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Abstract
In recent years, there has been considerable interest in robust range-based Wireless Sensor Network (WSN) localization 
due to the increasing importance of accurately locating sensors in various WSN applications. However, achieving precise 
localization is often hampered by the presence of outliers or underestimations in range measurements, particularly when 
employing the RSS technique. To tackle these issues, we introduce a Two-Step Localization (namely, the SelMin approach). 
In the initial phase, the approach utilizes Second-Order Cone Programming (SOCP) to minimize distance discrepancies. It 
does this by comparing a reference Euclidean Distance Matrix (EDM) with a weighted one derived from imprecise distances 
between sensor nodes. In the subsequent phase, a heuristic method is employed to identify a specific number of imprecise 
distances, referred to as outliers, that will be disregarded in the first phase, and this two-phase process continues iteratively. 
The experimental results demonstrate that the SelMin strategy performs better than the DSCL method when evaluated using 
the Root Mean Square Error (RMSE) metric. This superior performance is maintained even in challenging conditions, such 
as when there are many outliers (i.e, around 30% ) in the network. This indicates that SelMin is a reliable and robust choice 
for these environments.

Keywords Localization · Outliers-handling · SOCP

1 Introduction

A wireless sensor network (WSN) is comprised of several 
sensors (nodes) that are interconnected and can process and 
exchange data with each other. These nodes are deployed to 

collect data for a variety of purposes, including exploration, 
monitoring, surveillance, and maintenance, to mention a few.

The necessity to know the position of the nodes must be 
handled since in many applications, the data must be linked 
to a location to be relevant such as with sensors used to 
monitor forest fires, military surveillance, etc. Placing GPS 
devices on each individual node and manually configuring 
their positions can be challenging, especially for large net-
works with thousands of sensors. This is mainly due to the 
high expenses associated with the sensors. To tackle this 
problem, a solution is to outfit a subset of sensors with GPS 
(referred to as anchors), and then estimate the locations of 
the other nodes by making use of these known anchor nodes 
and wireless communications. This approach helps over-
come the impracticality caused by cost and scale.

Range-based methods in Wireless Sensor Networks 
(WSNs) are characterized by their reliance on establishing the 
distances between nodes within the network. Typically, these 
approaches involve the computation or measurement of the 
physical separation between sensor nodes. This aspect holds 
significance in various WSN applications, such as tracking, 
localization, and monitoring. Within range-based strategies, 
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the task of establishing the location can be achieved by 
employing methods like analyzing Received Signal Strength 
(RSS), evaluating Time of Arrival (TOA), measuring the 
round trip duration, or even utilizing a fusion of these tech-
niques [1]. These methodologies rely on estimating sensor 
distances to conclude the process of positioning [2].

Once the distances between sensor nodes are acquired, the 
localization procedure can be carried out through either a cen-
tral processing unit or a distributed processing approach. The 
former proves to be less effective in extensive networks due 
to constraints in information transfer, insufficient processing 
capabilities, and unequal energy usage. On the contrary, the 
latter method is more adaptable and exhibits great scalability. 
Nonetheless, distributed processing comes with its own disad-
vantages, primarily its iterative nature. This characteristic can 
lead to heightened overall power consumption due to the need 
for a significant number of iterations for rapid convergence. 
Additionally, this approach can be susceptible to the propaga-
tion of errors, adding to its limitations [3].

It’s commonly understood that in range-based localiza-
tion algorithms, the process of determining the positions 
of unknown sensors is closely tied to estimating the dis-
tances between them.This connection means that an unu-
sual or non-typical distance estimation between sensors has 
the potential to lead to undesirable outcomes in the locali-
zation process [4–9]. This is why numerous studies have 
been conducted to address this scenario, with the goal of 
developing methods to filter, remove, or mitigate the impact 
of these undesired distances (outliers) on the localization 
procedure. For example, The study in [10] explores the use 
of the weighted three minimum distances method (WTM), 
which considers three minimal distances to enhance atypi-
cal RSSI measurements for localization. By utilizing an 
experimental channel model and a new location optimization 
formula, grounded in multilateration and distance estima-
tion, this technique strives for more accurate positioning. 
Despite requiring more time for computation compared to 
other established algorithms like Semidefinite Program-
ming (SDP), Levenberg-Marquardt (LM), and nonlinear 
least squares (NLS), it achieves more precise estimations. 
Also, in [4], the authors proposed an approach for remov-
ing atypical distance measurements. They achieve this by 
applying geometric constraints from the Cayley-Menger 
determinant and utilizing Euclidean norm, the 1-norm, 
minimization decoding algorithm. Large errors are initially 
identified with the assistance of neighboring anchor nodes 
connected to regular nodes. Subsequently, these significant 
errors are filtered out using a predefined threshold, result-
ing in the determination of the best-estimated positions for 
the unknown nodes. In the same way, in [7], initially, the 
Frobenius norm and the 1-norm (i.e., L1) are used to estab-
lish a framework for reconstructing an Euclidean Distance 
Matrix (EDM) that contains noise, outliers, and missing 

values. This process is referred to as Normalized Matrix 
Completion (NRMC). Subsequently, an efficient algorithm 
using an alternative address multiplier approach is developed 
to address the NRMC problem. Lastly, a multidimensional 
scaling method is utilized to determine the positions of uni-
dentified nodes based on a complete EDM. Also, in [5], a 
novel approach utilizing the least squares (LS) method is 
introduced for Wireless Sensor Network (WSN) localization. 
This method involves determining the location by assess-
ing a condition number derived from a coordinate matrix, 
which effectively prevents the presence of outliers. Also, 
the research introduces the concept of a condition number 
threshold to enhance location accuracy while mitigating the 
impact of outliers.

In the majority of the analyzed approaches, it’s crucial to 
keep the occurrence of outliers relative to the total number 
of measurements in the network as low as possible to ensure 
favorable outcomes [11]. For instance, the study development 
in [12] introduces a method named the greedy search-based 
random sample consensus (GS-RSC) algorithm for identify-
ing non-line-of-sight (NLOS) measurements. This algorithm, 
through its dual components-the localization and identifica-
tion modules-along with comprehensive time-difference-of-
arrival (TDOA) data, effectively reduces errors from outliers 
and NLOS paths. By iteratively working in tandem, these mod-
ules accurately weed out irregular data, thus ensuring highly 
accurate localization solutions that are less affected by both 
outliers and NLOS-path errors. Furthermore, it’s important to 
take into account scenarios where outliers are caused by either 
a multiplying factor or a mitigating factor affecting the actual 
measurement value. For example, when estimating distances 
in wireless sensor networks using RSS readings, there are nota-
ble disadvantages. Ambient conditions such as obstructions 
and multipath propagation can affect signal strength, leading 
to inaccurate and atypical distance estimations. Variations 
in hardware can alter RSS signal strength, complicating the 
standardization of measurements across devices. Additionally, 
this method’s accuracy and reliability are constrained by its 
dependence on a predetermined model that correlates signal 
strength with distance, which might not accurately represent 
every deployment environment. To address this challenge, 
the proposed method, comprising two sequential phases, is 
an iterative process that progressively selects (or eliminates) 
anticipated outlier distances during each iteration. In the initial 
stage, an optimization method is employed to minimize the 
discrepancy between two EDMs, one serving as the reference 
and the other as the estimated EDM. In the second phase of the 
proposed approach, a heuristic method is utilized to eliminate 
the estimated distances between sensors that exhibit significant 
errors. It should be noted that at each iteration, the EDM is 
converted to positions using the MDS algorithm.

The remainder of this paper unfolds as follows: Sect. 2 
describes the mathematical representation of the problem. 
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Section 3 provides an overview of the proposed algorithm, 
covering both phases of the procedure: the minimization and 
selection of outliers. In Sect. 4, the experiment’s outcomes 
are presented, where the quantity of outlier measurements is 
systematically raised. Ultimately, Sect. 5 offers concluding 
remarks.

2  WSN Localization: Mathematical 
formulation problem

This research limits the discussion only to two dimen-
sions (2D) for node localization in WSNs. Consider n ran-
domly deployed sensor nodes over a certain area denoted as 
S =

{
s1, s2, s3,… , sm, sm+1,… , sn

}
 with true locations

respectively; the first m sensor nodes have unknown posi-
tions whose position estimates are represented as

and the remainder n − m sensor nodes have known posi-
tions, obtained by GPS or a similar scheme (i.e., Anchors), 
with mn − m . Let all sensor nodes have connectivity with 
any other sensor nodes in network, and the noisy distance rij 
between sensor nodes i and j can be estimated by methods 
like RSS, ToA, AoA or combination of them [13–16], where 
(i, j) ∈ S × S . The sets of undirected neighbors between sen-
sors-sensors, sensors-anchors, and anchors-anchors can be 
described as

and

respectively. Here,

where dij represents the true distance between sen-
sors i and j, and ‖⋅‖ denotes the 2-norm. Similarly, 
‖‖pl − pk

‖‖ = dlk, ∀ (l, k) ∈ K where dlk represents the true 

P = [p1 =
[
x1, y1

]T
, p2 =

[
x2, y2

]T
,

p3 =
[
x3, y3

]T
,… , pm =

[
xm, ym

]T
,

pm+1 =
[
xm+1, ym+1

]T
,… , pn =

[
xn, yn

]T
]

P̄ = [p̄1 =
[
x1, y1

]T
, p̄2 =

[
x2, y2

]T
,

p̄3 =
[
x3, y3

]T
,… , p̄m =

[
xm, ym

]T
]

C ∶= {(i, j) ∶ 1 ≤ i ≤ m, 1 ≤ j ≤ m, i ≠ j},

K ∶= {(k, l) ∶ 1 ≤ l ≤ m, m + 1 ≤ k ≤ n, l ≠ k},

A ∶= {(i, j) ∶ m + 1 ≤ i ≤ n, m + 1 ≤ j ≤ n, i ≠ j},

‖‖‖pi − pj
‖‖‖ = dij, ∀ (i, j) ∈ C,

distance between the sensor l and the anchor k. Then, the 
position of unknown sensors (i.e., the first m nodes) can be 
estimated as the following non-convex optimization func-
tion [17–21].

where the noisy estimated distance between sensors i and j 
(or sensor l and anchor k) is composed as

respectively, and eij and ekl have normal distribution 
N(0, sd2) , which represent the noise introduced by the 
environment and the ranging measurement techniques, and 
sd is the standard deviation. Also, in many cases, a range 
measurement between sensor si and sensor sj lies in an 
abnormal distance (i.e., an outliers) introduced as ȯ ij that 
represents a random variable. The last problem can be estab-
lished as a geometric undirected graph G = (V,L) where 
V and L represent the set of vertices (i.e., sensor nodes 
S ) and the set of edges (i.e., links among sensor nodes) 
L = {{i, j} | (i, j) ∈ V × V, i ≠ j} , respectively. Then, the 
adjacency matrix (i.e., symmetric with zeros on its diagonal) 
of size N × N can be represented as MC = (MCij) , where

and the matrix distance, derived as weights of MC , can be 
denoted as D = (Dij) with

Equation (1) can be redeveloped in a convex form using 
relaxation as follows:

where the symmetric matrix Y = P̄P̄
T is constrained to be 

positive semidefinite, which is denoted by the expression 
⪰ 0 , and the operator K(Y) = diag(Y)1T − 2Y + 1diag(Y)T 
[22]. Once obtained an estimation of D by a SDP or SOCP 
programming [23–26], a transformation from distances to 
positions using the MDS method must be employed [27, 28].

(1)

min
p̄1, p̄2,… , p̄m

∑
(i,j)∈C

(‖‖‖p̄i − p̄j
‖‖‖ − rijȯij

)2

+
∑

(k,l)∈K

(‖‖p̄k − pl
‖‖ − rklȯkl

)2

(2)rij = dij + eij,

(3)rkl = dkl + ekl,

(4)MCij =

{
1 if {i, j} ∈ L

0 otherwise

(5)Dij =

{
rijȯij if {i, j} ∈ L

0 otherwise.

(6)
min
Y

‖‖‖D
2 − K(Y)

‖‖‖
2

st ∶ Y ⪰ 0
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3  The Selection and Minimization Algorithm

As aforementioned in Sect. 2, range based localization algo-
rithms are strongly dependent of accuracy on range estimates, 
so atypical range measurements can provide large errors on 
position estimates. In order to mitigate the effect of outliers, a 
centralized localization approach is proposed, and it is divided 
into two schemes: the minimization and outliers-selection pro-
cesses. Here, the minimization stage is derived from Eq. (6) 
and can be rewritten as

where the symbol ⊙ denotes the Hadamard product between 
the matrices D2 − K(Yi) and Oi.

In the optimization process (7), Oi = (oi
rs
) represents a sym-

metric matrix of ones and zeros whose indexes of 1’s indicate 
those range measurements rrs with {r, s} ∈ L with non poten-
tial outliers. Ideally, without outliers in range measurements 
Oi

≡ MC and with outliers in range measurements for instance 
(s, t) ∈ L leads to oi

rs
= 0 , then #{{r, s} ∈ L ∶ oi

rs
= 1} < #L . 

Initially, at the iteration i = 0, Oi
≡ MC , and through itera-

tions, the selection process (i.e., the second stage) modifies the 
matrix Oi with zeros in those indexes {i, j} ∈ L with potential 
outliers. In (7), the Hadamard product between the matrix Oi 
and the term D2 − K(Yi) allows the minimization process 
focuses only on those range measurements considered as non 
outliers. This kind of optimization problems with semidefinite 
constraints can be solved using a software like SEDUMI [29]. 
Once the optimization process (7) has finished, a new square 
distance matrix Yi+1 is generated, and it will be used in the 
selection process.

In the second stage (i.e., the selection process), the distance 
errors between Yi+1 and D2 are weighted by Oi as shown in the 
Eq. (8). Then, the distance errors between sensors obtained in 
(8) are normalized as indicated by Eq. (9)

(7)
Yi+1 = arg min

Yi

‖‖‖
(
D2 − K(Yi)

)
⊙Oi‖‖‖

2

st ∶ Yi ⪰ 0

(8)Wed =

(|||Y
i+1 − D2|||

1∕2
)
⊙Oi,

where Wedi
, i = 1,… , n denotes the ith row of Wed and the 

term max
(
Wedi

)
 refers to its maximum component mi which 

in turn corresponds to the maximum distance error of it. 
Each row of the W̄ed matrix is ultimately weighted with a 
maximum value of 1, which corresponds to the maximum 
distance error.

Utilizing the weight matrix W̄ed and the procedure 
denoted as [⋅]x in (10), the x higher values that display nota-
ble distance errors, in each row of the matrix, are isolated. 
Here, x = round(� ∗ n) where � ∈ [0, 1] represents a percent-
age of the total n sensors to be rule out. To elaborate, for 
each sensor, the process identifies its x neighboring sensors 
that possess the highest errors and convert them to 0s within 
a binary connectivity matrix B . Meanwhile, the remaining 
sensors maintain a value of 1, indicating their role as non 
outlier measures within the localization process.

Lastly, the outlier matrix Oi is modified for the subsequent 
iteration, as depicted in Equation (11). Thus, after finish-
ing the selection process, a new refined binary matrix Oi+1 
is provided to the minimization process to start the itera-
tive process again. It is important to note that within this 
approach, once the estimated distance with a neighboring 
sensor is recognized as an outlier, it ceases to contribute 
in the localization process. Also, for each sensor, having at 
least a minimum of � measurements with nearby sensors is 
necessary; otherwise, this condition prevents the removal 
of additional neighboring sensors. Algorithm 1 summarizes 
this selection-minimization scheme in detail.

(9)
W̄ed ∶=

Wed

max
�
Wed

� =

⎡
⎢⎢⎢⎢⎢⎣

Wed1

m1
Wed2

m2

⋮
Wedn

mn

⎤
⎥⎥⎥⎥⎥⎦

,

mi = max(Wedi
), i = 1,… , n,

(10)B =
[
W̄ed

]
x
.

(11)Oi+1 = Oi
⊙ B.
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Algorithm 1  The SelMin algorithm that minimizes error distances among sensor nodes using an alternation process.

Require: D, Y0, O0, ρ = .15, A, α = 6, Thr = e− 10, e0 = e−1 = 0.
Ensure: Yi+1

1: Initialize: i = 0
2: while i ≤ 15 or |ei − ei−1| ≤ Thr do
3: Yi+1 = arg min

Yi

∥∥ D2 −K(Yi)
)
�Oi

∥∥2

4: subject to :Yi � 0
5: Wed =

(∣∣Yi+1 −D2
∣∣1/2

)
�Oi

6: W̄ed =
Wed

max (Wed)
7: B =

[
W̄ed

]
x

8: Oi+1 = Oi �B
9: P̄i+1 = MDS (Yi+1)1/2,A

)

10: ei+1 =
∥∥K(Yi+1)−K(Yi)

∥∥
F

11: i = i+ 1
12: end while

It is worth mentioning that in row 9 of algorithm 1, the 
multi-dimensional scaling (MDS) procedure is used to 
convert the new estimated distance matrix into estimated 
sensor positions useful to compute the RMSE during the 
simulation process. Here, A represents the set of anchor 
positions in the network, and � is heuristically selected 
with a value of 0.15.

4  Analysis and Results

To evaluate the performance of the proposed algorithm, a 
test methodology has been created where 30 independent 
sensor networks are used. Each network contains 50 nodes, 
all interconnected in one hop, where only three nodes are 

Fig. 1  Test methodology with 30 reference networks, each with 50 nodes and three reference anchors. The estimated distances between each 
sensor are affected by Gaussian noise and atypical errors (outliers)
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non-collinear anchors. These sensor nodes are distributed 
randomly and independently in an area of [250 m x 250 m]. 
Taking into account the previous description, the process 
to generate the test networks is divided into three stages as 
shown in Fig 1.

In a first stage, without loss of generality, all the true 
distances between each of the sensors in network 1 are 
affected by a Gaussian noise level (with zero mean) and 
two standard deviations ( sd = 1 and sd = 3 ) determined by 

equations (2-3). This last process generates two independent 
test networks of network 1. This methodology is repeated for 
each of the remaining networks, generating two sets of 30 
independent networks that will be used in stage two. In stage 
2, outliers are randomly added to the estimated distances 
between sensors. These added outliers range from 0 % to 50% 
in steps of 5. That is, each percentage level of outliers affects 
all 30 benchmark networks (a test set), so there will be 22 
independent test sets for stage 3. It is important to mention 
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that outliers between sensor-sensor and sensor-anchors 
are affected by the random variable ȯ ij , ȯ kl respectively, 
described in equation (1), that takes only three possible val-
ues 0.1, 1 and 10. Obviously, when ȯ ij or ȯ kl is 1 there is not 
an outlier. For example, considering a connected network 
of 50 sensor nodes, so there are 2450 distance estimates 
between sensors. If only 10% of the distance measurements 
are affected by outliers, 2205 distance estimates will have ȯ ij 
and ȯ kl = 1 , and the remaining 245 distance estimates will be 
randomly affected either by ȯ ij and ȯ kl = 0.1 or 10.

In the stage 3, every test set, composed by 30 networks, 
is used to evaluate the performance of the proposed algo-
rithm (i.e., SelMin). Position estimates are evaluated using 
the RMSE metric as shown in Equation (12).

where ‖⋅‖ represents the 2-Norm, pi and p̄i are the true and 
estimated position of the sensor si , respectively; and m is the 
number unknown sensors in the network. Also, the DSCL 
algorithm [30], which uses the Levenberg-Marquardt (LM) 

(12)RMSE =

√√√√ 1

m

m∑
i=1

‖‖pi − p̄i
‖‖2

approach to obtain initial estimates [31], is used to compare 
the performance of the proposed method.

As described in Sect. 3, the proposed approach is com-
posed of two processes: the minimization (7) and the selec-
tion (8-11) schemes working alternately. It is significant to 
notice that the selection procedure modifies Oi by attempting 
to omit outliers so that they are not taken into account in the 
minimization stage. If the term Oi remains constant, the pro-
posed approach will only depend of the minimization stage. 
Thus, the outliers will significantly affect the minimization 
process. For example, figures 2 and 3 show the accuracy per-
formance of the proposed scheme (with sd = 1 and sd = 3 ) 
if only the minimization approach is used when Oi

≡ MC 
for i = {1, 2, 3, ..., 10} . It is clear that all iterations have the 
same pattern (or remains constant). As more outliers are 
added to the network, the RMSE rises as well. Clearly, the 
only findings that are helpful are those where the estimated 
distances between the sensors do not include any outliers.

Table 1 summarizes the performance of the optimiza-
tion algorithm (7), which minimizes the error of distances 
between sensors when considering different levels of Gauss-
ian noise and percentage of outliers in the measurements.

Table 1  Accuracy performance 
of the minimization approach at 
different percentage of outliers 
in the network when Oi

≡ MC

Outlier Percentage (%) 0 5 10 15 20 25 30 35 40 45 50

Number of outliers 0 122.9 245.1 367 490.3 613.1 734.8 857.1 980.2 1103 1225
sd = 1

RMSE (m) 0.53 108.3 131.1 128.6 143.3 137.9 145.7 239.5 207.6 816 862.8
sd = 3

RMSE (m) 1.63 100.7 141.5 153.5 127.7 132 174.5 128.6 326.4 331.8 650.9
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Conversely, when the minimization scheme (7) is 
employed in conjunction with the outliers-selection 
approach (8-11), the estimation of distances between sensors 
shows notable improvement within a few iterations, as will 
be explained later. Fig. 4 shows the reduction in the number 
of outliers through iterations of the SelMin algorithm 1 with 
a noise level of sd = 1 . As can be observed, the algorithm 
completes the minimal outlier reduction for each contami-
nation level in 8 iterations (averaged over the 30 networks), 
and the final RMSE for each contamination level is depicted 
in Fig. 5. As can be seen, while the removal of outliers is in 
process (8-11), the minimization approach (7) which indi-
rectly affects the estimation of the sensor positions presents 

variations. However, once the outlier removal stabilizes 
(at iteration 8), so does the estimation of sensor positions. 
Table 2 displays the outcomes achieved of the SelMin and 
DSCL schemes after 10 iterations, considering various per-
centages of outliers and levels of noise.

Regarding to the SelMin approach, it is obvious that the 
precision of the estimated positions is reduced in direct 
proportion to how well outliers in the estimated distances 
between sensors are minimized. Regarding the last point, it 
can be considered that the RMSE position estimates, with 
sd = 1 , between 0 % and 30% of outliers present outstand-
ing results as shown in Table 2. For instance, with 30% of 
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Fig. 5  The selection and the minimization process (SelMin approach) working alternatively to reduce errors on position estimates considering an 
sd = 1 with a zoom in the last five iterations

Table 2  Accuracy performance 
and outliers reduction summary 
of the SelMin approach at 
different percentages of outliers 
and noise in the networks versus 
the DSCL approach

Outlier Percentage (%) 0 5 10 15 20 25 30 35 40 45 50

Number of outliers 0 122.9 245.1 367 490.3 613.1 734.8 857.1 980.2 1103 1225
 SelMin with sd = 1

Final Outliers 0 0 0 6 1.8 3.6 7.2 18.2 42.7 85.6 122.3
RMSE (m) 1.10 1.07 1.17 15.2 8.57 13.64 9.22 26.42 36.4 61.3 70.32
 SelMin with sd = 3

Final Outliers 0 0 0.06 1.4 2.4 3.4 14.9 28 66.3 96 144.8
RMSE (m) 3.08 3.2 3.36 5.78 12.5 9.7 24.4 42.4 54.1 83.4 104.1
 DSCL with sd = 1

RMSE (m) 0.62 4.9 9.8 15.64 28.11 29.58 46 61.49 82.74 160.9 149.7
 DSCL with sd = 3

RMSE (m) 1.66 7.37 12.21 17.27 23.49 34.71 47.97 63.94 88.42 132.6 166.6
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outliers (i.e., 734.8), these are reduced to 0.29% (i.e., 7.2) 
giving a final RMSE of 9.22m of error in average.

On the other hand, Fig. 6 depicts the outliers reduction 
considering a Gaussian noise level of sd = 3 among distance 
measurements.

This procedure follows a similar behavior to that of the 
previous analysis. That is, all the levels of outliers suffer a 
considerable reduction, and these are minimized at 8 itera-
tions. However, for this analysis, the best results are obtained 
in the range of 0% to 25% of outliers as shown Table 2. This 

means, assuming a 25% of outliers contamination in the 
measurements, the reduction is quite significant (from 613.1 
to 3.4), producing an RMSE of 9.7m of inaccuracy on posi-
tion estimates. As expected, the position estimations gener-
ally become less accurate with increasing errors from sd = 1 
to sd = 3 in the distance estimates between sensors in the 
30 reference networks. Finally, after reducing the impact of 
outliers (after 8 iterations), the distance error is correspond-
ingly minimized, as illustrated in Figure 7.
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Fig. 6  The selection and the minimization process (SelMin approach) working alternatively to reduce outliers considering an sd = 3
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Fig. 7  The selection and the minimization process (SelMin approach) working alternatively to reduce errors on position estimates considering an 
sd = 3 with a zoom in the last five iterations
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Fig. 8  The Root Mean Square Error (RMSE) for position estimates provided by the DSCL algorithm is being assessed under a standard devia-
tion (sd) of 1. This evaluation involves 10 iterations, and specific attention is given to the final five iterations
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Fig. 9  The Root Mean Square Error (RMSE) for position estimates provided by the DSCL algorithm is being assessed under a standard devia-
tion (sd) of 3. This evaluation involves 10 iterations, and specific attention is given to the final five iterations
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To evaluate the performance of the proposed algo-
rithm, the same 30 reference networks and procedures, 
used previously, were tested in the DSCL algorithm and 
results are also summarized in the bottom of Table 2. 
Figures 8 and 9 show the error in the estimated posi-
tions after 10 iterations considering sd = 1 and sd = 3 , 
respectively.

Contrasting the findings in Table 2, it is observed that 
when outliers are absent, the DSCL algorithm provides a 
slightly more accurate estimation of the sensor positions 
compared to the proposed algorithm. However, in the 
presence of outliers, the proposed scheme demonstrates 
remarkable performance, surpassing the DSCL algorithm.

5  Conclusions and Future Works

This paper introduces a method for enhancing central-
ized Wireless Sensor Network (WSN) localization based 
on range measurements. This method utilizes a two-step 
process: one step aims to reduce errors in distance meas-
urements between sensor nodes, while the other step 
focuses on eliminating inconsistencies in distance meas-
urements. This iterative dual-step approach enhances the 
system’s resilience to anomalies in distance estimates 
due to environmental factors and network configurations. 
Experimental results using simulated data sets confirm 
the effectiveness of this approach, particularly when a 
significant number of outliers distance estimates are pre-
sent. For instance, results demonstrate that the proposed 
scheme achieves total or partial elimination of outliers in 
less than seven iterations, indicating not only its suitability 
for integration in hostile environments, particularly those 
relying on RSS measurements with hardware constraints, 
but also its potential for saving energy. On the other hand, 
when encountering outliers amounting to less than 10% , 
the SelMin algorithm maintained a similar behavior 
regarding the minimization of the error in the position 
estimates, which indicates its robustness against a moder-
ate presence of atypical measurements. Additionally, the 
algorithm maintains a satisfactory RMSE even at a 25% 
outlier rate, exhibiting less than half the error compared to 
the DSCL algorithm in identical circumstances. In practi-
cal applications, the suggested method can be executed 
on constrained embedded systems, like Raspberry Pi and 
LattePanda, among others.

Shortly, there are plans to develop and test the pro-
posed method in a distributed setting, taking advantage of 
matrix completion and multi-hop networks. An additional 
approach will be to employ real testbeds to evaluate the 
model under different constraints, such as noise ratio, ani-
sotropic networks, and the number of anchor nodes. Addi-
tionally, future research will investigate the application of 

artificial intelligence techniques to identify“outliers”more 
thoroughly.
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