradiation. Hao et al. 
(2022b) synthesized the Pd-doped COFs (Fig.  4a) for 
the selective extraction of U(VI) from seawater through 
sorption-photoreduction processes (Fig.  4b). U(VI) 
could be efficiently removed from solution to COFs by 
the photocatalytic reduction process under visible light 
conditions (Fig.  4c). The further X-ray absorption fluo-
rescence structure spectroscopy (XAFS) analysis showed 
that the U(VI) presented as hexavalent U(VI) species on 
COFs under dark conditions but existed as UO2 species 
on COFs under visible light conditions (Fig. 4d), suggest-
ing the photoreduction of UO2

2+ to UO2(s) under natu-
ral sunlight irradiation. The amidoxime groups of COFs 
could bind the U(VI) ions with high selectivity, whereas 
the bipyridine-Pd and triazine sites could photocatalyti-
cally reduce U(VI) to UO2 solid. The synthesized COFs 
exhibited U(VI) extraction ability of 4.62  mg/(g·day) 
U(VI) from natural ocean water. More importantly, the 
COFs could generate *O2

− and 1O2 active free radicals, 
which not only reduced U(VI) to U(IV), but also had 
antibiofouling activity, which was very important for sus-
tainable extraction of U(VI) from natural seawater.

5.3 � Electrocatalysis
Besides the photocatalytic extraction of U(VI) from 
seawater, Yang et  al. (2021) for the first time applied 
sorption-electrocatalytic method to extract U(VI) 
selectively from natural seawater and wastewater. They 
functionalized porous carbon with FeNx single atoms 
and amidoxime functional groups. The FeNx porous 
carbon electrode achieved the U(VI) sorption capac-
ity of ~ 128 mg/g with the removal ratio of 99% in 24 h 
from 10 ppm U(VI)-spiked seawater (Fig. 5a). The ami-
doxime group could selectively bind U(VI) ions and 
the FeNx centres could reduce the adsorbed U(VI) to 
unstable U(V), and then the unstable U(V) was re-
oxidized to form Na2O(UO3·H2O)x solid on the elec-
trode in the presence of Na+ ions, which was easily to 
be separated from solutions. This method could extract 
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1.2  mg/(g·day) U(VI) from natural seawater, which 
was the highest value for U(VI) extraction from ocean 
water. The authors used advanced spectroscopy such 
as XAFS to measure the structures and coordination 
of U(VI) on the porous carbon, and the XAFS showed 
that U(VI) formed U(VI) solid phases on the electrode 
(Fig.  5b). From the characterization of the precipitates 
on the electrode, the electrocatalytic extraction mecha-
nism of U(VI) from seawater was described in Fig.  5c. 
Figure 5d gave the photographs of the FeNx porous car-
bon electrode in U(VI) electrocatalytic extraction from 
U(VI)-spiked seawater. One can see that U(VI) was 
continuously deposited on the electrode in the electro-
catalysis processes. However, the formation of UO2

+ 
species was not evident directly. They further doped 
InNx single atoms on porous carbon and functional-
ized with amidoxime groups to prepare In-Nx-C-R elec-
trocatalyst, and used them to extract U(VI) from ocean 
water. The formation of unstable UO2

+ was measured 
by in-situ Raman spectroscopy (Fig.  5e). The appear-
ance of UO2

+ signal (810 cm−1) indicated the adsorption 

and reduction of U(VI) to unstable UO2
+ intermedi-

ates (Pointurier and Marie 2013; Stefaniak et  al. 2008). 
The U(VI) signal intensity decreased with the increase 
of time and at last disappeared completely, suggest-
ing that the adsorbed U(VI) was completely reduced to 
UO2

+ intermediates. It is very interesting to note that a 
new peak at 374  cm−1 was observed, which was attrib-
uted to the oxidation of unstable UO2

+ to stable U(VI) 
in NaCl solutions. The XAFS analysis further supported 
the appearance of Na2O(UO3·H2O)x solid on the In-Nx-
C-R electrode (Liu et al. 2022d). The authors pointed out 
that Na2O(UO3·H2O)x was formed only in the presence 
of Na+ ions, and it was a general method to precipitate 
U(VI) on the electrode. The electrocatalytic extraction 
strategy is important for the selective removal of U(VI) 
ions continuously from seawater or complex solutions. 
In the electrocatalytic extraction process, it is not neces-
sary to consider the experimental conditions such as vis-
ible light utilization, coexisted cations. More importantly, 
the radionuclides could be extracted from solutions and 
formed precipitates on the electrode continuously.

Fig. 4  The synthesis of COF material (a); Sorption-photocatalytic extraction strategy for U(VI) extraction from solutions (b); The 
sorption-photocatalytic reduction of U(VI) from solutions using different COFs (c); The XAFS analysis of U(VI) adsorption and U(VI) photocatalytic 
extraction samples (d) (Hao et al. 2022b)
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5.4 � Piezocatalysis
Besides photocatalysis and electrocatalysis extraction of 
radionuclides, peizocatalytic extraction of radionuclides 
is a new promising technique. The external mechanical 
vibration causes the change of surface charge density. 
Under mechanical stretches and stresses condition, the 
negative and positive charges move in the material due to 
the piezoelectric effect and thereby result in piezo prop-
erties (Li et al. 2023). Cai et al. (2022) found that piezo-
catalytic materials could generate the active free radicals 
such as *OH, *O2

− and 1O2 under ultrasonic conditions, 
which could reduce U(VI) to form UO2(s) by the piezo-
generated free radicals. More importantly, H2O2 was also 
generated in the piezocatalytic processes, which further 
re-oxidized UO2 to (UO2)O2·2H2O, and thereby formed 

precipitates on the piezocatalyst. This method provided 
an efficient technique to selectively separate U(VI) from 
complex wastewater. Gao et  al. (2022) investigated the 
piezo-catalytic extraction of Cr(VI) ions from wastewa-
ter and found that Cr(VI) was piezo-catalytic reduced to 
Cr(III) under ultrasonic conditions on its surface. The 
generated electrons-holes, *OH and H2O2 contributed to 
the piezo-catalytic reduction of Cr(VI) from toxic hexa-
valent to less toxic trivalent. To enhance the piezocata-
lytic ability, the defect introduction of the piezocatalyst 
is the efficient method. The metal-doping, introduc-
tion of interface or intrinsic defects and heterogeneous 
metal oxides-loading could enhance the piezo-genera-
tion and e−/h+ separation, and  the generation of active 
free species under ultrasonic conditions. Till now, the 

Fig. 5  Electrocatalytic strategy for the extraction of U(VI) from 10 ppm U(VI)-spiked seawater (a); The XAFS spectra for electrochemically products 
using Fe–Nx–C–R as catalyst (b); Plausible reaction mechanism for U(VI) extraction from seawater using Fe–Nx–C–R as catalyst (c); Photographs of 
Fe–Nx–C–R electrode in U(VI)-spiked seawater (C[U(VI)]initial = 1000 ppm) using electrocatalytic extraction (d); In-situ Raman spectra collected from 
In − Nx − C − R electrode in U(VI)-spiked seawater in adsorption − electrocatalysis processes (e). (Liu et al. 2022d; Yang et al. 2021)
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piezo-reduction of high valent metal elements to its low 
valent elements using MOFs or COFs still has not been 
extensively studied. The MOFs or COFs with piezocata-
lytic properties, tunable porous structures and active 
sites could be promising piezocatalytic materials in effi-
cient piezocatalytic extraction of radionuclides and 
metals selectively from complicated solutions. With the 
development of technology, the piezo-catalysis strategy 
for the environmental pollution cleanup will attract more 
and more interest in the future.

6 � Conclusions and perspectives
In this paper, we summarized the application of MOFs 
and COFs nanomaterials for the elimination of organic 
contaminants, radionuclides and metal ions through 
sorption and catalysis (photocatalysis, electrocatalysis, 
piezocatalysis) processes. Different kinds of techniques 
for the removal of the (in)organic pollutants have been 
studied extensively, herein the sorption and catalysis 
strategies for the decontamination of pollutants by MOFs 
and COFs nanomaterials were reviewed. The sorption 
and photocatalytic degradation of organic contaminants 
were the efficient technique for organic contaminants 
elimination from aqueous solutions. The advantages of 
COFs and MOFs nanomaterials in the elimination of pol-
lutants can be summarized as: 1) the sorption capacities 
of MOFs and COFs are much higher than those of today’s 
most reported materials because of their high surface 
areas, abundant functional groups and active sites; 2) the 
COFs or MOFs nanomaterials have the high efficiency 
in the removal of (in)organic contaminants from com-
plex systems; 3) the modification of special functional 
groups or tunable porous structure, the target pollutants 
could be eliminated selectively; 4) the catalytic reduc-
tion/extraction could selectively extract metal ions from 
complex wastewater; 5) the COFs and MOFs nanomate-
rials have high reusability and stability, especially under 
extreme conditions, which is crucial for real applications; 
and 6) to enhance the elimination efficiency, the doping 
of single metal atoms or metal oxides, or the incorpora-
tion with other nanomaterials to change the porosity, 
the porous structure, active sites and functional groups 
are helpful for improving the sorption ability or catalytic 
capacity.

Although the MOFs and COFs nanomaterials have 
super abilities in environmental pollution treatment, 
there are still some difficulties for the real applications 
such as: 1) the MOFs or COFs cannot be synthesized 
in large scale at low cost now. At current stage, the 
materials are easily synthesized in laboratory level, but 
still difficult to be industrially synthesized; 2) the sep-
aration of the materials from solutions is still difficult 

if the nanomaterial powders are used in wastewater 
treatment. The incorporation of the nanomaterials 
with other materials for easy separation is the useful 
technique; 3) the toxicity of the released nanomaterials 
should be considered. The nanomaterial toxicity to eco-
system is the inevitable problem for the low contents 
of nanomaterials in environment; 4) the high efficient 
removal of target pollutant is still difficult. The surface 
grafting technique is very important method to real-
ize the selective binding of target pollutant by different 
functional groups. However, the high selective elimina-
tion of pollutant from complex systems is still a prob-
lem; 5) the enhancement of visible light absorption, 
the e−/h+ generation and separation are the main chal-
lenges in photocatalysis. For the efficient removal of 
contaminants by photocatalysis strategy, the improve-
ment of the photocatalytic activity is the best method 
to increase the pollutant removal efficiency; 6) the 
price of COFs and MOFs is still much higher than that 
of traditional materials such as active carbon. The high 
removal ability and reusability could partly reduce the 
cost for real applications. With the development of 
technology, such nanomaterials may be industrially 
synthesized, which could reduce the price of MOFs and 
COFs significantly. From the physicochemical prop-
erties, one can see that the MOFs, COFs and MOFs/
COFs-based nanomaterials will be applied in large scale 
in real applications in pollution treatment.
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