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Abstract
Agriculture constitutes the foundational pillar of the global economy, engaging a substantial segment of the workforce 
and making a considerable contribution to the Gross Domestic Product (GDP). However, agricultural productivity faces 
numerous challenges, including varying climatic conditions, soil types, and limited access to modern farming practices. 
Developing intelligent agricultural systems becomes imperative to address these challenges and enhance agricultural pro-
ductivity. Therefore, this paper aims to present a Machine Learning (ML) based crop recommendation system tailored for 
the farming landscape. The proposed system utilizes historical data on climatic conditions, soil properties, crop yields, and 
farmer preferences to provide personalized crop recommendations. The goal of this study is to appraise the efficacy of nine 
distinct ML models—Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision 
Tree (DT), Random Forest (RF), Bagging (BG), AdaBoost (AB), Gradient Boosting (GB), and Extra Trees (ET) to generate 
practical recommendations for crop selection. Numerous preprocessing methods are employed to cleanse and normalize the 
data, thereby ensuring its appropriateness for model training. The ML models are trained using historical data sets, includ-
ing temperature, rainfall, humidity, soil pH, and nutrient levels, where crop yields are correlated with environmental and 
agronomic factors. The models undergo fine-tuning through methods such as cross-validation to enhance their performance 
and ensure robustness. Among those models, Radom Forest has achieved the highest accuracy (99.31%). The proposed 
Machine Learning-based crop recommendation system offers a promising approach to addressing the challenges faced by 
the farmers. By leveraging advanced data analytics and artificial intelligence techniques, the system empowers farmers 
with timely and personalized recommendations, ultimately leading to improved agricultural productivity, food security, and 
economic prosperity.
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1  Introduction

Agriculture is the oldest industry, essential for nourishing 
the global population. With modernization and technologi-
cal integration, it has evolved to optimize efficiency, attract 
more participants, and elevate overall quality standards [1]. 
However, the looming threat of diminishing arable land due 
to urbanization poses a daunting challenge in agriculture. 
Coupled with the imperative to boost food production by 
over 70% by 2050 to accommodate population growth, the 
need for innovative solutions becomes paramount [2]. So, 
there is an urgent need for an automated system that can 
maximize harvest yield while minimizing resource inputs, 
ensuring agricultural sustainability in the face of evolving 
global demands [3].
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Machine Learning has appeared as a formidable instru-
ment in transforming the agricultural sector, proffering inno-
vative solutions to enduring challenges such as crop yield 
estimation [4–6], plant species identification [7], and dis-
ease detection [8–11], thus heralding a new era of precision 
agriculture. By harnessing extensive datasets, encompassing 
variables from soil composition and meteorological patterns 
to crop health and yield projections, ML algorithms furnish 
critical insights to farmers, agronomists, and researchers 
alike. In recent years, a multitude of scholars have imple-
mented ML techniques to develop crop recommendation 
systems grounded in agricultural parameters. In paper [12] 
advanced an intelligent system named Agro-Consultant, 
designed to aid farmers in decision-making based on soil 
type, area, pH, and precipitation. Chougule [13] employed 
ML algorithms such as Random Forest to forecast harvest 
yield predicated on soil categories, conditions, and rainfall. 
Kulkarni et al. [14] proposed a crop recommendation frame-
work leveraging ensemble machine learning methodologies, 
integrating predictions from a variety of techniques includ-
ing RF, Naive Bayes (NB), and Lagrangian SVM, to rec-
ommend suitable crops based on mud characteristics and 
parameters with heightened efficacy. These ML approaches 
were utilized to delineate relationships between soil nutri-
ent levels, identifying a substantial influence of nitrogen 
(N) on phosphorus (P) and its subsequent effect on potas-
sium (K), while nitrogen demonstrated a weaker correlation 
with potassium. Additionally, a researcher [15] utilized soil 
sensors interfaced with an Arduino board and ESP 8266 
WiFi module to amass soil data for crop recommendation 
purposes.

Different algorithms, including Naive Bayes, Logistic 
Regression, and C4.5, were applied to rainfall data, with 
C4.5 achieving the highest accuracy at 85.07% [16]. Gosai 
et  al. developed a robust feature extraction framework 
deploying various ML algorithms such as NB, RF, SVM, 
DT, LR, and XGBoost. Their experimental results dem-
onstrated that NB, RF, and XGBoost yielded the highest 
prediction accuracy, reaching an impressive 99% [17]. The 
researchers further recommended optimal crop selections 
based on geospatial and climatic data gathered from agri-
cultural databases. A novel hybrid model was introduced, 
merging Naive Bayes and J48 with association rule mining, 
where the J48 algorithm achieved a commendable accuracy 
of 95.9% [18]. Abrougui et al. conducted a predictive analy-
sis for organic potato yield estimation, employing soil prop-
erty data. Through a comparative evaluation of Artificial 
Neural Networks (ANN) and Multiple Linear Regression 
(MLR), ANN exhibited superior performance, boasting a 
correlation coefficient of 0.975 [19]. Villanueva et al. car-
ried out image acquisition of bitter melon plants from agri-
cultural fields, subsequently analyzing their fruit-bearing 
potential through the Convolutional Neural Network (CNN) 

methodology. Their findings affirmed that CNN reliably pre-
dicts crop yield [20].

While these studies showcase the potential of ML in 
agricultural applications, a limitation observed in the lit-
erature review is the reliance on a relatively small number 
of ML algorithms, ranging from 2 to 6, for recommending 
crop strategies in intelligent farming. The narrow scope of 
algorithms utilized may restrict the diversity of approaches 
explored and the robustness of the predictive models devel-
oped. Therefore, this study has used nine ML algorithms—
LR, SVM, KNN, DT, RF, BG, AB, GB, and ET for develop-
ing a crop recommendation system by collecting diverse data 
from the Kaggle repository on soil types, climate, historical 
crop yields, and farmer preferences. No study has employed 
all nine specified ML algorithms simultaneously on identi-
cal datasets for crop recommendation in intelligent farming 
applications. Numerous performance metrics, including pre-
cision, accuracy, F1-score, and recall, have been employed 
to gauge the effectiveness of these models. The comparison 
of models revealed that Random Forest exhibited the highest 
performance among them. The proposed system will offer a 
pathway towards sustainable and resilient farming practices, 
ensuring the long-term viability of our food systems in the 
face of global challenges.

2 � Methodology

This paper endeavors to engineer a crop recommendation 
system by harnessing the capabilities of diverse ML algo-
rithms. The proposed framework encompasses several criti-
cal phases: data acquisition and preprocessing, crop predic-
tion through ML methodologies, and the subsequent stages 
of model training, testing, and performance evaluation. The 
workflow diagram of the proposed system is depicted in 
Fig. 1.

2.1 � Data Collection

The dataset employed in this study was sourced from the 
Kaggle archives [21], accumulated by the Food and Agri-
culture Council of India. It comprises 2200 data points 
and spans 22 crops, including Rice, Maize, Jute, Cotton, 
Coconut, Papaya, Orange, Apple, Muskmelon, Water-
melon, Grapes, Mango, Banana, Pomegranate, Lentil, 
Blackgram, Mungbean, Mothbeans, Pigeon peas, Kidney 
beans, Chickpea, and Coffee. This dataset is structured 
around variables related to Nitrogen, Phosphorus, Potas-
sium, fertilizers, soil pH [22], and climate factors such as 
rainfall, temperature, and humidity. Initially, we import the 
data from datasets and check for null and duplicated values 
within the dataset. Subsequently, we label each crop using 
one-hot encoding and compile them into a dictionary. 
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Following this, we train the Data Distribution Testing 
and Scaling function using MinMaxScaler and the Data 
Training Model. Notably, this dataset exhibits exceptional 
quality by encompassing a diverse range of geographi-
cal conditions and crops, underscoring its potential util-
ity across regions worldwide with similar environmental 
conditions. A detailed description of the dataset employed 
in this study is presented in Table 1.

The dataset encompasses information regarding various 
attributes pertinent to agricultural conditions. The descrip-
tion of each attribute is outlined below:

N: This attribute exhibits a range of (0–139) kg/ha, 
indicative of the quantity of nitrogen in the soil, measured 
in kilograms per hectare.

P: This attribute ranges from (5–145) kg/ha, represent-
ing the amount of phosphorus in the soil, measured in 
kilograms per hectare.

K: With a range of (5–205) kg/ha, this attribute denotes 
the quantity of potassium in the soil, measured similarly to 
N and P.

Temperature: Ranging from (10.78–43.36) K, this attrib-
ute is provided in Kelvin value, reflecting the temperature 
conditions.

Humidity: With a range of (14.69–98.80) F, this attrib-
ute can be expressed in Fahrenheit or Celsius, indicating 
humidity.

pH: Spanning from (3.55–7.45), the pH attribute typically 
operates on a scale from 0 to 14, measuring the acidity or 
alkalinity of a substance, thus reflecting soil conditions.

Rainfall: This attribute signifies the volume of rainfall 
in millimetres, exhibiting a range of (20.21–291.29) mm, 
providing insight into precipitation levels.

2.2 � Prediction of Crop Using ML Techniques

The study employs a range of ML algorithms to recommend 
crops based on various factors, including NPK fertilizer 
levels, soil pH, and climatic conditions. These algorithms 
encompass LR, SVM, KNN, DT, RF, BG, AB, GB, and ET.

2.2.1 � Logistic Regression

Predictive LR emerges as a potent machine learning 
approach for crop recommendation, particularly in binary 
classification scenarios where the objective is to ascertain 
whether a specific crop should be cultivated, based on vari-
ables such as soil composition, climatic conditions, and 

Fig. 1   Proposed crop recommendation system

Table 1   Dataset description

Attributes Range

N (0–139) kg/ha
P (5–145) kg/ha
k (5–205) kg/ha
Temperature (10.78–43.36) K
Humidity (14.69–98.80) F
ph (3.55–7.45)
Rainfall (20.21–291.29) mm
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water resources. The methodology initiates with rigorous 
data preprocessing, encompassing data cleansing, imputa-
tion of missing values, and the normalization or standardiza-
tion of features to maintain uniformity in scale. Throughout 
the training phase, Logistic Regression identifies the opti-
mal coefficients that establish a linear decision boundary to 
delineate the classes. Upon completion of training, the mod-
el’s performance is scrutinized using metrics. This methodi-
cal approach facilitates well-informed decisions regarding 
crop cultivation, utilizing Logistic Regression to enhance 
agricultural methodologies.

2.2.2 � Support Vector Machine

SVMs can be effectively applied to crop recommendation 
in Machine Learning. The core concept behind using SVM 
for this purpose is constructing a classification model to 
identify the most suitable crops to grow based on various 
factors. The first step involves feature selection, identify-
ing the traits that significantly influence plant growth and 
crop yield. After selecting the appropriate features, the 
SVM classifier is trained using preprocessed data [23]. This 
data should be cleaned, scaled, and normalized to ensure 
the model’s robustness and to avoid overfitting. The SVM 
algorithm endeavors to ascertain the optimal hyperplane that 
demarcates the distinct classes of crops within the multi-
dimensional feature space, thereby facilitating the precise 
discrimination among potential crop recommendations. 
Upon the successful training and rigorous evaluation of the 
SVM model, it becomes proficient in delivering crop recom-
mendations by exploiting its capacity to delineate intricate 
decision boundaries inherent in the dataset. Users can input 
relevant information, including soil properties, climate con-
ditions, and topography, and the model will predict which 
crops are most suitable to grow in that particular context. 
This approach offers a powerful tool for farmers and agri-
cultural planners, ultimately contributing to improved farm 
productivity and sustainability.

2.2.3 � K‑Nearest Neighbors

K-Nearest Neighbors excels when data is non-linear or 
doesn’t follow a specific distribution [24]. KNN classifies or 
predicts based on the majority class or average value of the 
k closest data points in the feature space. Cross-validation 
can optimize this, with smaller k values offering more sen-
sitivity and larger ones providing stability. KNN is based 
on the principle of similarity, typically using Euclidean 
or Manhattan distance to find the closest neighbours. In 
classification, KNN assigns a class based on the majority 
vote among the K’s Nearest Neighbours. For regression, it 
predicts by averaging the values of the nearest neighbours. 
KNN is considered a “lazy learner” because it doesn’t build 

a complex model during training; computation occurs dur-
ing the prediction phase. This flexibility makes it a popular 
choice for many machine-learning tasks, especially when 
data structures are complex and require a simple yet effective 
approach. Feature scaling or normalization is recommended 
to ensure optimal performance with KNN.

2.2.4 � Decision Tree

Decision Tree models decisions through a tree-like structure 
comprising nodes and branches, where internal nodes repre-
sent conditions or tests on specific features, and leaf nodes 
represent the final output or decision [25]. The algorithm 
constructs the tree by selecting the most significant features 
to split the data, often using criteria like Gini Impurity, 
Entropy, or Information Gain. Decision Trees are famous 
for their simplicity, interpretability, and ability to handle 
non-linear data without complex transformations. DTs are 
also sensitive to small data changes, leading to variations in 
the tree structure. Despite these limitations, they are widely 
used in finance, healthcare, and marketing due to their clear 
visualization and ease of understanding.

2.2.5 � Random Forest

A RF is a robust supervised learning algorithm employed 
in both classification and regression tasks, renowned for its 
ensemble methodology that amalgamates multiple decision 
trees. Each tree within the Random Forest is generated by 
selecting a stochastic subset of the training dataset, alongside 
a randomly chosen subset of features at each decision node, 
fostering diversity among the trees. This aggregation process 
enhances model stability and generalization. Random For-
ests offer several advantages, including reduced overfitting, 
improved accuracy, and insights into feature importance, 
making them useful in various arenas such as healthcare, 
finance, and marketing. However, they are more complex 
than single decision trees and require more computational 
resources. Despite this, Random Forests are favoured for 
their robustness and versatility in handling large datasets 
and complex data structures.

2.2.6 � Bagging

Bagging, an acronym for bootstrap aggregating, is a widely 
utilized ensemble learning technique in ML. This method 
involves training multiple models in isolation, each on a dif-
ferent subset of the data generated through bootstrapping. 
This technique is often used to reduce variance and avoid 
overfitting. Different crop recommendation models can 
be trained using different subsets of available data or dif-
ferent algorithms. Baggage helps create different patterns 
by introducing randomness into the training process. By 
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combining predictions from multiple models, bagging often 
leads to higher prediction accuracy than individual models. 
This can be especially beneficial in crop recommendation, 
where accurate predictions are crucial for maximizing yield 
and optimizing resource utilization. Bagging helps make 
the crop recommendation system more stable and robust by 
reducing the impact of abnormal or noisy data. Bagging can 
also be used for feature selection by training each model on 
a random subset of features. This helps identify the most 
relevant features for crop recommendation while reducing 
the risk of overfitting. Since each model in the crop ensem-
ble is trained independently, crop algorithms can be easily 
parallelized, making them effective for large-scale crop rec-
ommendation systems.

2.2.7 � AdaBoost

AdaBoost, short for Adaptive Boosting, is a prominent 
ensemble learning algorithm employed in ML for both clas-
sification and regression tasks. It functions by sequentially 
merging numerous weak learners—models that execute 
slightly better than random guessing—into a single, robust 
model. In each iteration, AdaBoost adjusts the weights of 
misclassified instances, prioritizing them in subsequent 
training rounds. This iterative process amplifies the contri-
bution of weaker learners, culminating in a more accurate 
and resilient model.

2.2.8 � Gradient Boosting

Gradient Boosting is a formidable ensemble learning method 
widely applied in ML for both classification and regression 
tasks. It constructs a robust predictive model through the 
iterative training of multiple weak learners, typically deci-
sion trees. In this process, each successive tree is trained to 
rectify the residual errors of its predecessor, thereby incre-
mentally enhancing the model’s overall predictive accuracy. 
The critical concept of Gradient Boosting is to iteratively 
optimize a loss function by minimizing the residual errors, 
allowing the model to improve with each step. The process 
involves adding new trees to the ensemble, each tree trained 
on the residuals or errors from the preceding iteration, 
adjusting for overfitting through regularization techniques 
like learning rate and tree depth control. Gradient Boosting 
is highly effective for achieving high accuracy, offering flex-
ibility with various loss functions and parameters, making it 
adaptable to multiple tasks. While it can be computationally 
intensive and prone to overfitting if not adequately managed, 
Gradient Boosting is valued for its ability to create robust 
and precise predictive models, often outperforming other 
ensemble techniques. It’s commonly used in finance, health-
care, and marketing applications, where predictive accuracy 
is crucial [26].

2.2.9 � Extra Trees

Extra Trees resembles RFs but introduces greater random-
ness in its tree construction, leading to increased robust-
ness and condensed risk of overfitting. Extra Trees create 
an ensemble of decision trees. Still, unlike Random For-
ests, they randomly choose both features and split thresholds 
rather than selecting the best split based on a specific crite-
rion. This added randomness can accelerate training times 
and make the model more resilient to noisy or diverse data-
sets. In Extra Trees, each tree contributes to the final predic-
tion through majority voting for classification or averaging 
for regression, yielding an effective ensemble model. The 
trade-off for this additional randomness is potentially lower 
accuracy in datasets with distinct patterns. Still, Extra Trees 
can be a highly efficient and robust method for handling 
large and high-dimensional datasets, making it a versatile 
tool in healthcare, finance, and marketing [27].

2.3 � Training and Testing

Addressing the challenge posed by unbalanced data during 
the training and testing of machine learning models is cru-
cial, as biased models often yield inaccurate predictions for 
minority classes. To mitigate this issue, we implemented a 
down-sampling strategy. Additionally, we employed early 
stopping techniques to prevent overfitting and enhance 
model generalization. Machine learning algorithms were 
employed to forecast the optimal cultivation strategy. The 
dataset was partitioned, with 80% allocated for model train-
ing and the residual 20% reserved for testing to evaluate the 
model’s predictive efficacy.

2.4 � Performance Metrics

This study used different performance metrics such as 
Confusion Matrix (CM), ROC (Receiver Operating Curve) 
curve, precision, recall, F1 score, and accuracy to evaluate 
the efficacy of the ML models.

Confusion Matrix: A CM is a table that visualizes a 
classification model’s performance by comparing predicted 
and actual classes, highlighting True Positives (TPs), False 
Positives (FPs), True Negatives (TNs), and False Negatives 
(FNs) for each class.

Receiver Operating Characteristic Curve: The ROC 
curve illustrates the trade-off between the true positive 
rate (TPR) and the false positive rate (FPR) across various 
threshold settings.

Precision: Precision enumerates the accuracy of positive 
predictions by measuring the proportion of TPs among all 
predicted positives. It can be calculated using Eq. (1):
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Recall: Recall assesses the classifier’s effectiveness by 
measuring the proportion of actual positives that were cor-
rectly identified. The F1 score can be calculated using the 
Eq. (2):

F1 Score: The F1 score is the harmonic mean of preci-
sion and recall, providing a single metric that balances both 
aspects. It is calculated using the formula:

Accuracy: Accuracy measures the proportion of correctly 
classified instances, including both TPs and TNs, relative 
to the total number of instances. It can be calculated using 
the formula:

3 � Results and Discussions

This section provides an in-depth analysis of the perfor-
mance metrics for all Machine Learning algorithms used 
in the proposed crop recommendation system. It includes 
detailed evaluations of ROC curve, accuracy, precision, 
recall, F1 score, and, confusion matrix analysis. These 
results enable a comprehensive assessment of each algo-
rithm’s effectiveness and appropriateness for the task.

3.1 � Nutrient Requirements and Environmental 
Factors of Agricultural and Horticultural Crops

Nutrient requirements, environmental factors affecting 
agricultural and horticultural crops, and the correlation of 
crop nutrients play crucial roles in determining crop health, 
growth, and yield potential. Figure 2 depicts the correlation 
of crop nutrients, illustrating the interrelationships between 
various nutrient factors crucial for crop health and produc-
tivity. The plot matrixes represent NPK requirements, tem-
perature, humidity, rainfall, and soil pH for growing various 
agricultural and horticultural crops. The crop temperature 
range is generally narrow; However, some cultures, like 
rice, require high rainfall and prefer warm temperatures. 
The crops mentioned thrive under specific environmental 
conditions: acidic soils (pH 5.0–6.5) are ideal for growth, 
while maize, jute, cotton, coconut, papaya, orange, musk-
melon, watermelon, grapes, banana, mango, pomegranate, 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1 − Score =
2 × Precision × Recall

Precision + Recall

(4)Accuracy =
TP + TN

TP + TN + FP + FN

mungbean, mothbeans, blackgram, pigeon peas, kidney 
beans, chickpea, and coffee flourish in warm climates with 
moderate to high rainfall. These crops are adaptable to a 
broad pH range but perform optimally in slightly acidic to 
neutral soils (pH 5.8–7.0). On the other hand, apple and 
lentil prefer cooler temperatures and moderate rainfall, thriv-
ing in well-drained soils with a slightly acidic to neutral pH 
(6.0–7.0).

Figure 3 displays the histogram of nitrogen for the pro-
posed system, depicting the distribution of recommended 
nitrogen levels across various crops. This histogram visual-
izes the recommended nitrogen levels, with nitrogen levels 
depicted along the x-axis and the frequency or proportion of 
recommendations along the y-axis. Each bar within the his-
togram represents a specific range of recommended nitrogen 
levels, with the height of the bar indicating how frequently 
recommendations fall within that particular range. Analyz-
ing this data offers valuable insights into the typical nitrogen 
requirements of different crops, thereby aiding farmers in 
making informed decisions regarding fertilization practices.

3.2 � Visualization of Model Responses for Crop 
Recommendations

The performance evaluation of the crop model is visual-
ized through the analysis of the confusion matrix in Fig. 4, 
providing a comprehensive understanding of the model’s 
classification accuracy across different classes. Additionally, 
the ROC curves, depicted in Fig. 5, offer insights into the 
model’s performance by illustrating the trade-off between 
TP and FP rates across various classification thresholds. 
Together, these visualizations enable a thorough assessment 
of the model’s predictive capabilities and effectiveness in 
recommending crops based on diverse agricultural and envi-
ronmental factors.

Figure 6 illustrates the correlation matrix of all the crops, 
serving as a tool to comprehend the interrelationships 
between different crops concerning various factors such as 
environmental conditions, soil type, climate, and agricultural 
practices. Each crop is systematically denoted with its name 
reiterated in a structured format (“Rice to rice, Maize to 
maize, Jute to jute…”), indicating self-correlation. The cor-
relation matrix was established by computing Pearson cor-
relation coefficients between crop pairs, derived from their 
corresponding feature sets. This matrix provides valuable 
insights into the degree and nature of associations between 
different crops, aiding in understanding their dependencies 
and potential interactions within agricultural ecosystems.

3.3 � Comparative Analysis of ML Algorithms

The study aimed to recommend crops based on multiple fac-
tors, employing nine ML algorithms, including LR, SVM, 
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KNN, DT, RF, BG, AB, GB, and ET. These models under-
went training and optimization with specific parameters out-
lined in the methodology section. A comparative analysis of 
all models is presented in Table 2.

Table 2 provides a comprehensive overview of various 
ML classifiers and their corresponding precision, recall, and 
F1 scores. LR achieved a precision of 0.88, recall of 0.87, 
and an F1-score of 0.88. SVM attained a precision, recall, 
and F1-score of 0.88. KNN exhibited a precision of 0.68, a 
recall of 0.69, and an F1-score of 0.68. DT resulted in a pre-
cision, recall, and F1-score of 0.72. RF demonstrated a pre-
cision of 0.92, recall of 0.93, and an F1-score of 0.92. Bag-
ging showed a precision, recall, and F1-score of 0.92. AB 
achieved a precision and recall of 0.78, with an F1-score of 
0.76. GB yielded a precision of 0.85, a recall of 0.83, and an 
F1-score of 0.83. ET achieved a precision and recall of 0.96, 
with an F1-score of 0.96. Comparing the models, Random 
Forest exhibited the highest test accuracy of 99.31%, while 

Fig. 2   Correlation of crop nutrients

Fig. 3   Histogram of Nitrogen



	 Human-Centric Intelligent Systems

(a) LR (b) SVM

(c) KNN (d) DT

(e) ET (f) RF

Fig. 4   Confusion matrix of the ML models
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AdaBoost displayed the lowest test accuracy of 14.09% for 
crops. Conversely, the performance of models for horticul-
tural crops showed nearly identical levels of prediction accu-
racy, precision, F1 score, and recall.

3.4 � Discussion

The proposed crop recommendation system is a pivotal 
application of ML in agriculture, aiming to empower farm-
ers with data-driven insights for strategic crop selection. 
By leveraging various factors like soil properties, climate 
conditions, historical data, and market demand, this system 
aids farmers in making well-informed decisions regarding 
crop cultivation. Identifying pertinent features that influence 
crop growth and yield, such as temperature, rainfall, soil pH, 
and nutrient levels, forms the cornerstone of this endeavour.

Integrating domain knowledge, including agronomic 
expertise and local farming practices, enriches the accuracy 
and relevance of the system’s recommendations. Moreover, 
establishing farmer feedback loops plays a vital role in refin-
ing and enhancing the recommendation system iteratively, 
ensuring its adaptability to evolving agricultural landscapes.

Recognizing the inherent uncertainty in predictions stem-
ming from factors like variability in weather patterns and 
market conditions underscores the importance of incorpo-
rating robust risk assessment techniques. By accounting for 
associated risks alongside potential yields, farmers can make 
more informed decisions that balance productivity and risk 
mitigation.

In essence, the convergence of ML techniques with 
agricultural domain knowledge fosters a dynamic ecosys-
tem wherein farmers can navigate complex agricultural 

(g) BG (h) GB

(i) AB

Fig. 4   (continued)
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challenges with confidence and resilience. Table 3 com-
pares the proposed work with existing studies, showcasing 
the performance metrics and outcomes. The data presented 

in Table 3 demonstrate that our proposed approach outper-
forms existing works, highlighting superior performance 
across various evaluation criteria.

(a) LR (b) SVM

(c) KNN (d) DT

(e) ET (f) RF

Fig. 5   ROC curve of the ML models
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3.4.1 � Possible Causes of Miss‑Recommendation

Crop suitability is subject to considerable temporal variabil-
ity, influenced by seasonal fluctuations, climate dynamics, 
and evolving agricultural practices. Failing to account for 
these temporal dynamics in the model adequately may result 
in outdated or irrelevant recommendations that do not align 
with current conditions. Moreover, the suitability of crops 
can vary significantly across different geographic regions 
due to variations in soil types, climatic conditions, and other 
factors. Models trained on data from one region may strug-
gle to generalize effectively to others, potentially leading to 
inaccurate recommendations when applied in diverse geo-
graphic areas.

Inaccurate model evaluation metrics or insufficient vali-
dation processes can also pose challenges. If the evaluation 
metrics fail to reflect real-world performance accurately or 
the validation process lacks rigor, it may result in overly 
optimistic estimates of model performance. Consequently, 

this increases the likelihood of erroneous recommendations 
when the model is deployed in production settings. Addi-
tionally, certain factors influencing crop adaptation may not 
be well understood or adequately modelled, leading to unex-
pected phenomena that can influence recommendations in 
unforeseen ways. Therefore, addressing these challenges and 
enhancing the robustness of the model’s temporal adaptabil-
ity and geographic generalizability is critical for ensuring 
the reliability and efficacy of crop recommendation systems.

3.4.2 � Implication of the Study

The proposed systems use machine learning techniques to 
analyze data and provide farmers with personalized advice 
on choosing which crops to grow in a specific location and 
conditions. This system can help maximize crop productiv-
ity by suggesting the most suitable crops for a given loca-
tion and season. By considering factors such as soil type, 
moisture levels, temperature, and sunlight, machine learning 

(g) BG (h) GB

(i) AB

Fig. 5   (continued)
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algorithms can identify crops likely to thrive in specific 
environmental conditions, thereby increasing yields and 
profitability for farmers [26]. This study can help reduce 
risks associated with climate fluctuations, pest infestations, 
and market fluctuations. By diversifying crop selection and 
considering factors such as disease resistance and market 
demand, farmers can reduce risk exposure and improve their 
resilience to external shocks. This system can promote sus-
tainable agriculture practices by encouraging the cultivation 
of environmentally friendly and economically viable crops. 
Promoting crop rotation, soil conservation [27], and bio-
diversity can help farmers maintain their land’s long-term 
health and productivity [28, 29]. The importance of this type 

Fig. 6   Correlation of Crops

Table 2   Comparative Analysis of ML Algorithms

Name of 
classifiers

Precision (%) Recall (%) F1-score (%) Accuracy (%)

LR 88 87 88 96.36
SVM 88 88 88 96.82
KNN 68 69 68 96
DT 72 72 72 98.2
RF 92 93 92 99.3
BG 92 92 92 98.9
AB 78 78 76 14.1
GB 85 83 83 98.2
ET 96 96 96 91

Table 3   Comparative analysis 
of the proposed work with 
existing studies

Author Precision (%) Recall (%) F1-Score (%) Accuracy (%)

[19] Islam et al – – – 90%
[12] Doshi et al – – – 91%
[13] Chougule et al 65% – – –
[30] Jain et al – – – 88%
[17] Liu et al 97.4% – 97.8% 98.7%
Our Proposed Model 

(Random Forest)
99% 99% 99% 99%
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of model lies in informed decision-making when practis-
ing precision agriculture, as a variety of external factors 
influence crop performance. Attempting to understand the 
combined effects of these factors without the aid of models 
represents a daunting challenge. Agricultural productivity 
is profoundly influenced by a range of biotic and abiotic 
stressors. The projected global GDP from agriculture is 
offset by annual economic losses driven by factors such as 
climate change, market instability, and resource limitations. 
This loss affects not only agricultural producers but also 
extends to related industries and economies worldwide, pos-
ing significant challenges to food security, livelihoods, and 
sustainable development efforts on a global scale.

4 � Conclusion

Agriculture is the cornerstone of the world’s economy, 
employing a significant workforce and contributing substan-
tially to nations’ GDPs. However, agricultural productivity 
has many challenges, ranging from unpredictable climatic 
conditions to varying soil types and limited access to mod-
ern agricultural practices. Developing intelligent agricultural 
systems is imperative to overcome these hurdles and bolster 
agricultural productivity.

This paper addresses this need by presenting a Machine 
Learning-based Crop Recommendation System tailored to 
the agricultural landscape. The proposed system aims to 
deliver personalized crop recommendations by leveraging 
historical data on climatic conditions, soil properties, crop 
yields, and farmer preferences. Through the evaluation of 
nine distinct ML models, including LR, SVM, KNN, DT, 
RF, BG, AB, GB, and ET, this study seeks to generate prac-
tical recommendations for crop selection. Employing vari-
ous preprocessing techniques to clean and normalize the data 
ensures its suitability for model training. The machine learn-
ing models are trained on historical datasets encompassing 
temperature, rainfall, humidity, soil pH, and nutrient levels, 
correlating crop yields with environmental and agronomic 
factors. Fine-tuning of the models, employing techniques 
such as cross-validation, optimizes their performance and 
ensures robustness. Among these models, Random Forest 
emerges as the top performer, achieving the highest accu-
racy rate of 99.31%. The proposed Machine Learning-based 
Crop Recommendation system offers a promising avenue for 
addressing the challenges faced by farmers. By harnessing 
advanced data analytics and artificial intelligence techniques, 
the system empowers farmers with timely and personalized 
recommendations, ultimately leading to improved agricul-
tural productivity, food security, and economic prosperity.

While our current study effectively utilizes the avail-
able dataset to develop a crop recommendation system, we 
acknowledge certain limitations. Specifically, our dataset 

does not fully capture variations in land quality, climate 
changes, or historical crop planting data, which are crucial 
for accurate recommendations. Future research will focus on 
incorporating more detailed and temporal soil and climate 
data, as well as historical crop planting information. We 
also plan to integrate farmers’ professional knowledge and 
explore advanced Machine Learning techniques and hybrid 
models to address the complexities of agricultural decision-
making better. These enhancements will improve the sys-
tem’s adaptability and accuracy, ultimately providing more 
personalized and effective recommendations for farmers.
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