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Text-to-building: experiments 
with AI-generated 3D geometry for building 
design and structure generation
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Abstract 

The paper seeks to investigate novel potentials for building design and structure generation that arise at the intersec-
tion of computational design and AI-generated 3D geometries. Although the use of AI technologies is exponentially 
increasing inside the architectural discipline, the design of spatial building configurations using AI-generated 3D 
geometries is still limited in its applications and represents an ongoing field of investigation in advanced architec-
tural research. In this regard, several questions still need to be answered: how can we design new building typolo-
gies from AI-generated 3D geometries? And how can we use these typologies to shape both the real and the virtual 
world?

The paper proposes a new approach to architectural design where artificial intelligence is used as the starting point 
for design exploration, while computational design procedures are employed to convert AI-generated 3D geom-
etries into building elements – such as columns, beams, horizontal and vertical surfaces. The paper starts with a gen-
eral overview of the current use of artificial intelligence inside the architectural discipline, and then it moves 
towards the explanation of specific AI generative models for 3D geometry reconstruction and representation. Subse-
quently, the proposed working pipeline is analysed in more detail – from the creation of 3D geometries using genera-
tive AI models to the conversion of such geometries into building elements that can be further designed and opti-
mised using computational design tools and methods. The results shown in the paper are achieved using Shap-E 
as the main AI model, though the proposed pipeline can be implemented with multiple AI models. The paper ends 
by showing some of the generated results, finally adding some considerations to the relationship between human 
and artificial creativity inside the architectural discipline.

The work presented in the paper suggests that the use of computational design tools and methods combined 
with the tectonics of the latent space opens new opportunities for topological and typological explorations. In a time 
where traditional architectural typologies are moving towards stagnation due to their inability to satisfy new human 
needs and ways of living, exploring AI-based working pipelines related to architectural design allows the definition 
of new design solutions for the generation of new architectural spaces. In doing so, the serendipitous aspect of AI 
biases is used as an auxiliary force to inform design decisions, promoting the discovery of a new inbuilt dynamism 
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between human and artificial creativity. In a time where AI is everywhere, understanding the measure of such dyna-
mism represents a key aspect for the future of the architectural discipline.

Keywords Artificial intelligence, Computational design, Architectural design, Mesh generation, Voxelization, Structure 
generation

1 Introduction
We train our AI models; thereafter they train us. This 
could be the sentence of a modern computer scientist 
who, paraphrasing the famous Churchill’s words, tries 
to synthesise what it means to be living and working in 
the current age of artificial intelligence (AI); a time where 
AI is everywhere – on our phones, our computers, our 
homes, our cars – and the primacy of AI-based technolo-
gies has the potential to completely revolutionise our 
approach on multiple aspects of reality such as security, 
economics, order, and even knowledge itself (Kissinger 
et al., 2021).

Although, when someone mentions AI these days, 
chances are that they are referring to learning systems – 
in particular, deep learning – artificial intelligence is cur-
rently used in almost every single field of development 
related to the current digital society, up to the point that 
someone – like Ray Kurzweil – has already predicted that 
the exponential development of AI will lead to an explo-
sion of intelligence (Kurzweil, 2005). In technical terms, 
this will mean allowing AI researchers to pursue the 
long-term goal of creating machines that exhibit human-
like intelligence – the so-called Artificial General Intel-
ligence (AGI). In fact, although nowadays the popularity 
of AI is constantly increasing, some have already argued 
that there is no “I” in the current AI, particularly if we 
insist on comparing artificial intelligence to human intel-
ligence. As explained by Jeff Hawkins, there are numer-
ous ways that today’s artificial intelligence falls short 
compared to human intelligence. For instance, humans 
learn continuously while in contrast, deep learning net-
works can certainly outperform humans on specific 
tasks, but to do that, they must be fully trained before 
they can be deployed; and once they are deployed, they 
can’t learn new things on the go – at least, not yet. In 
other words, Hawkins states that current machines, to be 
considered truly intelligent, must be “machines that can 
rapidly learn new tasks, see analogies between different 
tasks, and flexibly solve new problems” (Hawkins 2021, 
120). Achieving such a target certainly requires an enor-
mous level of computational resources, something that 
perhaps can pause the development of AI systems once 
again, leading research into a new AI winter.

Speculating on the possibility of new AI summers or 
winters is certainly not the purpose of this paper. Nev-
ertheless, it is important to highlight the fact that the 

development of AI systems has historically been based 
on the alternation between AI summers and AI winters 
– in this regard, Stanislas Chaillou depicts an interest-
ing timeline highlighting the different periods and their 
relationship with the architectural discipline (Chail-
lou, 2022). More specifically, in the past years the use of 
artificial intelligence has proceeded through two main 
approaches in developing intelligence systems: expert 
systems and learning systems. Expert systems became 
popular in the 1970s-80s, whilst learning systems became 
mainstream during the first decade of the  21st century 
and the advent of the deep learning revolution. Expert 
systems are knowledge systems composed of a knowl-
edge-based part – made by rules – and a computational 
engine which uses the rules to derive new results. Learn-
ing systems are systems based on neural networks, and 
such networks derive solutions from raw data: in other 
words, while expert systems require inputs and rules to 
derive results, learning systems require inputs – and in 
certain cases results – to derive rules. Such a difference, 
although implicit, is quite significant, since in it lies the 
new potential to amplify the intelligence of new com-
putational systems, namely moving from computational 
workflow based on automation to new ones based on 
interaction and augmentation. The idea of “intelligence 
amplification” is certainly not new, and it has been pre-
figured many times in the past; for instance, Garry Kasp-
arov referred to this when he explained the idea “to use 
information technology as a tool to enhance human deci-
sions instead of replacing them with autonomous AI Sys-
tems” (Kasparov, 2017). Nowadays, such amplification is 
becoming a reality, and it allows a new level of influence 
and interaction between human intelligence and artificial 
intelligence.

In such a background of significant evolution, three 
main lines of research characterised the use of AI inside 
the architectural discipline: the first one is related to sim-
ulation, the second one to optimisation, and the third one 
refers to design.

Regarding the use of artificial intelligence for simula-
tion procedures, relevant applications have been devel-
oped for environmental performance calculations based 
on surrogate models rather than traditional simulation 
systems, or agent-based robotic fabrication procedures 
where hard-coded behavioural rules are replaced by self-
learning and intelligent agent behaviours. For instance, 
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the City Intelligence Lab (CIL) of the Austrian Institute 
of Technology (AIT) has developed an innovative plat-
form InFraRed (Intelligence Framework for Resilient 
Design) which combines parametric and generative 
design, machine learning and augmented reality to ena-
ble seamless design-decision framework with real-time 
environmental performance feedback (Galanos et  al., 
2021); regarding agent-based robotic fabrication, mul-
tiple research projects are conducted at the Institute for 
Computational Design and Construction (ICD) of the 
University of Stuttgart where robots are taught construc-
tion behaviours relative to certain construction targets – 
such as the use of deep reinforcement learning to teach 
a mobile robot the control policy for elastically bending 
bamboo bundles into design configuration (Lochnicki 
et al., 2021).

In terms of optimisation, artificial intelligence is used 
in multiple AEC-related applications such as optimising 
building mass generation during early-stage design or 
producing floor plan layouts based on adjacencies and 
target areas. In this regard, an interesting comparative 
study has been conducted at the Department of Archi-
tecture of Texas A&M University where different AI 
methodologies have been analysed and compared to offer 
new perspectives for automated spatial layout planning 
(ASLP). The systematic review of ASLP+AI methods and 
procedures highlights the fundamental components of 
AI applications according to multiple approaches: image-
based, graph-based, performance-based, and agent-
based; including statistical models in traditional ML, DL, 
and RL (Ko et al., 2023).

The third and last use of AI inside the AEC industry is 
related to creative applications for building design such as 
image recognition, design exploration, and data poetics. 
In this regard, it is interesting to highlight the fact that 
the implementation of artificial intelligence inside design 
methods and procedures corresponds with a new post-
human tendency in architecture, namely the intention to 
provide new responses to a new phase of human evolu-
tion, a time where human bodies are developing in new 
ways, and human minds are altered in different neurolog-
ical and epistemological ways by the advent of new tech-
nologies. The vision of a new posthuman design ecology 
can be investigated in multiple ways; for instance, it can 
be based on a new ecosystem composed of multiple AI 
models – such as the DeepHimmelblau network which 
can learn a significant amount of semantic characteris-
tics and create detailed design interpretations (Prix et al., 
2022) – or by investigating the idea of plasticity inside the 
machine intelligence and its genetic fallibility – as shown 
in the research conducted by Immanuel Koh (Koh, 2022). 
Another interesting example of the use of AI for archi-
tectural design is represented by the work conducted by 

Matias Del Campo and Sandra Manninger in their archi-
tectural office SPAN. In his book Neural Architecture, Del 
Campo presents some of the studio works to illustrate 
the integration of architecture and artificial intelligence, 
emphasising the fusion of AI with traditional humanistic 
practices in architecture (Del Campo, 2022).

Although significantly different, all three approaches – 
simulation, optimisation, and design –  exemplify a new 
working methodology currently developing inside the 
architectural discipline; a new open-ended and non-lin-
ear approach based on predictions, translations, and dis-
connections with the more conventional computational 
approach where parametric models and standardised 
automation often confines design to be a mere selection 
process rather than being a truly generative procedure. 
The current paper intends to work at the intersection 
between computational design and artificial intelligence, 
bridging the gap between radical AI approaches with tra-
ditional computational pipelines. In doing so, the idea 
of pursuing a radical open-ended and non-linear design 
approach based on AI is combined with automated sys-
tems and processes obtained through consolidated com-
putational simulation and optimisation procedures.

Before explaining the working pipeline proposed in 
this paper, the next section will examine some examples 
related to AI generative pipelines for 3D geometry design 
augmentation to show the current state of the art in rela-
tion to the subject.

2  Related Work
The first part of the proposed pipeline consists of the 
generation of 3D geometries using AI models. The use 
of artificial intelligence for generative approaches inside 
the three-dimensional space represents an ongoing field 
of research currently composed of several techniques 
and methodologies developed to address the three-
dimensional generation problem in multiple ways: acting 
at the intersection between neural rendering and view 
synthesis, using systems of photorealistic view synthesis, 
focusing on 3D shape representations that accommodate 
learning-based 3D reconstruction procedures.

In the first instance, the neural radiance fields (NeRF) 
address the problem of view synthesis by directly opti-
mising the parameters of a continuous 5D scene rep-
resentation. The developed algorithm converts a set of 
images of an object – taken from different locations 
in space – into an accurate 3D representation of the 
object itself. The algorithm uses a fully connected deep 
network, which has a single continuous 5D coordinate 
system as input – composed by the spatial location (x, 
y, z) and viewing direction (θ, φ) – and outputs the vol-
ume density and view-dependent emitted radiance at 
that spatial location. The final 3D geometry is the result 
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of a synthetic process where views are synthesised by 
querying 5D coordinates along camera rays and using 
classic volume rendering techniques to project the out-
put colours and densities into an image (Mildenhall 
et al., 2020).

Always related to neural radiance fields, multiple types 
of frameworks have been developed to generate 3D 
geometry starting from 2D images. Two of them are rep-
resented by pixelNeRF and SinNeRF. In the first case, the 
prediction of neural radiance fields starts from one or a 
few images proceeding in a feed-forward manner. The 
input image is first encoded into a pixel-aligned feature 
grid; then, points are rendered along a target array and 
for each 3D point the feature grid is queried at the pro-
jected pixel coordinate in the input image and passes the 
image feature along with the coordinates of the point in 
view space into the network to get colour and opacity (Yu 
et al. 2021); in the second case, a novel semi-supervised 
framework can train neural radiance fields given only a 
single reference image as input (Xu et al., 2022).

In addition to neural radiance fields, other methods 
deal with 3D geometry generation using AI technology. 
One example always related to radiance fields but without 
the use of neural networks is represented by Plenoxels, a 
system for photorealistic view synthesis. Starting from a 
set of images, a sparse voxel grid is reconstructed with 
density and spherical harmonic coefficients at each voxel. 
The visual ray is rendered by computing the colour and 
opacity of each sample point via trilinear interpolation 
of the neighbouring coefficient. The voxel coefficients 
can then be optimised with standard MSE reconstruc-
tion loss relative to the training images  (Yu et al. 2021). 
Focusing on the problem of learning-based 3D recon-
struction, another method called DefTet (Deformable 
Tetrahedral Meshes) intends to overcome certain limita-
tions constituted by implicit function representations of 
point cloud, voxel, and surface mesh using volumetric 
tetrahedral meshes for the reconstruction problem. In 
doing so, given an input image or point cloud, DefTet uti-
lises a neural network to deform the vertices of an initial 
tetrahedron mesh and to predict the occupancy for each 
tetrahedron based on the input data (Gao et  al., 2020). 
Another interesting example is represented by Get3D, 
a generative model that directly creates textured 3D 
meshes with complex topology, rich geometric details, 
and high-fidelity textures. In this case, a 3D SDF (Signed 
Distance Field) and a texture field are generated via two 
latent codes. 3D surface meshes are then extracted from 
the SDF utilising DMTet – Deep Marching Tetrahedra 
(Shen et al., 2021) – and query the texture field at surface 
points to get colours. A rasterization-based differenti-
able renderer is used to obtain RGB images and silhou-
ettes. At the end of the process, two 2D discriminators 

are utilised to classify whether the inputs are real or fake 
(Gao et al., 2022).

Finally, other methods and algorithms allow the gen-
eration of 3D geometries through a more direct Text-To-
3D approach. One of these methodologies is represented 
by CLIP-Mesh, a technique to generate a 3D model 
using only a target text prompt. The method consists 
of the deformation of the control shape of a limit sub-
divided surface along with its texture map and normal 
map to obtain a 3D asset that corresponds to the input 
text prompt, and it relies only on a custom pre-trained 
model that compares the input text prompt with multi-
ple rendered images of the 3D model (Khalid et al., 2022). 
Always following a Text-To-3D approach to use AI for 3D 
geometry generation, OpenAI has developed two systems 
for 3D asset generation: Point-E and Shap-E. In the first 
case, the initial text prompt is fed into a GLIDE model to 
produce a synthetic rendered view; the rendered view is 
then passed to a point cloud diffusion stack which condi-
tions the image to produce a 3D RGB point cloud geom-
etry (Nichol et al., 2022). In the second case, Shap-E is a 
conditional generative model that directly generates the 
parameters of implicit functions that can be rendered 
as both textured meshes and neural radiance fields (Jun 
et al., 2023). For the purpose of this paper, the results are 
obtained by using Shap-E as the main AI model to gener-
ate the initial 3D geometries; therefore, further analysis 
of the technical principles is due to explain their applica-
bility and the reason why the model has been chosen.

Shap-E is a conditional generative model designed for 
3D asset creation, combining advanced neural network 
methodologies to offer both efficiency and versatility in 
generating 3D geometries. The process is divided into 
two main parts: firstly, an encoder is trained to map 3D 
assets into the parameters of an implicit function; sec-
ondly, a conditional diffusion model is trained on the out-
puts of the encoder. Here are the technical principles of 
Shap-E in the academic context:

– Implicit Neural Representations (INRs): Shap-E lev-
erages INRs to represent 3D assets. These represen-
tations map 3D coordinates to specific information 
like colour and density, making them resolution-
independent and suitable for various applications like 
style transfer or shape editing.

– Neural Radiance Fields (NeRF) and Signed Distance 
Functions (STF): Shap-E uses NeRF for mapping 
coordinates to densities and RGB colours, facilitating 
the rendering of 3D scenes from arbitrary views. It 
also uses STF to represent textured 3D meshes, map-
ping coordinates to colours and distances.

– Encoder and Diffusion Model Training: Shap-E 
employs a two-stage training process. Initially, an 
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encoder deterministically maps 3D assets to implicit 
function parameters. Then, a conditional diffusion 
model is trained on these outputs. This two-fold 
approach enhances Shap-E’s capacity to generate 
complex and diverse 3D assets efficiently.

– Scalability and Flexibility: Compared to explicit 3D 
models, Shap-E’s architecture allows for a more scal-
able approach to 3D generation. It converges faster 
and can handle a broader range of output represen-
tations. This scalability is crucial for handling large 
datasets and diverse asset types.

– Latent Diffusion and Conditional Generation: Shap-
E uses latent diffusion models to generate continu-
ous latent spaces. This method allows for the efficient 
generation of high-resolution 3D assets, conditioned 
on external data like images or text descriptions.

In terms of applicability, several points can be high-
lighted about the use of Shap-E:

– Diverse 3D Asset Generation: Shap-E is capable of 
generating a wide variety of 3D objects and scenes, 
making it suitable for applications in virtual reality, 
gaming, and 3D animation.

– Efficiency in Rendering: The model’s ability to repre-
sent 3D assets as NeRFs and meshes allows for effi-
cient rendering processes, which is beneficial in real-
time applications.

– Text-to-3D Generation: Shap-E can generate 3D 
assets from textual descriptions, making it an innova-
tive tool for designers and artists who can articulate 
ideas in text and witness their real-time 3D represen-
tation.

– Open-Source Resource: Shap-E can be freely accessed 
and downloaded. This aspect facilitates its use and 
integration with existing personal pipelines.

– Training on Large Datasets: Shap-E’s efficiency in 
handling large datasets makes it a valuable tool in 
scenarios where vast amounts of 3D data are pro-
cessed, such as in architectural modelling and urban 
planning.

Although a certain level of fallibility and inconsistency 
of the provided 3D outcomes still represents an impor-
tant feature in the current state of Shap-E – a feature 
which certainly required further research and develop-
ment – Shap-E represents a valid choice for the purpose 
of this paper, namely presenting a pipeline to convert AI-
generated 3D geometries into building elements. Nev-
ertheless, it is important to highlight that the explained 
methodology is not related to Shap-E and can be used 
with other AI models as well. To control the length of the 
paper and focus the attention on the overall pipeline, the 

following results related to AI-generated 3D geometries 
are limited to the outcomes obtained by using Shap-E 
while results obtained by using other AI models have not 
been included.

3  Methodology
The proposed methodology is based on the working pipe-
line explained in Figs. 1 and 2. The pipeline is composed 
of 5 steps:

1. Mesh Generation
2. Mesh Analysis
3. Voxel Generation
4. Voxel Optimisation
5. Structure Generation

The adopted working platforms and coding lan-
guages are Google Colab and Python for the first 
two steps (Mesh Generation and Operations), and 
Rhinoceros+Grasshopper and C# for the following three 
steps (Voxel Conversion, Voxel Optimisation, and Struc-
ture Generation).

Figure  2 shows the working pipelines in more detail. 
The pipeline is divided into two main parts: the first one 
is related to AI-generated mesh geometries, and the sec-
ond one is related to the conversion of the chosen mesh 
into building elements. In the first part, a set of latents – 
namely representations of the target 3D geometry at dif-
ferent locations inside the latent space – are generated, 
interpolated, and converted into mesh geometries. Such 
meshes are then visualised and analysed before being 
exported. Once exported, the meshes are converted into 
voxelized geometries which are firstly optimised and then 
converted into structural building elements by isolating 
selected topological components (vertices, edges, and 
faces). Finally, the building elements are analysed and the 
final building configuration is obtained.

The following paragraphs will explain such details and 
will show the obtained results. It is important to high-
light that the results illustrated in this paper are indica-
tive only and based on the AI model adopted. Multiple 
configurations and design results can be achieved with 
the proposed methodology according to the chosen AI 
model and the topological elements that are considered 
to generate building assemblies.

3.1  STEP 1 – AI‑Generated 3D Geometry
The results shown in this paper have been obtained by 
using Shap-E as the AI model to generate 3D geom-
etries starting from a text prompt (Jun et  al., 2023). 
The initial step is to generate latents starting from a 
single prompt. Figure  3 shows the results generated 
from the manipulation of three main inputs: batch 
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size (= number of latents), guidance scale (= weight 
to text prompt), and text prompt. In this case, two sets 
of latents have been generated by using two different 
prompts and considering five options for each prompt.

Once the first set of latents is generated, a second 
prompt is introduced to generate a second set of latents to 
be used to create a linear interpolation between different 
latents – one for the first prompt and one for the second 

Fig. 1 Proposed working pipeline and platforms

Fig. 2 Details of the proposed working pipeline
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prompt (Fig. 4). This paper only shows the interpolation 
between two latents, although the same methodology can 
be used with multiple prompts and the interpolation can 
be performed on multiple sets of latents.

3.2  STEP 2 ‑ Mesh analysis
To obtain the final geometry to use for visualisation, 
evaluation, and statistics operations, the two structured 
latents are interpolated and a series of options are 

Fig. 3 Latents generated with the first prompt and the second prompt. The dashed boxes highlight the two latents that have been chosen 
to perform the linear interpolation

Fig. 4 Interpolation between the two structured latents. The dashed box highlights the interpolation that has been chosen as the final mesh 
to analyse and import into Rhino for the following voxelization procedures
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generated. Figure 4 shows the results of the linear inter-
polation divided into five steps. The number of steps is 
set by the user, and they can be as many as needed. The 
interpolation is performed to explore the tectonics of 
the latent space and obtain new and emergent spatial 
configurations to use in the following steps of the pro-
posed pipeline – namely voxelization and building ele-
ments generation.

Once the interpolation procedure is completed, one 
option is chosen from the set and converted into a mesh 
to perform geometrical operations based on visualisation 
and analysis. Figure 5 shows four diagrams generated to 
visualise and analyse the chosen mesh and the statistics 
related to it. Multiple types of analysis can be generated 
with the proposed pipeline.

Once the analysis is completed, the final mesh is then 
downloaded and imported into Rhinoceros to be con-
verted into building elements using custom C# scripts 
developed inside the Grasshopper working environ-
ment. The following section will show the results 
obtained by the adoption and development of custom 
computational methods and procedures.

4  Results
In the previous section, we have analysed the first two 
steps of the proposed working pipeline. In this section, 
we show the results of the conversion of the AI-gener-
ated 3D geometry into building elements.

4.1  STEP 3 ‑ Voxel generation
To convert the AI-generated geometry into building ele-
ments, the input mesh has been converted into voxels 
by using a custom C# algorithm able to divide the input 
mesh into voxels based on set dimensions and rotation 
values within the x, y, z coordinate system (Fig. 6).

The developed C# algorithm can be explained with 
the following pseudocode:

Fig. 5 Diagrams for visualisation and analysis of the choose mesh (1.Faces Preview; 2.Mean Curvature; 3.Section Inspection; 4. Vertices Preview; 
5.Internal Faces Angle; 6.Edge Length)
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The pseudocode describes a process composed of two 
functions for transforming a 3D mesh into a collection 
of voxelized cubes. Initially, the mesh undergoes a cull-
ing process where only significant parts are retained 
based on a defined threshold. This reduced mesh is 
then transformed into a grid of cubic units or voxels. 
The transformation involves rotating the mesh, adjust-
ing the bounding area, and creating a 3D grid to iden-
tify which parts of the space the mesh occupies. Each 
grid cell representing a part of the mesh is marked, and 
corresponding cubes are generated at these locations. 
These cubes, after being rotated back, collectively rep-
resent a voxelized version of the original mesh.

4.2  STEP 4‑ Voxel optimisation
Once the initial voxel conversion is completed, the voxel 
size and rotation are optimised to minimise the differ-
ence between the volume of the input mesh and the 
volume of the new voxelized geometry. Figure  7 shows 
multiple results obtained by the single-objective opti-
misation. Multi-objective optimisation can be run in 
substitution of it if multiple objectives are needed. The 
optimisation procedure shown in this paper is obtained 
by altering six main parameters: voxel dimensions in x, y, 
and z coordinates, and voxel rotations in x, y, and z coor-
dinates. The difference between the input mesh and the 
voxel configuration is then calculated for each iteration. 
The final configuration is then chosen and used for the 
final step to create the structure and building elements 
(such as columns, beams, slabs, roofs, facades, etc.).

Fig. 6 Steps showing the conversion from the chosen mesh into the initial voxel configuration
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It is important to highlight the fact that voxel rotations 
have been included to extend the complexity and ver-
satility of the developed algorithm. Although the voxel 
rotations generate building structures not suitable for 
architectural applications in the real world, the opportu-
nity to include rotation angles allows further experimen-
tation in the virtual world – such as generating complex 
buildings or installation structures for design applica-
tions inside the Metaverse. Furthermore, the opportu-
nity to alter voxel angles in addition to voxel dimensions 
extends the choice of the final configuration to applica-
tions not necessarily related to architecture; for instance, 

configurations with rotated voxels can be utilised to 
design furniture structures or other mobile objects.

4.3  STEP 5‑ Structure generation
The final voxelized volume is chosen amongst the options 
generated by the single-objective optimisation. Such 
volume is then converted into structural geometries – 
columns, beams, and slabs – using custom C# scripts. 
Figure 8 shows the initial conversion of the chosen voxel 
configuration into topological elements – vertices and 
edges – that will be used as reference geometries to gen-
erate the structural elements.

Fig. 7 Multiple voxelized options generated by the single-objective optimisation. The dashed box highlights the final configuration that has been 
chosen to create the building elements



Page 11 of 15Bono  Architectural Intelligence            (2024) 3:24  

Once the final topological configuration is obtained, 
the topological elements are converted into structural 
elements and then analysed using Karamba3D to obtain 
the structural model and calculate the overall structural 
utilization (Fig.  9). Further optimisation procedures 
can be implemented to optimise the elements’ size and 
location.

Once the structural elements are obtained and ana-
lysed, the final building configuration is generated by 
adding the remaining building elements – such as roof 
surfaces, facade panels, etc.). Figure  10 shows the final 
building with glazed façade panels. This is only one of 
the multiple design options that can be achieved with 
the proposed working pipeline. Multiple design targets 
can be included to achieve specific design options and 
configurations.

It is important to highlight the fact that the proposed 
working pipeline can be used for the design of architec-
tural geometries both in the real and virtual worlds. In 
fact, the malleability and adaptability of the proposed 
workflow can be employed both for the conversion of 
preliminary architectural forms into building structures 
– which can be analysed and adjusted for construction 
purposes – and the fast generation of 3D architectural 
content to populate a specific virtual environment. The 
possibility of adopting the proposed workflow for design-
ing architecture both in reality and virtually underlies 

the idea of a seamless architectural aesthetic in the age 
of artificial intelligence, a time where the rise of digital 
anonymity – namely “the autopoietic condition of digital 
design, a state in which the combination of decontextu-
alisation and depersonalisation of the design process 
leads towards emergent and anonymous design results” 
(Bono et  al., 2021) – rectifies the intellectual capability 
of algorithms and their ability to infer new knowledge by 
extending certain limits of the human intellect. In doing 
so, traditional spatial senses and human conceptions are 
challenged by a new evolutionary process which is trans-
lating the independence of human creativity towards the 
primacy of artificial creativity.

5  Conclusion
This paper has presented a working pipeline to convert 
AI-generated 3D geometries into building elements. 
In doing so, tectonics from the latent space have been 
generated, analysed and then converted into building 
systems giving life to new and emergent design configu-
rations. The proposed workflow has combined novel AI 
models and techniques with more traditional compu-
tational design procedures, allowing a new experimen-
tal methodology in the field of architectural design. The 
research is currently in its early stages, and the high-
lighted methodology can be further implemented to 
obtain a more efficient and integrated approach. To do 

Fig. 8 Steps showing the conversion from the final voxel configuration into topological elements
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so, further development is required in two main areas: 
from one side, a custom AI model would need to be 
developed and trained to generate more accurate geom-
etries and increase the overall control over the outcomes; 
from the other side, the current workflow would need 
to be further implemented towards a custom and stand-
alone application where the overall pipeline is combined 
into one unique working platform.

The experimentation with tectonics from the latent 
space has allowed the rise of several considerations 

regarding the current status of architectural design and 
the possible ways to develop its conception in the future. 
First of all, in a time where medical, social, economic, 
geopolitical, and environmental challenges are chang-
ing the way we live within our buildings – for instance, 
the advent of the COVID-19 pandemic had a significant 
impact on the architectural design since it has increased 
the awareness of its stagnation and the need of a signifi-
cant rethinking of traditional architectural typologies 
(Gillen et al., 2021) – new design approaches are needed 

Fig. 9 Steps showing the conversion from the topological configuration into structural elements

Fig. 10 Final building configuration
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to create a new architectural space able to translate into 
reality the needs of the emergent digital society; secondly, 
the opportunity to deliver more productive and engaging 
spaces for social exchange, interaction, and communica-
tion inside new virtual platforms – such as the Metaverse 
and the possible work of architects inside such space 
(Schumacher, 2022) – implies the tendency to expand the 
democratisation of the design process, namely giving the 
users the ability to design their own buildings within the 
new virtual world. For some architects, such a phenom-
enon represents a detrimental factor for the profession 
since it undermines the primacy of architects themselves 
within the design conception; for others, democratising 
the design process represents an opportunity to expand 
the profession towards new working activities – such as 
software development, UX/UI design, visual art, etc. In 
both cases, the generation of a new architecture for the 
virtual world can benefit from the use of artificial intel-
ligence inside the design process since it can open a new 
territory for both topological and typological explora-
tions leading towards a new definition of a possible vir-
tual architecture.

In response to the multifaceted challenges and oppor-
tunities delineated, future architecture is poised to 
undergo a transformative shift. AI generation technology 
will play a pivotal role, offering innovative solutions that 
reshape the essence of architectural design. AI’s predic-
tive capabilities will enable architects to envision struc-
tures that pre-emptively adapt to future scenarios, such 
as climate change effects or shifting urban demographics. 
Buildings could dynamically modify their form, function, 
or environment in real-time, responding to immediate 
needs like air quality improvement during a health crisis 
or space reconfiguration in rapidly changing social con-
texts. Furthermore, AI-driven generative design will push 
the boundaries of creativity, generating myriad design 
options based on specified parameters and constraints. 
This technology can rapidly prototype virtual models, 
allowing stakeholders to explore and iterate designs in 
virtual environments. These simulated models will not 
only be visually represented but also tested for various 
scenarios, including energy efficiency, structural integ-
rity, and user experience. AI’s contribution will extend to 
the realm of materials as well. Advanced algorithms can 
aid in discovering new, sustainable materials or optimis-
ing existing ones for enhanced performance and reduced 
environmental impact. This could result in structures 
that are more energy-efficient, durable, and environmen-
tally friendly. AI in architecture promotes a new era of 
dynamic, responsive, and sustainable design. Its ability to 
process complex data and generate innovative solutions 
will be instrumental in addressing the manifold chal-
lenges of our time, crafting a built environment that is 

adaptable, efficient, and reflective of our evolving socio-
cultural needs.

Finally, it is worth mentioning some considerations 
on the creative process generated by using the working 
pipeline presented in this paper. The idea of combining 
explorative techniques related to the use of artificial intel-
ligence with more consolidated automated procedures 
referring to computational design gives life to a genera-
tive approach that is not so dissimilar from the idea of 
“controlled hallucination” explained by Anil Seth (Seth, 
2021), particularly concerning building configurations 
that become reality starting from interpolative and unfa-
miliar geometries. Referring to the idea of hallucinations 
as controlled perceptions adopted by the brain to pre-
vent incorrect predictions, Seth states that the brain’s 
predictions are controlled by sensory information from 
the world which is used to classify such predictions – or 
hallucinations – and agrees when to convert them into 
reality. Similarly, building elements obtained from an 
approximation process of AI-generated 3D geometries – 
such as the ones shown as results in this paper – repre-
sent the controlled representation of tectonics generated 
inside the latent space, a process created and realised to 
project them into the real world.

Further considerations can be made also on the rela-
tionship between human creativity and machine crea-
tivity that arises from the combined use of artificial 
intelligence and computational design. Starting from the 
classification of human creativity by Margaret Boden 
(Boden, 1997) and the classification of machine creativ-
ity by Demis Hassabis (Hassabis, 2018), it is interesting 
to highlight the fact that the proposed pipeline – particu-
larly the studies and tests done during the creation of AI-
generated 3D geometries – has allowed to understand a 
different approach to define creativity in the current age 
of artificial intelligence. The experimentation with tec-
tonics from the latent space has made clear the fact that 
creativity is a latent property inside artificial systems. 
Contrary to both Boden’s and Hassabis’ classifications 
– where creativity is evaluated by looking at the final 
results – the experimentation with latent tectonics has 
highlighted the fact that creativity is something that lies 
inside the artificial network rather than in the outcomes 
that the network can produce. In doing so, the current 
ways of classifying creativity must be updated towards 
more open terms of comparison, and new parameters 
must be considered for evaluating the creative factor.

A possible approach to evaluate machine creativity can 
be generated by considering its intentional tendency in 
contrast with the intuitive one promoted by human crea-
tivity. The traditional human approach to architectural 
design is based on the acquisition, sedimentation, and 
reinvention of knowledge while the new artificial approach 



Page 14 of 15Bono  Architectural Intelligence            (2024) 3:24 

lies in algorithms which can produce endless variations 
starting from a given set of data. In doing so, the genera-
tive capability of algorithms gives life to a new condition in 
architectural design where the use of artificial intelligence 
allows the reproduction of autonomous design options. 
Creativity is becoming an open horizon in which human 
beings and machines are constantly interacting according 
to an inbuilt dynamism able to promote new collabora-
tive leadership. For this reason, the future of architectural 
design will be based on an integrated bottom-up approach 
where the primacy of human creativity will be maintained 
inside the definition of the generative inputs, while artifi-
cial creativity will be responsible for the definition of the 
generated outputs: a process acting like a creative loop 
made of initial decisions and progressive refinements.

Moving in the direction of understanding possible ways 
to evaluate machine creativity, an interesting example is 
constituted by three aspects mentioned by Marcus du Sau-
toy in his book The Creativity Code. While explaining the 
relationship between art and innovation in the age of AI, 
Du Sautoy suggests three possible parameters to evalu-
ate creativity – novelty, surprise, and value – adding also 
the fact that nowadays it is quite easy to make something 
new thanks to the current overabundance of information 
made available by the hyper-textuality promoted by the 
virtual world, while surprise and value are more difficult to 
achieve (Du Sautoy, 2019). If we now try to apply the three 
Du Sautoy’s parameters to evaluate the creative process 
presented in this paper, one question arises: are tecton-
ics of the latent space new, surprising, and valuable at the 
same time? If so, the proposed pipeline has shown a meth-
odology to produce authentic forms of creativity; if not, 
we are still in the limbo of uncertainty and speculation. In 
both cases, the idea of introducing artificial intelligence 
inside building design and conception still represents a 
very slippery territory, but certainly, a field of research that 
deserves further analysis and investigation.
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