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Abstract
Improving three-dimensional (3D) localization precision is of paramount importance for super-resolution imaging. By
properly engineering the point spread function (PSF), such as utilizing Laguerre–Gaussian (LG) modes and their
superposition, the ultimate limits of 3D localization precision can be enhanced. However, achieving these limits is
challenging, as it often involves complicated detection strategies and practical limitations. In this work, we rigorously
derive the ultimate 3D localization limits of LG modes and their superposition, specifically rotation modes, in the
multi-parameter estimation framework. Our findings reveal that a significant portion of the information required for
achieving 3D super-localization of LG modes can be obtained through feasible intensity detection. Moreover, the 3D
ultimate precision can be achieved when the azimuthal index l is zero. To provide a proof-of-principle
demonstration, we develop an iterative maximum likelihood estimation (MLE) algorithm that converges to the 3D
position of a point source, considering the pixelation and detector noise. The experimental implementation exhibits
an improvement of up to two-fold in lateral localization precision and up to twenty-fold in axial localization precision
when using LG modes compared to Gaussian mode. We also showcase the superior axial localization capability of
the rotation mode within the near-focus region, effectively overcoming the limitations encountered by single LG
modes. Notably, in the presence of realistic aberration, the algorithm robustly achieves the Cramér-Rao lower bound.
Our findings provide valuable insights for evaluating and optimizing the achievable 3D localization precision, which
will facilitate the advancements in super-resolution microscopy.

Keywords: 3D localization, Multi-parameter estimation, Maximum likelihood estimate, Laguerre–Gaussian modes,
Quantum Fisher information

1 Introduction
Precise three-dimensional (3D) localization is essential for
a variety of advanced microscopy techniques, including
defect-based sensing [1, 2], multiplane detection [3, 4],
single-particle tracking [5–7]. Especially, as the position
of individual fluorophores can be determined with a pre-
cision smaller than the size of the point spread function
(PSF), a super-resolution image can be assembled from
the estimated positions of the sufficient fluorescent labels
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[8–11], to avoid the Abbe–Rayleigh criterion [12, 13]. The
effective achievable resolution is closely related to the pre-
cision of individual fluorophore localization. The 3D lo-
calization is intimately connected to multi-parameter esti-
mation. Therefore, the advantages of these techniques are
better understood in the multi-parameter framework.

Building upon the pioneering work of Tsang and cowork-
ers in quantifying far-field two-point super-resolution
[14–16], the ultimate precision limits of single point
source’s localization have been extensively investigated
[17–19]. The basic idea is to exploit the quantum Fisher
information (QFI) and associated quantum Cramér-Rao
bound (QCRB) [20, 21]. Its theory proves to be effec-
tive in establishing under which conditions systems may
be preferable to estimate parameters. Common imag-
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ing strategies rely on complicated experimental setups
to achieve the quantum-mechanical bound, such as in-
terferometer arrangement [22, 23], mode sorter [24, 25],
and spatial-mode demultiplexing (SPADE). The multi-
parameter cases often involve trade-off relations among
the uncertainties on the parameter, since the total infor-
mation has now to be apportioned [26, 27]. This makes
the multi-parameter optimization problem more involved
and more intriguing.

Given the close relationship between QFI and the char-
acteristics of the light field, precision can be significantly
enhanced by modifying the system’s response, such as
through PSF engineering [28–30]. Recent studies have
demonstrated the immense potential of LG modes, as
opposed to conventional Gaussian mode, for improving
3D localization precision [31]. The superposition of LG
modes, specifically the rotation mode characterized by
their intensity profiles that rotate on propagation, fur-
ther enhances the ultimate precision of axial localization.
Moreover, the ultimate axial precision of LG modes can
be achieved with intensity detection [32, 33]. The simplic-
ity and feasibility of intensity detection make it extremely
valuable for microscopy applications, circumventing po-
tential systematic errors and losses inherent in complex
strategies delineated previously [34]. However, practical
intensity detection introduces pixelated readouts and in-
herent detection noise, which can compromise the theo-
retical advantages offered by this simple optimal strategy.
Therefore, rigorous mathematical analysis and robust lo-
calization algorithms are necessary.

In this work, we rigorously derive the ultimate 3D lo-
calization limits of LG modes and rotation modes in the
multi-parameter estimation framework. We investigate
the accessibility of these limits under ideal intensity de-
tection conditions. Furthermore, we consider the practical
limitations imposed by finite pixel size and various detec-
tor noise sources. Taking these factors into account, we
develop a robust maximum likelihood estimation (MLE)
algorithm that iteratively determines the 3D position of a
point source. Our algorithm robustly achieves the CRB un-
der low signal-to-noise ratio (SNR) and aberrational con-
ditions. Moreover, it is not limited to symmetric PSFs, but
can be extended to accommodate anisotropic PSFs, as well
as diverse noise statistics. In this manner, we present com-
prehensive theoretical and experimental evidence aiming
at exhibiting remarkable super-localization capabilities fa-
cilitated by LG and rotation modes.

2 Theoretical framework
Localization can be regarded as a multi-parameter estima-
tion problem, aiming to determine the 3D coordinates of
a point source in the image space, as depicted in Fig. 1(a).
Assuming an initial state denoted by |�(0)〉 in the image

Figure 1 (a) Schematic illustration of the 3D localization of a point
source with an optical microscope-based imaging setup. (b)
Schematic illustration of the lateral intensity profiles variation with the
rotation mode at different axial positions

space, the 3D displacement can be described by a unitary
operation:

|�̃(xe ,ye ,ze)〉 = exp(–iĜzze – ip̂xxe – ip̂yye)|�(0)〉. (1)

Here, the operators p̂x = –i∂x and p̂y = –i∂y represent the
lateral displacement as momentum operators, and the ax-
ial displace operator is denoted as Ĝz = –i∂z = 1

2k ∇2
T + k,

where k is the wavenumber and ∇2
T = ∂xx + ∂yy. These

operators commute with each other, enabling simultane-
ous measurement of these unknown parameters [35, 36].
Through the aforementioned approach, the state in the im-
age space, represented by ρθ = |�̃〉〈�̃|, is parameterized
with point source 3D coordinates θ = (xe, ye, ze). The im-
age is a magnified replica of the state |�(x′ ,y′ ,z′)〉 in the ob-
ject space [37]. The estimation of 3D coordinates of the
object requires a parametric transformation related to the
magnification factor of the system.

To proceed further, we consider a shifted normalized LG
mode, with a transverse field in the detection plane, given
by [38]
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where r2 = (x–xe)2 +(y–ye)2, φ = (x–xe)/(y–ye), L|l|
p [· · · ] is

the generalized Laguerre polynomial defined by azimuthal
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index l ∈ Z and radial index p ∈ Z
+. The transverse field

distribution is determined by the beam waist radius w0 and
the Rayleigh range zR through R(z) = (z – ze)[1 + ( zR

z–ze
)2],

w2(z) = w2
0[1 + ( z–ze

zR
)2], ζlp(z) = (2p + |l| + 1) arctan( z–ze

zR
) and

zR = πw2
0

λ
. To streamline the derivation, we redefine the co-

ordinate system with the detection plane serving as the
origin, denoted as z = 0 and ze represents the distance be-
tween the detection plane and the focal plane.

The 3D localization precision is quantified by the co-
variance matrix Cov(�, θ̃ ) of locally unbiased estimators,
which is lower bounded by Cramér-Rao bound (CRB) and
QCRB:

Cov(�, θ̃ ) ≥ 1
N
F (ρθ ,�)–1 ≥ 1

N
Q(ρθ )–1, (3)

where N is the number of system copies related to the ef-
fective photon counts in each frame. The associated classi-
cal Fisher information matrix (CFIm), denoted asF (ρθ ,�)
is defined by

Fij(ρθ ,�) =
∑
Xk

1
P(Xk|θ )

∂P(Xk|θ )
∂θi

∂P(Xk|θ )
∂θj

, (4)

where P(Xk|θ ) is the conditional probability density of
observing an outcome Xk depending on the underlying
3D position θ of the source, and a specific measurement
�. The associated QFI matrix (QFIm), denoted as Q(ρθ ),
gives the maximum of the CFIm. In the case of pure states,
as is the situation we consider, the QFIm is four times the
covariance matrix of the generators, which consists solely
of diagonal entries.

The axial QFI for arbitrary LG modes has been recently
worked out in Ref. [33], we extend the results into a 3D
scenario, which can be expressed as:

Qx,y =
4(2p + |l| + 1)

w2
0

,

Qz =
2p(p + |l|) + 2p + |l| + 1

z2
R

.
(5)

The lateral QFI exhibits a linear dependence on p, while
the axial QFI shows a quadratic dependence on p, high-
lighting the significant role of the radial index in effectively
enhancing 3D localization precision. These findings are
consistent with the numerical results presented in Ref. [31]
for low-order LG modes. Notably, the LG00 mode is the
Gaussian mode, serving as a classical benchmark for com-
parative analysis.

While LG modes exhibit trivial divergence during prop-
agation, more intricate intensity transformations can be
achieved by superposing different LG modes. In particular,
when employing a set of M constituent LG modes that sat-
isfy the relation [(2p + l)j+1 – (2p + l)j]/[lj+1 – lj] ≡ const ≡ V

for j = 1, 2, . . . , M – 1, the resulting intensity pattern ex-
hibits anisotropy (with non-circular symmetry) and un-
dergoes rotation during the propagation [39, 40]. As il-
lustrated in Fig. 1(b), the overall rotation angle from the
waist to the far field is given by 
φ(ze = ∞) = Vπ/2, and

φ(ze = –∞) = –Vπ/2. Notably, half of 
φ is obtained at
the Rayleigh range. These PSFs offer a wider range of ap-
plications in super-resolution imaging due to their supe-
rior localization precision compared to circular symmetric
PSFs [11, 41, 42]. To provide a clear physical intuition, we
consider the simple example of the superposition of two
LG modes (M=2) with l �= l′ and p = p′ = 0. The 3D QFI for
rotation modes can be determined as follows:

Qx,y =
2(|l| + |l′| + 2)

w2
0

,

Qz =
[4 + 2(|l| + |l′|) + (|l| – |l′|)2]

z2
R

.
(6)

In contrast to the quadratic precision improvement in the
axial localization, the lateral QFI is obtained by summing
up the contributions from individual modes.

Typically, the QFI is distributed between the phase and
intensity variations of the measured beam. Remarkably, by
discarding the phase information, the full axial QFI can
still be extracted [33]. This result prompts us to investi-
gate the efficacy of intensity detection in achieving ulti-
mate 3D localization precision. When ideal detection con-
ditions are assumed, i.e. a detector of infinite area without
pixelation and no additional noise sources except for shot
noise, the intensity detection projects the quantum state
onto the eigenstates of spatial coordinates, represented as
�x,y = |x, y〉〈x, y|. In consequence, the probability density is
P(Xk|θ ) = Tr(ρθ�x,y) = |�̃(xe ,ye ,ze)|2, which corresponds to
the (normalized) beam intensity |LGlp|2. The summation
in Eq. (4) transforms into a two-dimensional integral over
the spatial domain. For LG modes, after a lengthy calcula-
tion, the ideal CFI can be expressed analytically as follows:

Fx,y(ze) =
4(2p + 1)

w(ze)2 ,

Fz(ze) =
4[2p(p + |l|) + 2p + |l| + 1]

R(ze)2 .
(7)

These results are plotted in Fig. 2. Two detection planes
can be found, where full axial QFI and a portion of lat-
eral QFI can be extracted. In the case of certain LG modes
with |l| = 0, the lateral CFI can reach the QFI at the beam
waist, Fx,y(0) = Qx,y, while the axial CFI can reach it at
the Rayleigh range, Fz(±zR) = Qz . Intuitively, the preci-
sion of axial localization depends on the beam divergence,
which determines the rate of beam width variations during
propagation. The precision of lateral localization benefits
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Figure 2 The (a) lateral CFI and (b) axial CFI for ideal intensity
detection as a function of the distance between detection plane and
the focal plane. The average lateral CFI of the rotation mode is
equivalent to that of LG00. The horizontal dashed lines indicate the
QFI of each mode. Each curve is normalized to the QFI of LG00

from sharpness of the wave packet. By increasing the ra-
dial index p, the sharpness and the beam divergence are
enhanced [43], leading to an improvement in the preci-
sion of 3D localization. However, as the azimuthal index
l is increased, a central dark spot emerges and expands in
size. Although this leads to increased divergence, it fails
to enhance the sharpness of the beam, thereby hindering
improvements in the precision of lateral localization. In
the case of rotation modes, we consider the superposi-
tion of LG00 and LG20 modes as a representative exam-
ple. Numerical analysis suggests that only a small frac-
tion of the 3D QFI can be extracted with intensity detec-
tion. As this specific category lacks radial information, the
average lateral CFI is equivalent to that of the LG00, see
Fig. 2(a). However, the non-stationary rotation behavior
significantly enhances axial CFI in the near-focus axial re-
gion compared to single LG mode, as shown in Fig. 2(b).
These results also underscore the significance of develop-
ing quantum-inspired strategies, such as SPADE or mode
sorting techniques, to reveal all information about the pa-
rameter. Comprehensive derivations of the QFIm and ideal
CFIm are included in the Additional file 1.

We then incorporate the deteriorating effects in the de-
tection process and present our MLE algorithm. Previ-
ous studies have demonstrated that the localization algo-
rithms based on MLE can asymptotically approach the
CRB for a few specific scenarios [44–46], outperform-
ing nonlinear least squares (NLLS) algorithm [47]. How-
ever, discrepancies between the variances of MLE and the
precision predicted by the CRB have been observed in
the presence of model mismatches and misspecifications
[25, 46], such as inaccurate noise statistics, PSF mismatch,
optical aberrations, and low SNR. These limitations stem
from the fact that existing localization MLE algorithms
make simplified statistical assumptions for specific sce-
narios, which inspires us to improve the robustness and
generalisability of MLE algorithms by adopting a more re-
fined statistical model. In the case of pixelated intensity
detection, the measurements can be described as �Ak =∫

Ak
|x, y〉〈x, y|dx dy. The readout counts in the kth pixel en-

compass the integrated photon counts Nk and contribu-
tions from detector noise, which can be expressed as:

Xk = N
∫

Ak

|�̃(xe ,ye ,ze)|2 dx dy + Nb + Nc. (8)

The photon-electric conversion process in the CCD cam-
era distorts the effective photon counts, resulting in two
types of detection noise. The term Nb represents signal-
independent noise, including background fluorescence,
dark current, and readout noise. On the other hand, the
variance of Nc positively correlates with the signal and
arises in the electron amplification process [48]. The SNR
is determined by the ratio of the average effective photon
counts to the noise present at each pixel. These statisti-
cal assumptions have been successfully applied in weak
measurement scenarios with limited SNR and detector dy-
namic range [49, 50].

Based on the statistical model mentioned above, we de-
scribe the MLE algorithm to estimate the parameters with
the likelihood function:

lnL(�X|θ ) =
∑

k

lnP(Xk|θ ). (9)

The estimated results, denoted as θ̂ , maximize the likeli-
hood function. We employ the scoring method to itera-
tively update the parameter estimates using the inverse of
the CFIm and the derivative of the likelihood function:

θ̂n+1 = θ̂n + F (ρθ ,�Ak )–1 ∂ lnL(�X|θ )
∂θ

∣∣∣∣
θ=θ̂n

. (10)

The iterative update scheme is similar to previous ap-
proaches in Refs. [46, 51], but improves iteration stability
and reduces computational complexity [52].

For a system with unknown w0, the algorithm simulta-
neously estimates three unknown parameters: θ = (xe, ye,
w(ze)). We assume the nominal axial distance is known,
and the estimated beam width is used to determine the
system’s w0 and zR. The lateral variance var(x̂e, ŷe) can be
directly calculated, while axial var(ẑe) can be derived us-
ing error propagation var(ẑe) = var(ŵ(ze))/[∂ze ŵ(ze)]2. If the
system is fully pre-calibrated with a known w0, the algo-
rithm can estimate ze instead of w(ze) with slight modifi-
cation to handle anisotropic PSF, enabling direct 3D posi-
tion estimation, as demonstrated in the following rotation
mode experiment.

3 Experiment
3.1 Experiment setups

To validate our theoretical framework, we conducted
experimental 3D localization using imperfect Gaussian
mode, LG modes, and the rotation mode. The experimen-
tal setup is schematized in Fig. 3. In these experiments, we
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Figure 3 Experimental setups for 3D localization of a point source. The notations used are as follows: (N)PBS, (non) polarized beam splitter; BE, beam
expander; SLM, spatial light modulator; AS, aperture stop; HWP, half-wave plate; BD, beam displacer; ICCD, intensified charge-coupled devices. A
detailed description of the functions performed by modules (a)-(c) can be found in the text. (d) Measured intensity patterns with cross sections
(asterisk) and corresponding fitted profiles (solid curves)

use the focus beam waist as a simplified point source real-
ization.

We first assess the performance of the MLE algorithm
in the presence of model mismatches and misspecifica-
tions by 3D localizing an imperfect Gaussian mode. A He–
Ne laser at wavelength λ = 633nm serves as the Gaussian
source. A single lens in Module (b) is utilized to form the
image, which leads to a beam waist w0 = 77.48μm and
corresponding Rayleigh range zR = 29.8mm. The spatially
unfiltered laser and the spherical aberration of the image
system lead to the imperfection of Gaussian mode [53].
A sequence of images is captured at different axial posi-
tions using a scientific ICCD camera (Andor, iStar CCD
05577H) with pixel size 13μm×13μm. The axial positions
range over a span of 60mm with an interval of 3mm. At
each position, we acquire 600 intensity images. The pre-
calibration noise are characterized by Nb ∼N (515.6, 7.12)
and Nc ∼ N (0,σ 2

c ). Here, ln(σ 2
c ) = 1.4 ln(Nk) – 0.7 and Nk

represents the effective photon counts per pixel. It is worth
noting that while Gaussian noise aligns with our CCD re-
sponse calibration, other statistical distributions can also
be accommodated in the algorithm. The effective photon
counts per image are approximately N = 1 × 104, obtained
by subtracting the detector noise from the total readout.
These conditions reflect the typically low SNR encoun-
tered in real microscopy scenarios.

We then compare the 3D localization precision of LG
modes and the rotation mode, demonstrating their super-
localization capabilities. The desired PSFs are generated
using a double-fourier transform optical setup, as depicted
in Module (a). Computer-generated holograms (CGH) are
imprinted onto the SLM (Meadowlark Optics, P1920-400-
800-HDMI), with the desired first-order diffraction se-
lected by a 4f system [54–56]. The waist radius of CGHs

Figure 4 Comparison between the 3D localization precision of
imperfect Gaussian mode for (a) xe (b) ye and (c) ze position using
different MLE algorithms. The theoretical results (lines) are determined
by the CRB and the experimental results (points) are obtained using
MLE

is uniformly set to 500μm. The second lens of the 4-f sys-
tem is slightly displaced from the focal plane to ensure
proper beam focusing. The modulation efficiency of the
SLM is adjusted by an HWP. To mitigate the adverse im-
pacts of beam jitter and turbulence, an additional HWP
and a BD in Module (c) are employed to create two copies
of the output beam, namely the left and right beams. These
negative effects have less impact considering the previous
single-lens imaging systems. By subtracting the estimation
results obtained from two replicated beams, we obtain the
final variance var(θ̂ ) = var(θ̂left – θ̂right)/2. To ensure a fair
comparison, the different modes are normalized to have
the same effective photon counts. Each stack is comprised
of 200 images. An overview of the measured (normalized)
intensity patterns is summarized in Fig. 3(d). The model
mismatch is characterized by the deviation from the ideal
lateral intensity distribution and beam divergence, as dis-
cussed in detail in the Additional file 1. The results indi-
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cate that the imperfect Gaussian mode exhibits a severe
model mismatch compared to modes generated through
the 4f system.

The 3D localization precision is quantified by the covari-
ance matrix. As the matrix contains only diagonal entries,
the variance of each estimator is sufficient to measure the
precision. To obtain error bars for the variances, we di-
vide the raw data into 20 groups assuming repeated exper-
iments.

3.2 Experiment results
The experimental results related to imperfect Gaussian
mode are summarized in Fig. 4. Our algorithm is re-
ferred to as Model A. As a comparison, we employ an-
other widely used localization MLE algorithm, referred
to as Model B, as described in Ref. [46]. The key dis-
tinction between the two models lies in Model B’s con-
sideration of a Poisson noise source Nb while neglect-
ing the contribution of Nc. Additionally, Model B treats
N and Nb as unknown parameters, and offers direct es-
timation of θ = (xe, ye, w(ze), N , Nb). As the sub-CFIm of
θ = (w(ze), N , Nb) contains non-diagonal entries, N and Nb
can often be thought of nuisance parameters [57].

As illustrated in Fig. 4, the ultimate localization precision
is given by the QCRB, while CRB of ideal intensity detec-
tion reaches QCRB at the focus and the Rayleigh range.
The presence of noise diminishes the precision achievable
with the ideal CRB. To address this issue, the practical CRB
can be obtained using the statistical models, as discussed
in detail in the Additional file 1. With increasing the dis-
tance between the detection plane and the focal plane, the
SNR decreases, widening the gap between the practical
CRB and the ideal one. By employing a more refined sta-
tistical model, Model A accurately predicts the CRB. Con-
versely, Model B provides a significantly non-tight CRB
due to noise misspecification, specifically the Poisson as-
sumption overestimating the variance of the noise. Both

algorithms obtain similar precision in the lateral direction,
see Fig. 4(a)-(b). However, as the distance increased, sub-
stantial discrepancies in the variance of axial localization
become apparent, as shown in Fig. 4(c). We infer that these
discrepancies may be attributed to nuisance parameters
and model mismatch, which often result in reduced al-
gorithm precision [47, 58]. The inaccurate estimation of
w(ze) occurs due to the biased estimations of N and Nb
when there exist PSF mismatches caused by aberrations
(Fig. S2(a) (Additional file 1)). The limitation of Model B in
achieving the axial CRB has also been observed in previous
works [25, 46]. These results align with our intuition that
a more refined model, taking into account more charac-
teristics of the experimental apparatus, enhances the algo-
rithm’s precision and robustness against model misspeci-
fication and mismatches.

The experimental results of 3D localizing a set of LG
modes are presented in Fig. 5(a)-(c). The images are cap-
tured at 10μm intervals within a 100μm range, while the
Rayleigh range is approximately 52.71μm. By ensuring
modulation accuracy and efficiency, continual improve-
ment in 3D localization precision can be achieved us-
ing higher-order modes. Specifically, for the highest-order
mode LG12 generated in our experiment, the variance of
the lateral localization is 0.86 × 10–3mm2 and the variance
of the axial localization is 0.25 × 103mm2. In comparison,
the LG00 mode, which serves as the classical benchmark,
achieves a lateral localization precision of 2.03×10–3mm2

and an axial localization precision of 7.28 × 103mm2 un-
der the same detection conditions. The results exhibit a
enhancement of up to two-fold in lateral localization pre-
cision and up to twenty-fold in axial localization preci-
sion when employing LG modes. However, the deleteri-
ous effects of pixelation and noise will be exacerbated in
higher-order modes (Fig. S4 (Additional file 1)). It is im-
perative to assess these potential limitations in order to

Figure 5 Experimental results of LG modes and the rotation mode with the lateral localization precision of (a) LGl=0,p={0,1,2} modes and (b)
LGl=1,p={0,1,2} modes as well as the axial localization precision of (c) LGl={0,1},p={0,1,2} modes and (d) the rotation mode. The theoretical results (lines) are
determined by the CRB and the experimental results (points) are obtained using MLE
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achieve the anticipated precision improvement. Addition-
ally, we present the results of the axial localization exper-
iment for the rotation mode in Fig. 5(d), along with the
constituent modes LG00 and LG20. Instead of changing the
axial distance of the detector plane, a series of holograms
are utilized to simulate the propagation of the light field.
By performing a pre-calibration of the beam waist, our al-
gorithm enables direct estimation of 3D coordinates. In
the vicinity of the focal plane, the CFI of LG modes ap-
proaches zero, with their lateral intensity distributions sel-
dom changing during propagation. Moreover, the likeli-
hood function of LG modes exhibits the same values in
two axial positions, leading to an ambiguous axial posi-
tion estimate of ±z. In contrast, rotation modes exhibit a
unique and easily detectable rotation angle 
φ(ze) as they
propagate [33, 39]. This characteristic eliminates the am-
biguity of ±z and greatly improves the precision of axial
localization. The experimental results highlight the excep-
tional precision in the axial localization achieved with the
rotation mode in the near-focus region, surpassing that of
the LG modes.

4 Conclusion
In summary, our research provides both theoretical and
experimental evidence showcasing the exceptional poten-
tial of LG and rotation modes for 3D super-localization.
To address practical challenges, we develop an iterative
MLE algorithm that effectively estimates the 3D positions
of point sources with the best possible precision deter-
mined by the CRB. By incorporating a refined noise statis-
tic model, our algorithm improves the robustness and gen-
eralizability of the localization process, offering significant
advantages in scenarios with low SNR and aberrations.

While higher-order or intricate superposition modes
demonstrate theoretical advantages in ideal intensity de-
tection, practical experimental imperfections pose chal-
lenges in realizing these benefits with PSF engineering
and intensity-based strategies. Therefore, when exploring
and optimizing the final effective resolution, the practi-
cal CRB provided by our algorithm can serve as a reli-
able benchmark for evaluating precision improvements.
Our work builds a bridge between the quantum estima-
tion framework and practical microscopy algorithm, fos-
tering promising advancements in 3D super-resolution
microscopy.
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https://doi.org/10.1007/s44214-023-00047-9.
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