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Abstract 

Ventilation efficiency or contaminant removal efficiency is often evaluated using 
the ratio between the concentrations in the exhaust air and the room air. This ratio 
does not truly represent the expectation of ventilation in restrooms, where dynamic 
airflow fields and sources are more typical. This study focuses on a short-term (10 
min) pollutant removal percentage in a residential restroom featuring a dynamic 
airflow field, particularly with the onset of window-induced stack ventilation dur-
ing toilet uses. Thirteen ventilation scenarios of a residential restroom were studied 
using the numerical method that was validated by a mock-up experiment. The 
scenarios differed in the operation of the exhaust fan and window. Results show 
that the 10-min pollutant removal percentage of a typical exhaust ventilation sys-
tem at 10  h-1 air change rate (ACH) is only 68.5%. Under exhaust ventilation, opening 
the window can introduce both adverse short circuit and favorable stack ventila-
tion depending on the difference between the indoor and outdoor temperatures. 
As the temperature difference increases from 0 to 12.5 °C, the removal percentage 
increases from below 50%, a drop due to short circuit, to above 98% thanks to a tripled 
ventilation rate. The human thermal plume has notable effect on the removal percent-
age, but its effect can be neglected with the presence of stack ventilation. The hybrid 
ventilation strategy has impact on perceived air quality and thermal comfort. When 
the outdoor air is colder, opening the window under exhaust ventilation may increase 
the current sitting user’s exposure to the self-produced pollutants but can reduce 
the exposure of the next immediate standing user. In addition, opening the window 
in cold days will make the toilet user thermally uncomfortable with reduced local 
temperatures and increased airflow velocities. The study highlights the importance 
of using the short-term removal percentage to evaluate the performance of restroom 
ventilation.

Keywords: Removal percentage, Stack ventilation, Residential restroom, Hybrid 
ventilation, CFD

Introduction
Indoor air quality (IAQ) is important to the health and well-being of occupants 
(Rueda López et al. 2021; WHO 2010). Despite the large amount of IAQ studies on 
indoor spaces in general, some specific spaces have been paid less attention, such as 
garages, attics, or basements. One of such spaces is the restroom space. Restrooms 
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are large in number and are among the most frequently used indoor spaces in a per-
son’s daily life. In addition to unpleasant odorous gaseous pollutants (Sato et al. 2002), 
restrooms are also potential sources of bioaerosol contaminants (Gerba et al. 1975). 
In the recent worldwide pandemic, many restrooms were found heavily contaminated 
with bacteria and viruses (Dancer et al. 2021; Ding et al. 2020; Hu et al. 2020). These 
types of pathogens, mostly resulted from the vomit and excrement of virus-infected 
persons (Chen et al. 2020), can survive for a long time in the restroom environment 
(Johnson et al. 2013). Toilet flushing and hand washing actions produce droplet nuclei 
that can carry these pathogens into the air (Ali et al. 2022; Barker and Jones 2005; Luo 
et al. 2023). Subsequent infection can occur if these airborne pathogens are not disin-
fected or removed by the ventilation system (Cai et al. 2020; Cao et al. 2022; Lee and 
Tham 2021; Wang and Liu 2021).

Ventilation remains as an effective control measure to remove indoor pollutants 
(ASHRAE 2019). Ventilation rates have a significant impact on human health(Aganovic 
et  al. 2021; Wargocki et  al. 2002). Efficient pollutant removal is a major concern of 
the ventilation design in restrooms (Lin 2021; Seo and Seouk Park 2013; Yang and 
Kim 2017). Existing building standards have prescribed minimal ventilation rates 
for restrooms. ASHRAE 62.1 specifies a low rate and a high rate of 25 L/s and 35 L/s, 
respectively, per toilet fixture for public restrooms and 12.5 L/s and 25 L/s for private 
restrooms(ASHRAE 2019). Chinese standards GB50736-2012 requires an air change 
rate (ACH) of 5  h-1 to 10  h-1 in public restrooms and no less than 3  h-1 in residential 
restrooms (MOHURD 2012).

In addition to ventilation rates, ventilation designs also specify a ventilation scheme 
with proper ventilation effectiveness, which is strongly dependent on inlet/outlet posi-
tions and source locations (Cetin et  al. 2020). For gaseous contaminant removal, the 
relative source positions in the dominant airflow path created by the ventilation system 
are important (He et al. 2005). This could also be true for the removal of bioaerosols or 
fine particles (<1 μm) (Liu et  al. 2023; Rim and Novoselac 2010; Zhao and Wu 2009). 
In restrooms, an ideal ventilation system should have exhaust fans placed as close as 
possible to the source (Mui et  al. 2017; J.-X. Wang et  al. 2022a, b; Zhang et  al. 2022). 
Removal efficiency, an indicator for the quality of supply air distribution in ventilated 
rooms, has been used to quantify the efficiency of ventilation systems in restroom spaces 
(Cetin et al. 2020; Fisk et al. 1997; Tung et al. 2010). However, whether this efficiency is 
sufficient for the ventilation performance evaluation in restrooms is debatable. Removal 
efficiency, based on the ratio of the exhaust concentration to the supply concentration, 
indicates how well the space is ventilated compared with the perfect mixing condition. 
It does not tell how fast the space returns to its background concentration level after an 
instant release of contaminants. In restrooms, it is more common to see instant releases 
of contaminants, such as toilet uses for feces and urine releasing (Tung et al. 2009), aero-
sol antiperspirant spraying (Seller et al. 2021), etc. Restrooms in fact require an efficient 
removal of odor in a short time frame because of the nature of usage. And in the case of 
pathogen transmissions, cross-infections can occur in a very short time. In one reported 
case, the COVID-19 infection occurred after the infected person spent only 14 seconds 
with the carrier in a public restroom (Zhang 2021). This evidence suggests the impor-
tance of the often-neglected time factor in ventilation efficiency. In such a short time, 
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the dynamic performance of ventilation is of more interest than a steady state perfor-
mance. Therefore, restroom ventilation needs to be revisited.

Compared to public restrooms, residential restrooms receive less attention and are 
held to lower ventilation standards. The role of residential restrooms in family transmis-
sion and community transmission during pandemic are by no means less important, as 
suggested by studies on the 2003 SARS outbreak in Hong Kong’s Amoy Gardens apart-
ment complex (Yu Ignatius T.S. et al. 2004) or recent multiple community outbreaks of 
COVID-19 in Hong Kong (Q. Wang et al. 2022a, b), Guangzhou (Kang et al. 2020), and 
Seoul (Hwang et al. 2021). In China, residential restrooms usually have a window that 
opens to the outside, giving users the option to induce natural ventilation. Cold airflows 
from windows can significantly affect indoor airflow patterns (Ameen et al. 2019) and 
contaminant concentrations (Seller et al. 2021). However, few studies have explored the 
impact of window-induced stack ventilation on contaminant removal rates.

In this paper, we consider the factor of window opening and examine how window-
induced stack ventilation affects the removal rate of gaseous pollutants released during 
the toilet usage. The results may also apply to certain fine airborne pathogen-containing 
nuclei as these fine particles (< 1 μm) have similar aerodynamics in built environment 
(Ai et al. 2020; Rim and Novoselac 2010). The dynamic ventilation performance is evalu-
ated using the Computational Fluid Dynamics (CFD) method. The study is to answer 1) 
whether the common exhaust ventilation system is efficient in removing the pollutants, 
2) whether opening the window helps remove pollutants, and 3) what the impact of the 
toilet user’s thermal plume is on the pollutant removal.

Methods
Room configuration

The restroom under investigation had an internal dimension of 3.00 m (length)×1.80 m 
(width)×2.40 m (height) as shown in Fig. 1. Four boxes of different sizes were used to 
model a bathtub, a toilet, a cabin counter, and a sitting person. The ventilation system 
was composed of a ceiling exhaust, a window, a door seam, and a door vent. The ceiling 

Fig. 1 Configuration of the model restroom
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exhaust (0.10 m ×0.10 m) and the window (0.35 m ×1.30 m) were both close to the toi-
let. The door vents were two identical openings (0.6 m ×0.05 m) at the bottom part. The 
door seam, when considered, had a dimension of 0.80 m × 0.05 m. The ceiling exhaust 
was 0.83 m from the wall with the window and 0.55 m from the wall with the door. To 
simulate the odorous pollutants generated during the toilet usage, an area source (0.10 
m * 0.10 m) was located on top of the toilet box and right behind the sitting dummy.

CFD models

In the CFD models, all openings, if open, were set as zero pressure outlet. The exhaust 
was given a fixed airflow rate of 0.036  m3/s (10  h-1 ACH). The indoor temperature was 23 
℃. In the simulations involving stack ventilation, the surface temperatures of the walls 
and floor were 21 ℃ and remained constant. It was assumed that the changes in sur-
face temperature were negligible within 10 minutes because of the thermal mass. In the 
simulations without stack ventilation, the surface temperatures of the walls and the floor 
were the same as that of the room. The human dummy was present in all simulations but 
was set to 32 ℃ (Cheng et al. 2020; Liu et al. 2022) only in cases when human thermal 
plume was activated. There was a lack of data on the releasing rates of odorous pollut-
ants during toilet usages. A wide range of tracer gas emission rates (0.02 L/min to 0.30 
L/min) has been used in previous studies (Tung et al. 2010; Zhang et al. 2024, 2022). In 
this study, a releasing rate of 0.20 L/min was used. The source was on for the first 5 min-
utes and then turned off after. In the simulations of isothermal cases, the airflow field 
was solved first before the source was activated. When thermal stack was present, the 
transient airflow field and the concentration decay were solved simultaneously. Radia-
tion heat transfer was not activated to save computation time. The impact on the room 
air temperature was negligible because the temperatures of the walls, the floor, and the 
dummy body were all fixed.

A structured grid scheme was used. The grids in the near-floor region were refined to 
cope with the fast-changing velocities. The RNG k-ε model (Yakhot et al. 1992) accom-
panied by the logarithmic wall functions (Launder and Spalding 1974) was selected as 
the turbulence model because it produced validated results for the indoor environment 
(Srebric and Chen 2002). It also has been demonstrated to have fair accuracy in jet ven-
tilation system (Hu et al. 2024; Wang et al. 2023). Boussinesq approximation was used to 
account for the buoyancy forces.

A grid independence test similar to Ref. (Huang and Gong 2024) was performed at 
three grid schemes (200 k, 670 k and 1350 k) and three time-step settings (80, 160 and 
320 time-steps). More time steps were allocated to the first 6 minutes to capture the fast-
changing flow field at the start. The vertical velocity profiles at x=0.435 m, y=1.175 m 
are compared in Fig. 2(a), and the temporal concentrations and airflow velocities at the 
point x=0.435 m, y=1.175 m, z=0.050 m are compared in Fig. 2(b). Based on the results, 
the final grid number of 670 k and the setting of 160-time steps (time step = 3 s for the 
first 6 minutes, time step = 6 s for the remaining 4 minutes) were chosen.

The commercial CFD code PHOENICS was used. Thirteen scenarios (Table 1) were 
simulated to explore the effects of temperature, opening mode and thermal plume on 
removal efficiency.
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Contaminant removal efficiency, evaluated as the ratio of the room concentration to 
the exhaust concentration, is commonly used to evaluate the ventilation performance in 
restrooms (Cetin et al. 2020; Chung and Hsu 2001; Tung et al. 2009; Zhang et al. 2022). 
However, it does not tell how fast a ventilation system removes the contaminants. In 
this study, we use the removal percentage, RP, to indicate the ventilation performance. 
The RP value is simply calculated as the percentage of the total released amount that has 
been removed within the duration of interest (10 minutes):

where RP is the removal percentage, g is the releasing rate (g/min), t is the releasing 
duration (t = 5 minutes),  c10 is the average concentration in the room at the end of the 
10th minute (g/m3), and V is the volume of the room  (m3).

Experiments

For model validation purpose, a model restroom was constructed in accordance with 
Fig.  1 except that all blockages were removed. A vertical rod (cross-section: 0.047 m 
× 0.047m) was positioned with five anemometers (Swema 03+; ±0.03m/s, ±0.1℃) 
attached as shown in Fig. 3 to measure the temperatures and airflow velocities. The dis-
tance from the sensor to the rod was 0.050 m. In addition, eight T-type thermocouples 
(±0.5℃) were deployed to measure the temperatures of walls, room air, and ambient air. 
The data were recorded via NI DAQ 9213. A carbon dioxide recorder was positioned in 
the middle of the room. All temperatures and airflow velocities were recorded every sec-
ond and the  CO2 concentration was recorded every 10 seconds.

The objective was to measure the decay of  CO2 concentration in the room, which 
had an initial temperature of 10 ℃ higher than the ambient air. Before the experi-
ment, the room was heated to the desired temperature using an electric heating mat 

(1)RP = (1−
c10V

gt
)× 100%

Table 1 Simulation cases (Y = On or acticated, N = Off or de-activated)

a Temperature difference between indoor and outdoor (Only indoor temperature ≥ outdoor temperature is considered)

Case Window ΔTa Forced exhaust Human 
thermal 
plume

A N 0 ℃ Y N

B N 0 ℃ N (in the first 300 s) + Y (in the 
last 300 s)

N

C Y 0 ℃ Y N

D Y 12.5 ℃ N N

E Y 12.5 ℃ Y N

F Y 0 ℃ Y Y

G N 0 ℃ Y Y

H Y 12.5 ℃ Y Y

E1 Y 9 ℃ Y N

E2 Y 5.5 ℃ Y N

E3 Y 4 ℃ Y N

E4 Y 3 ℃ Y N

E5 Y 2 ℃ Y N
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laid on the floor. The temperature was maintained for at least three hours so that a 
fair steady state heat transfer was established between the room and the ambient air. 
Then the tracer  CO2 was introduced using dry ice. A hand fan was used to stir and 
mix the room air to obtain a uniform distribution of  CO2. Once the  CO2 level reached 
above 2000 ppm, the heating mat was removed from the room. The room was then 
sealed using duct tape and was allowed to settle for half an hour. Then the window 
cover was removed. The dynamic decay started right after the window cover was 
removed. Except for the window, all other vents were sealed in the decay test. Previ-
ously, another decay test was conducted earlier to determine the room leakage rate of 
the well-sealed restroom, and the result was 0.18  h-1.

The detailed settings are outlined in Fig. 3. It turned out to be difficult to achieve a 
uniform temperature distribution in the room. The initial temperatures at points S1 
and S2 (Fig.  3), with corresponding heights of 0.05 m and 0.15 m, were 22.9°C and 
23.7°C, respectively. Meanwhile, the temperatures at points S3, S4, and S5, with cor-
responding heights of 1.30 m, 1.90 m, and 2.10 m, were all 24.0°C.

To match the measured initial condition, the room in the CFD model was divided 
into four zones along the vertical direction so that a stratified temperature distribu-
tion could be set up. The detailed settings of thermal boundaries and initial concen-
trations are presented in Table 2.

CO2 sensor calibration and response time determination

The  CO2 recorder (Amphenol Telaire T6713, ±30 ppm ± 3% of reading) was cali-
brated against a commercial standard  CO2 gas (4020 ppm) and the background 
concentration of atmospheric  CO2 (the average monthly CO₂ level in May 2023 is 
424ppm (Ian Tiseo 2024)).

It was found later that the measured concentration lagged the simulated concentra-
tion. Therefore, the response time of the  CO2 sensor was determined. A calibration 
procedure was setup as shown in Fig. 4. First the chamber (54 L) was charged with 
 CO2 flow to reach a high concentration. The  CO2 sensor was placed in the cham-
ber. A fan was also placed inside the chamber to mix the air. Then clean airflow was 
introduced into the chamber at a constant flow rate (Seven Star D07-19F, ±1 % F.S.). 
For a well-mixing condition, the concentration decay inside the chamber can be well 
predicted. By comparing the theoretical  CO2 decay curve with the measured one, 
the response time was then obtained. Three tests were performed with their results 
shown in Table  3 and Fig.  5. Finally, an average response time  (t0=57.7 s) was then 
obtained for the sensor.

Table 2 Wall boundary conditions and initial concentrations

E Wall S Wall W Wall 
(Window)

N Wall
(Door)

Ceiling Floor Room Outside

Temperature (℃) 23.6 23.7 22.8 23.1 23.1 21.6 Fig. 3 11.2

Concentration (ppm) - - - - - - 2291 424
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Result and discussion
Validation result

The measured concentration at point A (Fig. 3), adjusted by response time  t0 = 57.7 s 
is compared with the CFD predictions in Fig. 6. The agreement is good in general. This 
suggests that the CFD model predicts the  CO2 decay with reasonable accuracy.

Airflow velocities and temperatures measured along the rod are compared with the 
simulation for the  30th,  120th,  330th, and  600th seconds in Fig.  7. The general trends 
are predicted although a noticeable difference in velocity is observed at point S2 
(H=0.15m). In the simulation, the cold incoming airflow is more confined to the 
proximity of the floor while the measured flow was thicker, resulting in higher tem-
peratures and velocities at point H=0.15 m. This indicates that the incoming cold flow 
acted more like a jet, which could not be modeled well by the RNG k-ε model.

The temporal variations of velocities and temperatures are also presented in Fig. 7 
for the lower three points. The discrepancy between the experiment and simulation 
is noticeable at point H=0.15 m. Close to the floor, the maximum airflow velocity 
reaches 0.5 m/s. Both simulation and experiment show that the flow velocity slows 
down as the room temperature drops. This is predictable because the driving force 
weakens as the difference between indoor and outdoor temperature deceases.

The reason for the discrepancy between the measured and simulated airflow veloci-
ties and temperatures at H=0.15 m is further explored. The contour plots of the air-
flow velocity at section x=0.435 m six seconds after the opening of the window are 
shown in Fig. 8. The cold jet is clearly visible as it drops down to the floor from the 
window and then moves forward on the floor surface. S2 (H=0.15 m) is at the upper 
edge of the jet, where the velocity changes rapidly, making it difficult for the model to 
capture. The velocity is particularly sensitive to the location in the z-axis direction. 

Fig. 4 Experimental configuration for the determination of  CO2 sensor response time

Table 3 Experimental parameters and the resulting values of response time

Group Flow Rate (L/s) Ambient CO2 
Concentration 
(ppm)

Initial 
Concentration 
(ppm)

Response 
Time (s)

Average Response Time t0 (s)

A 0.182 426 2855 45 57.7s

B 0.146 424 2486 62

C 0.107 433 1602 66
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As shown in Fig. 9, the simulated velocity at S6 (H= 0.10m) is closer to the measured 
velocity at S2 (H= 0.15 m) than the simulated velocity at S2, which suggests that the 
jet thickness is under-predicted. Furthermore, the initial room air in the CFD simula-
tion is assumed to be still while in the experiment it was most likely not still because 
a uniform temperature field was difficult to establish. The electric heating mat had 
left a warm spot at the floor surface after it was extracted. And this warm spot might 
not have faded away completely at the start of the measurement. These differences 

Figure 5 Decay curves of concentrations over time

Fig. 6 Decay curves of concentrations over time
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and uncertainties may contribute to the discrepancy between the simulation and the 
measurement.

Despite disparities in temperature and velocity between the measurements and the 
simulation, the CFD model predicted the trends of temperature and velocity. Especially, 
the concentrations of carbon dioxide were well predicted. Therefore, the CFD model 
is considered reliable for simulating carbon dioxide concentrations. In future studies, 
a perhaps more detailed and effective validation can be done with the help of a more 
powerful velocity measurement tool-particle image velocimetry, as demonstrated by 
Szczepanik-Scislo et al. (Szczepanik-Scislo et al. 2019).

Comparisons of removal percentage

Figure 10 presents a summary of the simulation results for eight of the cases. The values 
of the removal percentage by Equation (1) are shown in Fig. 10(a). Figure 10(b) summa-
rizes the three fates of the release pollutants (totally 2.13g): discharged amount by the 
fan, discharged amount by the window, and those remained in the room. The accumu-
lated errors in mass balances from all time steps are no more than 3.2%.

Case A represents a normal operation of the restroom with mechanical ventilation 
only. The exhaust fan provides an ACH of 10  h-1. The removal percentage at t = 10 min 

Fig. 7 Airflow velocity and temperature variations over time
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is RP = 68.5%, which suggests that approximately one third of the pollutant still remains 
in the room 5 minutes after the release ceases.

Case C is same as Case A except that the window is open as an additional inlet in addi-
tion to the door seam and vents. The removal percentage drops to only 49.6%, indicating 
that opening the window does not help remove the pollutant in the absence of ther-
mal draft. The reason for decreased efficiency can be seen in Fig. 11, which shows the 
streamlines of the fresh air from the window. The upper part of the fresh air is directly 
discharged by the exhaust fan without passing through the location of the source. This 
short-circuit of fresh air reduces the effective ventilation rate in Case C compared with 
Case A although both cases have the same ventilation rate.

Delaying the activation of the exhaust fan will reduce the removal percentage as dem-
onstrated in Case B, where the exhaust fan is turned on at t = 300 s, right after the 
release stops. The removal percentage RP = 42.6% is the lowest among the eight cases.

The removal percentages in cases D, E, and H all exceed 97%, suggesting that window-
inducted stack ventilation can effectively enhance the pollutant removal. The thermal 
plume generated by the human body also have positive effects especially when stack 
ventilation is absent. The presence of the human thermal plume increases the removal 
percentage by 14.3% when the window is closed (case G vs. case A) and by 27.5% when 

Fig. 8 Simulated velocity contour at t = 6 s

Fig. 9 Influence of point positions on airflow velocity
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the window is open (case F vs. case C). However, the effect of the human thermal plume 
on the removal percentage is negligible when there is strong stack effect at the window 
(case E vs. case H).

Discussion on the impact of stack effect

The impact of stack effect is further explored in this section. Two temperature differ-
ences contribute to the stack effect in the restroom. One is the stack effect due to differ-
ence between indoor and outdoor temperatures. The other is the human thermal plume.

Stack ventilation can be very effective in removing the pollutants. At a temperature 
difference of �t = 12.5

◦
C between the indoor and the outdoor, case E has the highest 

removal percentage of 98.4%, increased by more than 43.6% (= (98.4%-68.5%)/68.5%) 
from that of the base case (case A, 68.5%). The reasons can be seen in Fig.  12, which 
shows the velocity vectors at a section cut through the window in case A and case E. 
Two differences can be identified. Firstly, case E has a more favorable flow pattern for the 
pollutant removal. The cold air from the window flows into the room and drops towards 
the source, effectively participating in the dilution of pollutants. The dropping flow 
effectively lifts and expels the polluted air from the occupied zone towards the exhaust 
fan and the upper section of the window. Secondly, the window generates its own venti-
lation. The stack ventilation rate is highest at the beginning and then decreases as more 
cold air flows into the room and reduces the difference between indoor and outdoor tem-
peratures. The total ventilation rate under this hybrid ventilation scheme decreases from 
the initial value of 34  h-1 and gradually levels off and reaches 29  h-1 at the end of the  10th 
minute. The 10-min average ventilation rate is about 30  h-1, almost 3 times of that under 
solely exhaust ventilation. The increase in ventilation rate leads to a higher removal per-
centage. If the removal efficiency is used as the indicator, the conclusion would be dif-
ferent as this indicator only concerns with the ratio of the room concentration to the 
exhaust concentration, both decreasing over time. As shown by Tung et al. (Tung et al. 
2009) in their measurements, the removal efficiency hardly changed as the ventilation 
rates increased from 8.5  h-1 to 17  h-1. Instead, our study shows that the removal percent-
age is associated with the ventilation rate, which conforms to the common sense that 

Fig. 11 Air streamlines at plan y=1.3m in Case C at t = 30s
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ventilation rates have a considerable impact on indoor IAQ (Aganovic et al. 2021; War-
gocki et al. 2002).

The benefits of window-induced ventilation can be minimized by the possible short-
circuit when the stack effect is weak. Therefore, the effect of different temperature dif-
ferences is further investigated as shown in Fig.  13. At a zero-temperature difference, 
the removal percentage drops to below 50% from 68.5% (Case A) due to adverse short 
circuit effect. As the temperature difference increases, the removal percentage increases 
rapidly and returns back to 68.5% at approximately �t = 1.6

◦
C . The percentage reaches 

above 93% at �t = 5.5
◦
C and then starts to level off after. At �t = 12.5

◦
C , the removal 

percentage reaches above 98%.
Unlike the thermal stack at the window, the human thermal plume does not introduce 

additional ventilation and has weaker influence. Its apparent effect depends on the pres-
ence of stack ventilation. The human thermal plume has notable effect on the removal 
percentage when stack ventilation is absent at the window. When other factors are all 
equal, case G (with human thermal plume, 82.9%) is more efficient than case A (68.5%), 
and case F (with human thermal plume, 77.1%) is more efficient than case C (49.6%). 
However, when the window associated stack effect is present, the effect of the human 
plume is negligible. Case E (98.4%) and case H (98.8%) have similar values of the removal 
percentage. Fig. 14 compares the vector plots between case F (window closed) and case 
H (window open for stack ventilation).The human thermal plume favors the removal of 
the pollutant with the source located right behind the thermal plume in case F while this 
plume is suppressed by the buoyancy flow from the window in case H. Note that case 
E (without human plume) has a slightly higher removal percentage than case H (with 
human plume), indicating that the presence of human thermal plume can weaken the 
effect of the buoyancy flow from the window. This highlights the importance of plume 
locations when multiple thermal plumes are present as they will interact with each. Such 
interaction can cause negative effect on the removal percentage.

Discussion on pollutant exposure

Exposure assessment is another method to evaluate ventilation efficiency. Exposure lev-
els at two locations are calculated. The first location is the at breathing spot (height: 1.4 
m) of the sitting dummy. This exposure reflects the current user’s risk. The second loca-
tion is at the breathing level of the whole room. This exposure reflects the risk of the next 

Fig. 13 Relationship between removal percentage and temperature difference
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immediate user, who could be anywhere in the room. When the previous user leaves the 
room, the washing and walking actions will disturb the airflow and the concentration 
distribution, the modeling of which is beyond the scope of this study. For simplicity, the 
exposure is accessed without the consideration of this disturbance.

It is assumed that the preceding user spends 5 minutes in a sitting position and the 
subsequent user stays in the restroom for the next 5 minutes in a standing position. The 
average concentration for the first 5 minutes at the first location is referred to as the 
exposure of the current user. The exposure of the standing user is evaluated at three 
heights:1.5 m, 1.6 m, and 1.7 m. The concentrations at each level are averaged for the 
next 5 minutes to represent the exposure of the next user. The calculated results are 
shown in Fig. 15. It turns out that the exposure of the standing user is not sensitive to the 
breathing height. The pollutant in case B does not disperse to the breathing zone in the 
first 5 minutes in an absolutely still room, but this situation is rare in real life.

Case A represents a base case with the window closed and the absence of human ther-
mal plume. Case G represent the base case with the window closed and the presence of 
human thermal plume. When there is no stack effect, opening the window can reduce 
the pollutant exposure for both the current and the subsequent user (case C vs case A). 
This applies in a hot summer day when the ambient and body temperatures are very 
close. In reality, however, the presence of thermal plume is more common. With the 
consideration of the human thermal plume, opening the window reduces the pollutant 
exposure for the current user but will make the subsequent user inhale more pollutants 
(case F vs. case G). When there is stack ventilation, the result is slightly different. Regard-
less of whether the impact of the human thermal plume is considered, opening the win-
dow will make the current user inhale more pollutants but will significantly decrease the 
pollutant exposure of the subsequent user (case E vs. case A, case H vs. case G). In other 
words, for the current user, opening the window is favorable when it is not colder out-
side but becomes unfavorable when it is colder outside. For the subsequent user, opening 
the window is favorable when it is colder outside but can become unfavorable when it is 
not colder outside. Further analyses show that the subsequent standing user’s exposure 
change is more associated with the removal percentage because the evaluation is con-
ducted using an area-averaged concentration. In comparison, the sitting person is evalu-
ated at one particular spot. The concentration is more site specific and depends not only 
on the removal percentage but also on other factors such as vicinity to the inlet, airflow 
direction, etc. For example, the concentration at the sitting position is strongly affected 
by the dilution of fresh air from the window and at the same time, by the interaction of 
the window associated buoyancy flow and the human thermal plume.

Discussion on indoor thermal comfort and surface resuspension

The previous analyses have demonstrated that window-induced cold draft can increase 
ventilation rates substantially. This cold fresh air can cause dissatisfied thermal com-
fort to users in winter. To examine the impact of window associated thermal draft on 
the occupant’s thermal comfort, the Predicted Mean Vote (PMV) are evaluated at two 
locations in case G (exhaust ventilation with human plume but no window) and case 
H (exhaust ventilation with human plume and window draft at �t = 12.5

◦
C ). The first 

location is at the top of the head of the sitting dummy. The second location is at the 
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breathing level of a possible immediate next user, standing before the sink. The coordi-
nates of these two locations and other input parameters are given in Table 4. The deter-
mination of relative humidity can be complicated. Although the outdoor air is colder and 
drier, its relative humidity could be higher. It is possible to determine the distribution of 
relative humidity in simulation with given boundary conditions. However, the modeling 
itself would be out of the scope of this study. For simplicity, the PMV is estimated for 
a range of relative humidity (30% to 60%) using the Center for the Built Environment 
Thermal Comfort Tool, which complies with ASHRAE  55–2017, ISO 7730:2005 and 
EN 16798–1:2019 Standards (Tartarini et al. 2020). The results are shown in Fig. 16.

With mechanical ventilation only (case G), the PMV values at both locations consist-
ently remain within the thermal comfort range of -0.5 to 0.5. When stack ventilation is 
introduced (case H), the PMV values at both locations decrease considerably and fall 
outside the thermal comfort zone (PMV< -0.5). For the sitting user, the PMV values drop 
to below -1.0 shortly after opening the window. The influence of relative humidity on 
PMV values appears to be limited. The reduction in temperature and the increase in 
airflow velocity are the major drivers for the decrease of thermal comfort. Changes in 
temperature and velocity are minimal in case G with exhaust ventilation only. In con-
trast, in case H, the airflow velocity increases considerably in addition to a cold draft 
of �t = 12.5

◦
C . Fig.  17 shows the maximum airflow velocities at three surfaces: the 

floor, the top of the toilet, and the sink. These surface airflow velocities can reach above 
0.7m/s, exceeding the recommended range, typically 0.2 m/s to 0.3 m/s, for indoor air.

The higher airflow velocity also increases particle resuspension from the surfaces(Boor 
et al. 2013; Henry 2016; Henry and Minier 2014; Zhang et al. 2018). According to Liu 
et al. (Liu et al. 2020), the particle resuspension rate increases almost linearly with the 
increase of the airflow velocity. When the airflow velocity increases from 0.2 m/s to 0.7 
m/s, the risk of resuspension increases by approximately five times. With the evidence of 

Fig. 15 Average concentration of breathing zone at of different cases
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the presence of bacteria, viruses, and other pollutants on various surfaces in restrooms 
(Dancer et al. 2021; Ding et al. 2020; Hu et al. 2020; Ma et al. 2021), the health risk asso-
ciated with the pathogen resuspension by window-induced stack ventilation cannot be 
neglected.

In summary, although stack ventilation can increase the removal percentage consid-
erably, the side effect includes reduced thermal comfort and increased risks associated 
with strengthened particle resuspension. Our analyses are far from completed and com-
prehensive but highlight the importance of further studies on this topic.

Conclusions
In this study, the ventilation performance in residential restroom spaces is revisited with 
a focus on short-term contaminant removal rate in response to window opening. We 
propose to use the removal percentage in evaluating the contaminant removal perfor-
mance of restroom ventilation instead of using the conventional indicator -- removal 
efficiency. With results obtained through CFD simulations, we use this indicator to 
quantitatively evaluate the effects of window opening, exhaust fan use, indoor and 
outdoor temperature difference, and occupant thermal plume on the performance of 
restroom ventilation in removing instantly released contaminants. The following conclu-
sions can be drawn.

• The short-term pollutant removal performance of mechanical ventilation is limited. 
The 10-min removal percentage under exhaust ventilation at an ACH of 10  h-1 is 
68.5%. Opening the window causes short-circuit of fresh air and reduces the pollut-
ant removal percentage to 49.6%. When the indoor and outdoor temperature differ-
ence is less than 2 °C, window should be kept closed under exhaust ventilation.

• Window-induced stack ventilation can greatly increase the removal percentage by 
increasing the ventilation rate and by improving the airflow pattern. The removal 
percentage increases as the temperature difference increases. A removal percent-
age of over 98% is achieved at a temperature difference of 12.5 ℃.

• The human thermal plume has notable effect on the removal percentage, but its 
effect on the removal percentage can be neglected in the presence of stack ventila-
tion at the window.

• In winter, opening the window may increase the pollutant exposure to pollut-
ants generated during the toilet use for the current sitting user but can reduce the 
exposure for the next standing user. In addition, the current user may experience 
an increased cold airflow velocity and reduced thermal comfort. The maximum 
indoor airflow velocity can reach 0.6 m/s to 0.7 m/s. The predicted mean vote can 
drop to PMV= -0.9~-1.3.

Table 4 Details of PMV evaluation point

Coordinate X(m) Y(m) Z(m) Clothing level(clo) Metabolic rate(met)

Sitting 0.35 1.425 0.85 1 (typical winter indoor clothing) 1.0 (seated, quiet)

Standing 1.75 0.85 1.0 1.2 (standing, relaxed)
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• In  CO2 decay tests for CFD validation purposes, the response time of the sensor 
should be checked and calibrated if necessary.

 The addition of buoyancy-driven ventilation to exhaust ventilation in a restroom 
by opening the window can increase the short-term removal percentage consid-
erably although the adverse effects include dropped thermal comfort, increased 
exposure on the current sitting user, and risks associated with strengthened par-
ticle resuspension. Our study highlights the importance of further studies on the 
short-term evaluation of the removal percentage of restrooms.
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