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Abstract 

The dispersion of particulate pollutants around buildings raises concerns due to adverse health impacts. Accurate 
prediction of particle dispersion is important for evaluating health risks in urban areas. However, rigorous validation 
data using particulate tracers is lacking for numerical models of urban dispersion. Many prior studies rely on gas dis-
persion data, questioning conclusions due to differences in transport physics. To address this gap, this study utilized 
a combined experimental and computational approach to generate comprehensive validation data on particulate 
dispersion. A wind tunnel experiment using particulate tracers measured airflow, turbulence, and particle concentra-
tions around a single building, providing reliable but sparse data. Validated large eddy simulation expanded the data. 
This combined approach generated much-needed validation data to evaluate numerical particle dispersion models 
around buildings. Steady Reynolds-averaged Navier–Stokes (SRANS) simulations paired with Lagrangian particle track-
ing (LPT), and drift-flux (DF) models were validated. SRANS had lower accuracy compared to LES for airflow and tur-
bulence. However, in this case, SRANS inaccuracies did not prevent accurate concentration prediction when LPT 
or a Stokes drift-flux model were used. The algebraic drift-flux model strongly overpredicted the concentration 
for large micron particles, indicating proper drift modeling was essential.
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1  Introduction
The dispersion of particulate pollutants around build-
ings raises significant environmental concerns due to the 
adverse health impacts of exposure to suspended urban 
particles (Alemayehu et  al., 2020). Accurate prediction 
of particle dispersion is important for evaluating health 
risks associated with particulate pollutants in urban 
areas.

Field experiments provide sparse observations and are 
limited by high costs and difficulty in standardizing test-
ing conditions across measurements (Antoniou et  al., 
2019; S. Liu et  al., 2018; Stathopoulos et  al., 2004; Zou 
et al., 2021). Wind tunnel simulations can provide reliable 
data under controlled conditions but still bring substan-
tial costs for the tunnel infrastructure and instrumenta-
tion (Blocken et al., 2016a, b).

Large-eddy simulation (LES) models accurately pre-
dict turbulent urban winds by explicitly resolving turbu-
lent eddies (Blocken, 2018; Mirzaei, 2021; Zheng & Yang, 
2021). These resolved eddies also explicitly carry pollut-
ants in a manner closer to actual transport phenomena. 
However, the fine resolution requires substantial com-
putational resources. As a less demanding alternative 
for transient simulation, unsteady Reynolds-averaged 
Navier–Stokes (URANS) modeling reduces cost through 
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ensemble-averaged modeling that filters out stochastic 
turbulence with turbulence models. However, URANS 
exhibits low-frequency unsteadiness with single-peak 
spectra for urban simulation, overlooking key multiscale 
flow behaviors, and significantly underestimating turbu-
lence, especially within building arrays where fluctua-
tions can disappear entirely (Tominaga, 2015; Tominaga 
& Stathopoulos, 2017). Hybrid URANS-LES can save 
approximately 20% in mesh and time versus pure LES 
with comparable accuracy for urban prediction (J. Liu & 
Niu, 2019). It is still resource-intensive, since the accu-
racy still relies heavily on resolved turbulence requiring 
fine mesh resolution, and the model reverts to URANS 
when under-resolved. Compared to these transient 
modeling strategies, steady RANS (SRANS) modeling 
significantly reduces expenses by avoiding expensive 
time-resolved calculations with further simplified han-
dling of turbulence. However, the single-point closure 
and ill-conditioned governing equations derived from the 
time-averaging assumptions degrade accuracy even more 
(Brener et al., 2021; Girimaji & Abdol-Hamid, 2005; Hao 
& Gorlé, 2022; Wu et al., 2019; R. Zhao et al., 2022, 2023). 
Nevertheless, SRANS remains the main workhorse for 
industrial computational fluid dynamics (CFD) simula-
tions (Blocken, 2014), benefiting from its computational 
efficiency and widely accepted guidelines (Blocken & 
Gualtieri, 2012; Blocken et al., 2012; Franke et al., 2011; 
Tominaga et al., 2008). As SRANS only provides steady-
state eddy viscosity and turbulence kinetic energy (TKE) 
to represent turbulence, the turbulent dispersion of par-
ticles must also be modeled using additional sub-models 
based on analogous assumptions.

Two main approaches exist for outdoor particle dis-
persion modeling: Lagrangian particle tracking (LPT) 
(Bahlali et  al., 2019; Haghighifard et  al., 2018; Oettl, 
2015; Trini Castelli et  al., 2018) and Eulerian con-
tinuum models (Blocken et  al., 2016a, b; Karttunen 
et al., 2020; Niu et al., 2018). Lagrangian particle track-
ing (LPT) methods model discrete particles subject to 
various forces (e.g., gravity and drag from computed 
flow fields), moving them according to Newton’s laws. 
When paired with LES (termed LES-LPT), as resolved 
eddies transport the numerical particles, the LES-LPT 
method provides the most realistic particle tracking 
with the fewest modeling assumptions. When applied 
with SRANS simulations (termed SRANS-LPT), 
an additional sub-model, the discrete random walk 
(DRW) model, is required to incorporate stochastic 
effects of turbulence on particles based on the simu-
lated airflow and turbulence statistics (Haghighifard 
et al., 2018; Oettl, 2015). The DRW model simply uses 
Gaussian random numbers to generate pseudo fluc-
tuation sequences of the airflow velocity, based on the 

SRANS output of TKE. The reductionist assumptions 
made in the DRW model and underlying inaccuracy in 
SRANS introduce considerable uncertainty for SRANS-
LPT modeling. Regardless of the airflow simulation 
approach, LPT by its nature enables analysis of trajec-
tories, deposition, and retention times. However, the 
tracking process remains transient even when using 
steady-state airflow data, and the computational cost 
grows with the number of particle tracers. Aside from 
the Lagrangian view, the Eulerian view is another way 
to model the particle phase, assuming it as a contin-
uum and establishing a convection–diffusion equation 
for particle concentrations, as for gases (B. Zhao et al., 
2009). Despite significantly reducing computational 
time, one modeling challenge is accounting for parti-
cle inertia and gravity, which cause velocity differences 
between particle and carrier phases, i.e. particle drift. 
Using the airflow velocity directly in the convection–
diffusion equation provides misleading particle concen-
tration flux, requiring extra drift-flux (DF) models (E. 
M. A. Frederix et  al., 2017). Additionally, for applica-
tion with SRANS (SRANS-DF), turbulence transport 
of particles can only be based on molecular diffusion 
assumption (B. Zhao et al., 2009).

Given the SRANS inaccuracy and additional uncer-
tainty in dispersion modeling, rigorously evaluating the 
performance of SRANS-LPT and SRANS-DF approaches 
is critical before engineering application. There have been 
extensive experimental and numerical studies for parti-
cle transport in indoor environments (Cao et  al., 2018; 
S. Liu et  al., 2022; S. Liu & Deng, 2023; B. Zhao et  al., 
2009). However, for urban studies, while experimental 
studies on gaseous tracer dispersion exist (Architectural 
Institute of Japan, 2008; COST ES, 1006, 2012; Leitl & 
Schatzmann, 2005), there is a lack of rigorous validation 
data using particulate tracers. Many prior studies rely 
on validating particle models against gas dispersion data 
(Bahlali et al., 2019; Haghighifard et al., 2018; Oettl, 2015; 
Trini Castelli et  al., 2018), which questions the conclu-
sions due to differences in transport physics. The validity 
of the numerical models for particle dispersion around 
buildings remains unknown, especially when large parti-
cles are considered (E. Frederix, 2016; E. M. A. Frederix 
et al., 2017).

To provide reliable validation data to evaluate outdoor 
particle dispersion simulation with SRANS, this study 
utilizes a combined experimental and high-fidelity simu-
lation approach to generate a comprehensive dataset for 
particulate dispersion around a single building. First, a 
detailed wind tunnel experiment is conducted using par-
ticulate tracers for concentration measurements. These 
results are complemented by a validated LES of the 
same scenario to broaden the reference dataset. SRANS 
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simulations paired with both Eulerian and Lagrangian 
particle tracking models are performed and validated 
against the obtained reference data.

2 � Methods
This section describes the wind tunnel experiment, 
as well as the employed models for turbulence and 
dispersion.

2.1 � Wind tunnel experiment
The wind tunnel experiment was conducted in an open-
circuit wind tunnel at Tianjin University, using a test 
section with dimensions of 0.35  m width by 0.225  m 
height. To generate atmospheric boundary layer flow, 
four triangular spires designed based on Irwin’s approach 
(Irwin, 1979) were installed upstream, along with seven 
thin horizontal bars attached to the spires to produce 
the required turbulence intensity, as inspired by the lat-
tice method for simulating part-depth ABL flows (Lee 
et al., 2004). Downstream of the spires, a fetch of cube-
shaped roughness elements with decreasing heights was 
arranged (Fig.  1a). Iterative adjustments were made to 
the horizontal bar spacings on the spires and layout of 
the roughness cubes until the desired ABL velocity pro-
file was achieved. Measurements were conducted using 
a single-wire constant temperature anemometer (CTA) 
TSI IFA-300 (Fig. 1b) mounted on a traverse system with 
a precision of 10 μm (Fig. 1c). The TSI IFA-300 outputs 
a real-time, continuous analog voltage signal that cor-
relates to the dynamic air velocity fluctuations across 
its calibrated velocity range. It has a frequency response 
greater than 250  kHz. For the given single-wire probe 

used, the IFA-300 was calibrated for velocities rang-
ing from 0.01 to 30 m/s. Data was acquired at a 40 kHz 
sampling frequency, collecting 2,097,152 samples at each 
measurement location over one-minute durations.

The vertical profile of the mean wind velocity of the 
formulated part-depth ABL flow followed a 0.25 power 
law (Eq.  1). The profile of the streamwise turbulence 
intensity Ix matched the empirical equation (Eq. 2) sug-
gested by the American Society of Civil Engineers 
(ASCE) (American Society of Civil Engineers, 1999), 
where σU (z) is the standard deviation of the measured 
velocity and z0 = 1.8× 10−4 m is the regional rough-
ness height. Although some measured turbulence inten-
sity values deviated from the theoretical curve in the 
upper region, this was acceptable for the validation study, 
since using the measured profiles rather than theoretical 
atmospheric boundary layer (ABL) profiles as boundary 
conditions is common practice. The measured velocity 
and turbulence intensity profiles of the wind tunnel flow 
used as boundary conditions are shown in Fig. 2.

After generating the desired atmospheric boundary layer 
(ABL) flow, a 2:2:1 building model was positioned where 
the incident ABL flow measurements were taken, with 
its windward face perpendicular to the wind direction. 

(1)
U(z)

UH
=

z

H

0.25

(2)Ix(z) =
σU (z)

U(z)
=

1

ln(z/z0)

Fig. 1  a Spires and roughness elements; b Constant temperature anemometer; c Traverse system
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The building model dimensions were 0.09  m length, 
0.09  m width, and 0.045  m height (H), so the reference 
wind speed of UH = 14.5 m/s ensured a building Reynolds 
number of Re = UHH/v = 43,500 . Hot-wire anemom-
eter measurements were taken along nine vertical sample 
lines surrounding the building model, as illustrated in the 
schematic in Fig. 3. The measurements around the build-
ing were repeated three times on different dates and aver-
aged to obtain the final values used.

After establishing reproducible atmospheric bound-
ary layer (ABL) flow and building airflow patterns, an 
additional experiment was performed to measure parti-
cle dispersion from a roof stack. A diethylhexyl sebacate 

(DEHS) particle generator was used to produce a parti-
cle flow for the dispersion experiments (see Fig. 4a). The 
generator flow rate was controlled by an air pump and 
monitored with a flow meter. The DEHS generator out-
put was connected via silicone tubing to a seamless steel 
tube (8 mm outer diameter, 6 mm inner diameter). This 
steel tube was inserted through an 8 mm diameter hole 
made in the center of the building model and protruded 
6 mm above the roof level as a roof stack, as visualized 
in Fig. 4b. This particle injection setup enabled the DEHS 
particles from the generator to be emitted through the 
roof stack with manually controlled flow rate and thus a 
constant injection velocity We from the roof stack.

Fig. 2  Profiles of a velocity and b turbulence intensity of the formulated part-depth ABL flow in the wind tunnel

Fig. 3  a Schematic of the wind tunnel experiment; b measurement locations for velocity and turbulence
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Particle concentration measurements were conducted 
using an Aerodynamic Particle Sizer (TSI APS 3321) 
and an Aerosol Diluter (TSI 3302A) set to a 100:1 dilu-
tion ratio. The APS 3321 simultaneously counts particles 
from 0.5 to 20 μm aerodynamic diameter in 32 size chan-
nels. Concentrations up to 1000 particles/cm3 can be 
measured at 0.5  μm with a coincidence of less than 2% 
and at 10 μm with a coincidence under 6%. Usable data 
are provided up to 10,000 particles/cm3. The size reso-
lution is 0.02 μm at 1.0 μm and 0.03 μm at 10 μm. The 
minimum detectable concentration is 0.001 particle/cm3. 
The accuracy is ± 10% plus counting variations. The maxi-
mum processing rate exceeds 200,000 particles/s. The 
accompanying 3302A diluter offers 100:1 and 20:1 sample 
dilution at a 5 L/min flow rate drawn by the spectrome-
ter. For respirable particles, it has a penetration efficiency 
over 93%, with lower efficiency for larger sizes. Efficiency 
corrections are built into the software. Particles were 

sampled iso-kinetically using a 3 mm diameter seamless 
steel tube with an angled tip at the lower end. The upper 
end of the sampling tube was connected to 19 mm sili-
cone tubing and mounted on a traverse system, allowing 
controlled movement of the sampling assembly (Fig. 4d). 
This measurement setup enabled diluted particle sam-
pling with precise position control to obtain concen-
tration measurements around the building model. A 
schematic of the dispersion experiment and particle sam-
pling locations is given in Fig. 5. Two We values (We = UH 
and We = 2UH) were considered in the measurements.

2.2 � Governing equations and turbulence modeling
The previous subsection outlined the wind tunnel experi-
ment, this subsection describes the SRANS and LES 
approaches for the reproduction of airflow and turbu-
lence around the building model.

Fig. 4  a DEHS generator; b visualization of the particle injection; c Aerodynamic Particle Sizer APS 3321 and Aerosol Diluter 3302A; d Particle 
collection tube mounted on the traverse system

Fig. 5  a Schematic of the dispersion experiment; b sampling locations for particle concentration, with Lines D-I and points 0 and 1 defined
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Alongside the continuity equation for velocity (Eq. 3), 
the governing equations for velocity and turbulence can 
be written in a general form (Eq. 4), where Ui,Uj are the 
mean (SRANS) or filtered (LES) velocity components, 
in the xi , xj directions ( i, j = 1, 2, 3 ). φ is the transported 
quantity, Γ  is the diffusion coefficient of φ , and Sφ is the 
source term. Table  1 summarizes the model equations 
for SRANS with Kato-Launder (KL) k-ε model (Kato & 
Launder, 1993) and LES with wall-adapting local eddy-
viscosity (WALE) model (Nicoud & Ducros, 1999). Pre-
vious studies have provided comprehensive evaluations 
comparing the performance of different SRANS turbu-
lence models for urban airflow and gaseous concentra-
tion prediction (Gousseau et  al., 2011; Toja-Silva et  al., 
2015; Tominaga & Stathopoulos, 2007, 2010; Vardoula-
kis et  al., 2011; Yoshie et  al., 2007; R. Zhao et  al., 2022, 
2023). Though the various SRANS models differ, their 
discrepancies were small relative to differences with LES 
or experimental data, since all SRANS models showed 
poor accuracy, especially for TKE. This study selects the 
KL model as representative of SRANS performance. It 
introduces a production limiter to the standard k-ε model 
to mitigate the unphysical generation of in impingement 
regions. For LES, provided a sufficiently fine resolution 
mesh is used, the choice of sub-grid scale model contrib-
utes only negligible differences, according to Okaze et al. 
(Okaze et al., 2021). Thus, this study employs the numeri-
cally stable WALE model.

In Table 1, v and vt are the kinematic viscosity and tur-
bulence viscosity.  p is the pressure, and ρ is the density. 

(3)
∂Uj

∂xj
= 0

(4)
∂φ

∂t
+Uj

∂φ

∂xj
= Γ

∂2φ

∂xj∂xj
+ Sφ

k is TKE, Pk is the turbulence production term, ε   is the 
turbulence dissipation rate, Sij is the strain rate tensor, 
�ij is the rotation rate tensor, δij is the Kronecker Delta 
function.

2.3 � Dispersion modeling
Based on the airflow and turbulence solved using the 
approaches described above, this subsection describes 
the LPT and DF approaches for the simulation of particle 
dispersion.

For LPT, the position of a particle xP,i and its velocity 
uP,i are tracked by the following equation system (Eqs. 5-
6), where ρP is the particle density, dP is the particle 
diameter, CD is the drag coefficient, ReP is the particle 
Reynolds number. Ui and U ′

i  are the mean and fluctuating 
velocity of air. Here only the drag force and gravitational 
force are considered.

ReP is calculated using Eq. 7 and CD is obtained using 
Eq. 8 (Putnam, 1961).

LES directly simulates the fluctuating velocity U ′

i  in 
both space and time, while SRANS can only obtain Ui 
with turbulence represented by k and ε . The discrete ran-
dom walk (DRW) model (Eqs. 9-10) is a viable approach 

(5)
dxP,i

dt
= uP,i

(6)
duP,i

dt
=

18ρν

ρPd
2
P

CDReP

24

[(

Ui + U ′

i

)

− uP,i
]

+

(

1−
ρ

ρP

)

gi

(7)ReP =

∣

∣(Ui +U ′

i )− uP,i
∣

∣dP

ν

(8)CD =







24
ReP

�

1+ 1
6Re

2
3
P

�

,ReP < 1000

0.44,ReP > 1000

Table 1  Coefficients and source terms

φ Γ Sφ Constants and coefficients

SRANS with KL model (Kato & 
Launder, 1993)

Ui ν + νt −
1

ρ
∂p
∂xi

νt = Cµ
k2

ε
;

Pk = νt S�;

S =
√

2SijSij
� =

√

2�ij�ij

Cµ = 0.09 , Cε1 = 1.44 , Cε2 = 1.92 , 
σk = 1.0 , and σε = 1.3

k ν +
νt
σk

Pk − ε

ε ν +
νt
σε

Cε1Pkε
k

−
Cε2ε

2

k

LES with WALE model (Nicoud 
& Ducros, 1999)

Ui ν + νt −
1

ρ
∂p
∂xi

νt = (Cw�)2

(

Sdij S
d
ij

)
3
2

(Sij Sij)
5
2 +

(

Sdij S
d
ij

)
5
4

Sij =
1

2

(

∂Ui
∂xj

+
∂Uj
∂xi

)

Sdij =
1

2

(

∂Uk
∂xi

∂Uj
∂xk

+
∂Uk
∂xj

∂Ui
∂xk

)

−
1

3
δij

∂Uk
∂xi

∂Ui
∂xk

Cw = 0.325
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to construct spatial and temporal sequence of U ′

i  from 
the turbulence statistics using normal random numbers 
�i (OpenCFD Ltd., 2020).

The particle interacts with the fluid over a particle 
interaction timescale tinter with a constant  U ′

i  value. 
After each interaction time has elapsed, a new U ′

i  value is 
obtained by generating new �i values.

In an Eulerian perspective, the particle concentration 
follows a species transport equation (Eq.  11). For parti-
cles, the diffusion is only related to turbulence and Sct =1 
(B. Zhao et al., 2009).

To obtain the inertial drift velocity udrift,i = uP,i −Ui , 
the local equilibrium assumption, as described by Man-
ninen et  al. (Manninen et  al., 1996), can be adopted. 
Under this assumption, the inertial drift velocity can be 
modeled using an algebraic drift-flux model (ADF) as (E. 
M. A. Frederix et al., 2017):

However, the assumption does not necessarily hold for 
particles with large Stokes numbers (E. Frederix, 2016), 
for which the Stokes drift-flux model (SDF) should be 

(9)U ′

i = �i

√

2k

3

(10)tinter = min

(

k

ε
, 0.164

k1.5

ε
∣

∣(Ui + U ′

i )− uP,i
∣

∣

)

(11)
∂
[(

Uj + udrift,j
)

C
]

∂xj
=

∂

∂xj

(

νt

Sct

∂C

∂xj

)

(12)udrift,j = τ

(

1−
ρ

ρP

)

gi

(13)τ =
ρPd

2
p

18ρν

applied for accurate modeling of the drift velocity (E. M. 
A. Frederix et al., 2017).

2.4 � Case setup
This subsection describes the computational domain, mesh 
generation, and numerical setups of the CFD simulations.

The computational domain was set following the AIJ 
guidelines (Tominaga et al., 2008). The distances from the 
building to the inlet, the sides, and the top of the domain 
were all set as 5H, and the distance to the outlet was 10H. 
Computational grids of the three cases were generated by 
the open-source mesh generation tool snappyHexMesh. 
The cells adjacent to the building surface had a size of 
H/40. A refinement box extending streamwise from -2H 
to 4H, spanwise from -2H to 2H, and vertically from 0 to 
2H was designated to match the dimensions of the meas-
urement region. Within this refinement box, 20 levels of 
boundary layers were generated from the building sur-
face, with the first layer having a thickness of H/1500 and 
a growth rate of 1.15. The mesh maintained a size of H/40 
and was then coarsened to H/10 in a larger refinement 
box extending streamwise from the inlet plane to 6H, 
spanwise from -3H to 3H, and vertically from 0 to 3H. 
The background mesh outside of the refinement boxes 
had a cell size of H/2. The mesh sizes and boundary layer 
settings are essentially identical to the finest LES setup in 
Z. Liu et al. (Z. Liu et al., 2020) for a same 2:2:1 model. 
The mesh details are shown in Fig. 6.

The simulations were conducted in the open-source 
code OpenFOAM-v2012 (OpenCFD Ltd., 2020). The 
inlet boundary conditions for velocity (U) and turbu-
lence kinetic energy (k) were directly imposed by inter-
polating the measured profiles of the incident wind 
tunnel flow. The inlet turbulence dissipation rate (ε) 
profile was calculated from U and k using empirical 

(14)
(

udrift,j + Uj

) ∂
(

udrift,j + Uj

)

∂xj
= −

1

τ
udrift,i +

(

1−
ρ

ρP

)

gi

Fig. 6  a Overview and b regional view of mesh
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equations suggested by Mochida et al. (Mochida et al., 
2002). For LES simulation, the prescribed profiles 
were used as inputs for the inlet turbulence genera-
tor, a divergence-free synthetic eddy method (DFSEM) 
boundary condition, as provided in OpenFOAM. Sym-
metry boundary conditions were applied at the side and 
top boundaries. For building surfaces, standard wall 
functions were used. For ground surfaces, z0-type wall 
functions as suggested in Richards and Hoxey (Richards 
& Hoxey, 1993) were used in SRANS simulations while 
standard wall functions were for LES. The roughness 
length (z0) values were estimated from the measured U 
and k values closest to the ground in the incident flow 
(Mochida et al., 2002). Other boundary conditions are 
listed in Tables 2 and 3 for clarity.

To solve for LES in combination with LPT, the kin-
ematicParcelFoam solver based on the PIMPLE algo-
rithm was employed. Since LES directly resolves the 
fluctuating velocity, no DRW model was used. The 
central linear scheme was applied for gradient terms 
and Laplacian terms. For the divergence terms, A fil-
tered linear scheme was used for U. To replicate the 
measurement process using a single-wire probe placed 
perpendicular to the y = 0 plane, the effective velocity 
Ueff  is approximated as shown in Eq. 15, following the 
approach of Fischer et  al. (Fischer et  al., 2022). Since 
Uy is aligned parallel to the wire, it has a minimal effect 
on the cooling of the hotwire. In contrast, Uz is aligned 
perpendicular to the wire and therefore influences the 
cooling similarly as the primary flow component Ux . 
The simulations were run for six flow-through times in 
the computational domain with a temporal resolution 
of 40  kHz, matching the hot-wire measurements. This 
small time step of 2.5 × 10−5 s ensures an average Cou-
rant–Friedrichs–Lewy (CFL) number well below 0.1. 
The first pass allowed for a spin-up of the flow field. The 
airflow and concentration data from the subsequent 
five passes were averaged to obtain the mean and vari-
ance statistics.

(15)Ueff =

√

(U2
x + 0.01U2

y + U2
z ).

The simpleFoam solver based on the SIMPLE algo-
rithm was employed to solve for SRANS. For the diver-
gence terms, the second-order upwind scheme was used 
for U, the Van Leer scheme for k and ε. The simulations 
were of second-order accuracy. The convergence crite-
rion was 10–4 for the residuals of all the variables. Based 
on the steady-state results for the airflow and turbulence 
field, the DF models were solved using an implemented 
drift-flux solver. LPT was performed using kinemat-
icParcelFoam with a transient time-averaging process 
as was done in LES, but with a fixed airflow field, and a 
DRW model (Eq. 9) to estimate the fluctuating velocity.

3 � Results
This section presents the airflow, turbulence, and parti-
cle concentration measurements from the wind tunnel 
experiment, along with validation of LES and SRANS 
against this experimental data.

3.1 � Validation of airflow and turbulence
Figure 7 compares the effective velocity Ueff  and variance 
of effective velocity σ(Ueff ) measured using the single-
wire CTA and simulated using LES with the numerical 
probe (Eq.  15). LES accurately simulated the mean sta-
tistics of airflow and turbulence, except for minor differ-
ences above the roof height.

Since the effective velocity cannot be resolved in 
SRANS, the validated LES data was used as a reference 

Table 2  Boundary conditions for LES and SRANS

LES SRANS

Injection Prescribed velocity We Prescribed velocity We

Inlet Inflow turbulence generated by DFSEM, based on prescribed veloc-
ity and Reynolds stress profile

Prescribed U, k, and ε

Solid walls No slip with standard wall function No slip with standard wall function

Ground No slip with standard wall function No slip with z0-type roughness wall function

Sides/Top Symmetry Symmetry

Outlet Fixed for pressure and zero-gradient other quantities Fixed for pressure and zero-gradient other quantities

Table 3  Boundary conditions for DF and LPT

DF LPT

Injection Fixed value Fixed particle  
injection rate  
(107 particles/s)

Inlet Zero-gradient Reflect

Solid walls Zero-gradient Escape

Ground Zero-gradient Escape

Sides/Top Symmetry Escape

Outlet Zero-gradient Escape
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to reconstruct the full velocity components. Figures 8–10 
compare the velocity components and TKE obtained 
from SRANS and LES. In Fig. 8a, the SRANS streamwise 
velocity differs from LES results mainly in the rooftop 
and far-wake regions, indicating an inaccurate prediction 

of the separation. This is more clearly observed in Fig. 9, 
with SRANS showing a significantly overpredicted wake 
reattachment length. Figure 8b shows SRANS underpre-
dicting TKE on the roof and in the far-wake region, also 
evident in Fig. 10.

Fig. 7  Comparison of a mean effective velocity Ueff  and (b) variance of effective velocity σ(Ueff ) measured (points) and predicted by LES (solid line)

Fig. 8  Comparison of time-averaged a stream-wise velocity component, and b TKE predicted by SRANS (dashed) and LES (solid)
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3.2 � Validation of dispersion models
Figure 11 compares the simulated particle concentrations 
for dP = 1 μm to the measured values under the condi-
tion We/UH = 1. The concentrations were normalized by 
the value at the nozzle opening (C0 at point 0). Overall, 
LES was the most accurate in this case, while the other 
SRANS-based models also showed reasonable agree-
ment with the experimental data. Results from SRANS-
ADF and SRANS-SDF were identical and deviated most 
from measurements, especially downstream of the 
building (Lines G-I). The overpredicted concentrations 

indicate insufficient particle dispersion, explainable by 
the underpredicted TKE and thus νt (see Eq.  11). How-
ever, SRANS-LPT aligned well at Lines G and H, despite 
slightly underpredicting at Line I, suggesting the DRW 
suitably compensated for the low TKE here. All models 
lacked accuracy at Lines E and F.

Figure 12 compares the simulated particle concentra-
tions for dP = 1 μm and 10 μm to the measured values 
under the condition We/UH = 2. Due to uncertainties 
in the inlet concentration measurement at the nozzle 
caused by the high particle count, the concentration 

Fig. 9  Comparison of contours of time-averaged stream-wise velocity predicted by a SRANS and b LES

Fig. 10  Comparison of contours of TKE predicted by a SRANS and b LES
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above the nozzle opening (C1 at point 1) was used as the 
reference for normalization. Again, all the approaches, 
except for SRANS-ADF, showed a reasonable predic-
tion of the concentration for both particle diameters. 
In Fig.  12a, SRANS-ADF and SRANS-SDF results 
remained identical and aligned best with experiments 
in terms of peak concentrations and positions. Overall, 

LES-LPT tended to underpredict concentrations with a 
higher peak position, while SRANS-LPT overpredicted 
with a lower peak position. The estimated nozzle con-
centration by LES-LPT in this case was C0 =4.5C1, sig-
nificantly larger than the measured C0. SRANS-ADF 
and SRANS-SDF also predicted the same nozzle con-
centration value while SRANS-LPT overpredicted it.

Fig. 11  Comparison of normalized particle concentration using LES-LPT and SRANS paired with LPT, algebraic drift-flux (ADF), and Stokes drift-flux 
(SDF). We/UH = 1, dP = 1 μm

Fig. 12  Comparison of normalized particle concentration using LES-LPT, SRANS-LPT, as well as RANS with algebraic drift-flux (ADF) or Stokes 
drift-flux (SDF). a We/UH = 2, dP = 1 μm and b We/UH = 2, dP = 10 μm
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In Fig.  12b, SRANS-ADF strongly overpredicted the 
concentration, with similar values obtained for the large 
particles as for the small particles in Fig. 12a. SRANS-
SDF continued to closely match the experimental value. 
LES-LPT also predicted well, while SRANS-LPT was 
the most inaccurate, generally underpredicting the 
concentration. The estimated nozzle concentration by 
LES-LPT and SRANS-LPT in this case was close to the 
measured C0. SRANS-ADF and SRANS-SDF overpre-
dicted the value.

Figure 13 provides a visual comparison of the particle 
distributions obtained from LPT using SRANS versus 
LES. The SRANS-LPT leads to a smooth particle distri-
bution that follows an overall Gaussian profile, lacking 
detailed resolution. Many particles rise to unrealistic 
elevations in unimpeded random walks. In contrast, the 
LES-LPT particle distribution appears more realistic. 
Particles are shown to be carried by coherent turbulent 
eddies. The dispersion follows a more constrained dis-
tribution at lower elevations. This showcases the ability 
of LES to simulate particle interaction with large flow 
structures more realistically. Although SRANS-LPT 
can reasonably simulate the overall particle concentra-
tion in a statistical sense (Figs.  11, 12), the individual 
particle trajectories and reachability are questionable 
due to the simplified random-walk modeling.

4 � Discussion
The raw measurements could not directly evaluate 
SRANS models due to instrumentation constraints. 
However, the high-fidelity LES reconstructed flow fields 
and particle concentrations beyond the experiments’ limi-
tations in a complementary manner. Due to single-wire 

CTA instrumentation limitations, only positive velocity 
values could be measured, so the full three-dimensional 
velocity vector was unobtainable. Also, instrumentation 
limitations in the particle experiments prevented high-
quality measurements of particle concentrations and size 
distributions in some scenarios. The We/UH = 1 condi-
tion lacked data for 10  μm particles since the injection 
velocity was low for enough generation of DEHS parti-
cles and large particle concentrations were negligible. 
For We/UH = 2, the DEHS generator’s doubled flow rate 
caused particle concentrations to exceed the APS’s upper 
detection limit at the nozzle opening (point 0), even with 
100:1 dilution. Therefore, the second nearest point from 
the nozzle opening (point 1) was chosen instead for nor-
malization. Ideally, the We/UH = 1 case should apply con-
sistent normalization using the same point. However, 
this is not possible since the measured concentration at 
point 1 for We/UH = 1 is a near-zero value not suitable 
as a denominator. Despite the inconsistency in this nor-
malization between cases, the normalization within each 
case is consistent for the evaluated models, allowing a 
fair evaluation. This further stresses the importance of 
the LES data providing a highly feasible baseline to deter-
mine an appropriate normalization approach, enhancing 
the usability of the experimental data.

SRANS-ADF was not able to correctly model the parti-
cle drift for large particles. The calculated drift velocity is 
very small using Eq. 12. The result is almost identical to a 
passive scalar modeling of gas dispersion. So the conclu-
sions in previous studies hold only for fine particles since 
tracer gas data were employed for validation (Bahlali 
et  al., 2019; Haghighifard et  al., 2018; Oettl, 2015; Trini 
Castelli et al., 2018).

Fig. 13  Particle distribution at t = 200t0 by a SRANS-LPT b LES-LPT. Colored by particle age normalized by t0 = H/UH
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LES-LPT demonstrated consistent performance across 
the simulated cases, whereas SRANS-LPT and SRANS-
SDF showed varying tendencies between scenarios. This 
discrepancy stemmed from differences in the tracking 
mechanisms. LES-LPT did not employ a DRW model. 
Particles were dispersed solely by explicitly resolved 
eddies. Uncertainties mainly arose from resolved airflow 
and turbulence interactions between the jet, inflow, and 
building-induced flow. For SRANS-LPT, uncertainties 
originated not only from inaccurate mean airflow and 
underpredicted TKE but also from the reductionist DRW 
model approximating eddy strength and duration. For 
the simplified models, errors from multiple sources could 
cancel out or strengthen each other in a case-dependent 
manner. These compensations were not generalizable. 
Nevertheless, the simplified models were computation-
ally efficient and can be employed for rapid prediction of 
particle concentrations.

In this experiment, particles were injected from a 
high-speed roof-stack jet. Whether the conclusions hold 
for other scenarios, such as ground-level releases in the 
building wake, remains an open question. Future stud-
ies will conduct additional experimental investigations 
across more scenarios.

5 � Conclusions
This study conducted wind tunnel measurements of air-
flow, turbulence, and particle dispersion around a single 
low-rise building. Large eddy simulation (LES) validated 
by the measurements was used to expand the data. Eule-
rian and Lagrangian methods paired with steady Reyn-
olds-averaged Navier–Stokes (SRANS) were evaluated 
for predicting outdoor particle dispersion. This study led 
to the following findings:

LES had superior accuracy for modeling airflow, tur-
bulence, and particle dispersion around a single building. 
The high time-resolution transient simulation enabled 
replicating the measurement process of the single-wire 
CTA and helped infer the high concentrations around the 
injection nozzle that could not be directly measured in 
the experiment.

SRANS had lower accuracy for predicting airflow and 
turbulence around the low-rise building, featuring an 
extended wake recirculation zone and underpredicted 
TKE. However, in this case, these inaccuracies did not 
prevent SRANS from generating accurate particle con-
centration predictions when Lagrangian particle tracking 
(LPT) was used. The predicted concentration was close 
to the LES prediction. However, the individual particle 
trajectories and reachability are questionable due to the 
simplified random-walk modeling.

For the Eulerian drift-flux simulations based on the 
SRANS results, the Stokes drift-flux model accurately 

predicted the dispersion of both small 1-micron and 
large 10-micron particles downstream of the stack. The 
algebraic drift-flux model accurately predicted the dis-
persion of the small particles but failed for the large par-
ticles. Proper drift modeling was essential for Eulerian 
prediction in this case, especially for the particles with 
large Stokes numbers.
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