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Abstract 

Indoor positioning is a critical component for numerous applications and services. However, GNSS systems face chal-
lenges in delivering accurate positioning information in indoor environments. Current indoor positioning research 
primarily concentrates on enhancing the positioning performance of individual terminals through various tech-
niques. As we transition into the Internet of Things (IoT) era, former indoor positioning methods need refinement. In 
this paper, we propose a novel indoor positioning method that leverages robots as mobile base stations to mitigate 
the problem of inadequate fixed base stations and aims to enhance positioning accuracy by incorporating pedestrian 
inertial navigation data. The process involves several steps. First, the mobile robots accurately determine their posi-
tions and performing coordinate transformations to ensure consistency with pedestrian coordinate systems. Then, 
pedestrians use the ranging information from these robots along with their smartphones’ sensors for multi-source 
fusion positioning. Finally, an Extended Kalman Filter (EKF) is applied to fuse the multiple sources of data, consid-
ering various sources of errors, to provide enhanced positioning performance. Experimental results demonstrate 
the effectiveness of this approach in addressing indoor positioning challenges. This method could benefit numerous 
scenarios involving robots, enhancing pedestrian positioning accuracy and overall system robustness. The paper 
provides a comprehensive exploration of this proposed method, its implications, and potential directions for future 
advancements.
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1 Introduction
Positioning is essential for various activities, such as navi-
gation, asset tracking, and emergency services (El-Sheimy 
and Li, 2021). As people spend a significant portion of 
their time indoors, accurate and reliable indoor position-
ing becomes increasingly important for various applica-
tions (Zhou et al., 2021).

The methods for indoor pedestrian positioning can 
currently be classified into passive techniques, utiliz-
ing existing information such as WiFi signals, RFID tags, 
and sensors, and active techniques like ultrasonic waves, 
Bluetooth Low Energy, and Visible Light Communica-
tion (Brena et  al., 2017; Lluvia et  al., 2021). Positioning 
based on solely inertial navigation system can result in 
significant data drift and accumulated errors over time. 
Researchers often counteract this by fusing the inertial 
navigation system with methods like radio frequency-
based positioning. However, these methods necessitate 
pre-installation, which not only leads to extra expenses 
but also renders them inappropriate for dynamic or 
changing environments (Pan et al., 2022).

In the Internet of Things epoch, the rise of robots 
necessitates an optimization of traditional indoor posi-
tioning systems based on fixed base stations. Robots, now 
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commonplace in settings such as shopping malls, facto-
ries, and subterranean spaces, harness their architectural 
design and a broad range of sensors to accomplish pre-
cise localization. Emerging methods of vehicle-mounted 
sensor-based global localization like LiDAR-SLAM offer 
an adaptable and pragmatic approach to environmental 
perception and robot localization in uncharted terrains. 
These techniques, rooted in the 1980s concept of Simul-
taneous Localization and Mapping (SLAM), have expe-
rienced considerable and rapid developments and stand 
on the brink of a promising future (Leonard and Durrant-
Whyte, 1991; Durrant-Whyte and Bailey, 2006).

The precise localization of robots equipped with 
radio frequency signals can be integrated with the posi-
tioning results of Pedestrian Dead Reckoning (PDR). 
This fusion becomes increasingly feasible in the con-
text of the development of smartphones with integrated 
multi-sensors. Studies on PDR have assessed step 
detection, step length estimation, heading estimation, 
and position estimation using step length and heading 
information (Zhang et al., 2022). There are many meth-
ods to range distance such as ultrasonic, WiFi RTT, 
Bluetooth. Ultra-Wideband (UWB), originated in the 
1960s, stands out for several compelling reasons: high 
interference resistance, strong penetration capablity, 
low power consumption and robustness against effects 
(Kim and Pyun, 2021). For indoor positioning based on 
the UWB system, the position of pedestrian is deter-
mined by measuring the real-time between the base 
stations and tags (Yuan et  al., 2021). The combination 

of PDR and UWB can not only mitigate the drift issues 
associated with inertial navigation, but it can also 
address the challenges of pre-installation requirements 
and occasional weak signals associated with radio fre-
quency positioning.

In a departure from indoor positioning systems 
that depend on fixed base stations, our method lever-
ages the capabilities of mobile base stations. This not 
only delivers enhanced precision with the presence of 
more stations but also ensures consistent stability in 
areas where fixed stations might be lacking, making it 
particularly effective in dynamic environments where 
conventional systems often fall short. Figure  1 is the 
diagram of indoor collaborative positioning. There 
are three robots and one user who can locate himself 
by using the robots as mobile base stations.  In this 
paper, we contribute to the field of indoor positioning 
by introducing a novel approach through human-robot 
collaboration. Our contributions are as follows:

a) Proposed a method to enhance positioning accuracy 
through human-robot collaboration when there are 
few fixed base stations.

b) Introduced an EKF algorithm that integrates PDR 
and radio frequency signals such as UWB. This 
method can effectively reduce the trajectory drift of 
PDR and the positioning error caused by UWB being 
blocked.

c) Conducted experiments in different scenarios, dem-
onstrating that the proposed methodology can 

Fig. 1 Application scenario diagram
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improve pedestrians’ positioning accuracy in human-
robot collaboration scenarios.

The structure of this paper is as follows. The related 
works are briefly reviewed in Section 2. Section 3 intro-
duces the proposed human-robot collaboration. Sec-
tion  4 provides the experimental results. Section  5 
concludes the paper.

2  Related works
2.1  Robot localization
Robot localization advancements, such as LiDAR-SLAM, 
have been crucial for operating in unknown environ-
ments since the 1980s. Its high sampling rates and resolu-
tion have led to increasing interest (Nguyen et al., 2007). 
Essential strides were proposed as the LOAM frame-
work, using consecutive laser data for robot motion esti-
mation and environment mapping (Zhang and Singh, 
2014) .The emerge of LeGO-LOAM, optimizing LOAM 
with advanced feature extraction and layered optimiza-
tion techniques for superior perception and back-end 
efficiency (Shan and Englot, 2018). Further improve-
ments were combine combining LOAM with Lidar-Iner-
tial Odometry (LIVO) for a robust real-time algorithm 
suitable for LiDARs with a small FoV and irregular sam-
pling, achieving more accurate and robust localization 
and mapping (Lin and Zhang, 2020). Additionally, LeGO-
LOAM-SC algorithm integrated LeGO-LOAM with Scan 
Context technology, enhancing performance in under-
ground coalmine environments (Xue et al., 2022).

2.2  Indoor pedestrian position
As mentioned earlier, indoor pedestrian positioning 
methods can be classified into passive and active tech-
niques, including UWB, WiFi signals, RFID tags, Acous-
tic, BLE, and Visible Light Communication. Over recent 
years, UWB technology has garnered increasing atten-
tion, a trend largely driven by the emergence of afford-
able UWB chips in the marketplace. UWB has been the 
subject of extensive research, and its capability to deliver 
centimeter-level positioning accuracy is well recognized 
(Penggang et al., 2022). With the advancement of smart-
phones, Micro-Electro-Mechanical Systems (MEMS) 
have provided a multitude of powerful sensors for indoor 
positioning. PDR is a technique that estimates position 
using gyroscopes and accelerometers (Kamisaka et  al., 
2011). This method can temporarily output relative posi-
tions, but system errors caused by orientation estimation, 
step detection, and other factors accumulate over time, 
leading to significant errors. Therefore, PDR is often 
combined with other technologies to limit error accumu-
lation (Kang and Han, 2014).

2.3  Human‑robot collaboration
Traditional research in indoor positioning primarily 
enhances individual terminal capabilities through meth-
ods like multi-source data fusion positioning and inte-
gration of dedicated positioning modules. The former 
involves synthesizing data from various sources, such 
as Wi-Fi, Bluetooth, ultrasound, or inertial sensors, to 
improve accuracy and reliability (Fischer et al., 2022). The 
latter employs specialized hardware or software mod-
ules, designed to use technologies like UWB or BLE, to 
enhance positioning capabilities (Han et  al., 2021). Fur-
ther advancements encompass techniques like employing 
artificial intelligence and machine learning algorithms for 
data processing, using real-time kinematic (RTK) systems 
for high-precision positioning (Zhang et  al., 2023), and 
leveraging unique features of the built environment for 
positioning via methods like SLAM.

In the era of the Internet of Things, traditional posi-
tioning methods are evolving towards more cooperative 
models. Collaborative Indoor Positioning Systems (CIPS) 
have transformed indoor positioning by leveraging the 
collective power of various independent actors sharing 
sensory data. The cornerstone of CIPS lies in exchang-
ing crucial positioning data from a diverse set of sensors, 
aiming to optimize the positioning of each participant 
(Pascacio et al., 2021).

Compared to traditional Indoor Positioning Systems, 
CIPS expands the coverage area while minimizing reli-
ance on costly and complex infrastructures. This inno-
vation strikes a balance between extended geographical 
positioning and cost-efficiency. Additionally, the collabo-
rative nature of CIPS and the variety of positioning data 
from different actors enhance user positioning accuracy 
and counteract the ambiguities often associated with 
sub-optimal anchor placements in conventional systems.

The advent and growing adoption of collaborative sys-
tems represent a pivotal shift in the indoor positioning 
landscape. They harness the potential of diverse sensor 
data and independent actors to deliver improved posi-
tioning accuracy and efficiency, pushing the boundaries 
of what was previously considered possible.

3  Methodology
3.1  Overview
In this section, we propose a methodology for human-
robot collaborate indoor localization. Firstly, we use the 
smartphone with accelerometer and gyroscope to per-
form step detection, step length, and heading for PDR. 
Secondly, the robot uses Lidar for positioning, followed 
by a coordinate system transformation. Then, we com-
bine the distance information measured by the robot 
with UWB for one more position estimation. Finally, we 
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propose a method of fusing position estimation through 
the EKF to obtain the final result. Figure 2 shows the sys-
tem architecture.

3.2  Proposed methodology
3.2.1  Coordinate system transformation
In order to unify the robot’s coordinate system (local coor-
dinate system) with a predefined global coordinate system, 
we perform a coordinate system transformation. This pro-
cess typically involves two steps: rotation and translation.

We first determine the rotation angle between the robot’s 
coordinate system and the global coordinate system. This 
can usually be ascertained by comparing the directions of 
the two coordinate systems. We need to rotate the robot’s 
coordinate system by this angle to align the directions of 
the two coordinate systems in order to mitigate the angle 
difference between the x-axis of the robot and the x-axis of 
the global coordinate system. The rotation matrix is given 
by:

Following rotation, we also need to translate the robot’s 
coordinate system to coincide with the origin of the global 
coordinate system. This can usually be determined by com-
paring the positions of the origins of the two coordinate 
systems. We need to translate the robot’s coordinate system 
by this distance difference between the origin of the robot’s 
coordinate system and the origin of the global coordinate 
system. The translation matrix is given by:

These two steps can be achieved by a transformation 
matrix, often referred to as a homogeneous transformation 
matrix. The form of this matrix is as follows:

(1)
cos θ − sin θ
sin θ cos θ

(2)
[

tx
ty

]

Fig. 2 System architecture
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3.2.2  UWB‑based indoor localization
For indoor positioning based on the UWB system, the 
ranging information is obtained through bidirectional 
ranging wireless communication between the base sta-
tion and the tag. The indoor positioning studied in this 
article is 2-dimensional, with the result to be solved as 
X = (xk , yk) . The positioning calculation is completed 
using 3 or more UWB base stations, and the solution 
model is given by:

where d is the distance from base station i to the user tag, 
(xn, yn) is the 2-dimensional coordinate position of base 
station i in the navigation coordinate system, (xk , yk) is 
the 2-dimensional position of the user tag in the naviga-
tion coordinate system, and �h is the height difference 
between the UWB base station and the user, which is a 
fixed value in this article, obtained by measurement.

The UWB positioning equation forms the observa-
tion equation in the EKF model. Since the original 
UWB positioning equation is non-linear, it is linearized 
and transformed into:

In the formula, Zk is the ranging time information 
vector between the base station and the user at time 
k, H is the observation matrix after linearization, Xk is 
the 2-dimensional coordinate vector at time k, and Vk 
is the observation noise vector following Gaussian dis-
tribution at time k. Its dimension is determined by the 
number of UWB base stations, and each component 
represents the stability of the ranging between each 
base station and the tag. The calculation formula for 
the linear observation matrix H is as follows:

(3)





cos θ − sin θ tx
sin θ cos θ ty
0 0 1





(4)



















d1 =
�

(xk − x1)2 + (yk − y1)2 +�h2

d2 =
�

(xk − x2)2 + (yk − y2)2 +�h2

...

dn =
�

(xk − xn)2 + (yk − yn)2 +�h2

(5)Zk = H · Xk + Vk

3.2.3  PDR
A PDR system keeps track of a user’s position in a rela-
tive manner. Given an initial position p0 , the PDR itera-
tively updates the position pk = [px,k , py,k ] of a user as 
follows:

Where px,k and py,k are respectively the x and y coor-
dinate of the user at the end of the kth step, and Lk and 
θk are respectively the length and orientation of the kth 
step. Hence, to be able to update the position, the PDR 
must accomplish the following three subtasks: 

1. Step detection The detection process is divided into 
the following three parts: 

1) ak is the acceleration value at time k. First, it is 
detected whether ak is a peak value, that is, the 
acceleration value at time k is larger than the 
acceleration values at the adjacent times k − 1 
and k + 1;

2) After successful detection, it must also satisfy 
ak > am , where am is an empirical threshold 
obtained through multiple experiments. Peaks 
below the threshold are judged as noise distur-
bances;

3) Calculate whether the time difference between 
time k and the time of the last successful step 
detection satisfies ak − astep(i − 1) > Tth , where 
astep(i − 1) is the time of the successful detection 
of the i − 1 step, and Tth is the empirical value of 
the time taken for a pedestrian to take a step.

  If all the above conditions are met at the same 
time, time k is judged as the ith step of the pedes-
trian’s walk. The figure shows the change curve of 

(6)

H = ∂h

∂X
=



















xk−x1√
(xk−x1)2+(yk−y1)2+�h2
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(7)
{

px,k = px,k−1 + Lk cos(θk),
py,k = py,k−1 + Lk sin(θk).
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the acceleration data collected during the actual 
test process, and the time threshold Tth and accel-
eration amplitude threshold ath are marked in the 
Fig. 3.

2. Step length estimation For step length estimation, 
the nonlinear step length estimation model shown in 
equation n is selected as follows: 

3. Step heading estimation The heading calculation in 
PDR depends on the heading estimation model is 
shown as follows: 

Where θk and θk−1 are the headings at times k and 
k − 1 respectively. In this article, the initial heading θ0 
is known, �T  is the gyroscope data interval time, and 
∑

ω is the sum of the gyroscope output values between 
times k − 1 and k.

Errors in the estimation of the step length Lk and head-
ing θk will eventually lead to a large drift in the estimated 
position. As a consequence, the PDR system can only 
provide very accurate incremental position updates for a 
short period.

(8)Sk = k · 4
√
amax − amin

(9)θk = θk−1 +�T ·
∑

ω

3.2.4  Data fusion strategy of human‑robot collaboration
The position vector [x y]T and the angle α between the 
heading calculated by PDR and the absolute heading of 
navigation are selected as the system estimation state. α is 
composed of two parts, one part is the angle between the 
real heading and the PDR calculated heading.

Fig. 3 Accelerometer signal results during normal walking and step detection

Algorithm 1 extended Kalman Filter for Position Estimation



Page 7 of 10Tang et al. Urban Informatics             (2024) 3:7  

After the system starts, when the installation angle 
does not change, this angle is a constant; the other part 
is the angle caused by the accumulated error of the 
sensor, this part of the angle change is related to the 
performance of the MEMS sensor and the duration of 
navigation.

The change in the position calculated by PDR, 
[

�xp, �yp
]

 , is interpolated as 
[

v
pdr
x , v

pdr
y

]

 , and the speed 
calculated directly by PDR is used as the system’s dynamic 
model information to solve the state vector estimate. 
Therefore, the 3 × 3 system state transition matrix φk is:

The EKF algorithm includes two steps, prediction and 
correction. The prediction stage is to obtain a priori esti-
mate xk and the corresponding error variance matrix prior 
value X̂k of the two-dimensional coordinate vector P−

k  
through the state equation, that is:

In the correction stage, the distance information Zk 
obtained from the UWB and tag strategy is used to elimi-
nate the error term introduced in the prediction step, and 
the posterior estimate X̂k and Pk of the calculated position 
two-dimensional coordinate vector and the corresponding 
error variance matrix are obtained, that is:

(10)xk =





xk
yk
αk





(11)

φk =





1 0 (v
pdr
x cos(αk−1)− v

pdr
y sin(αk−1))�t

0 1 (−v
pdr
x sin(αk−1)− v

pdr
y cos(αk−1))�t

0 0 1





(12)X̂−
k = AXk−1 + Ŝk · θ̂k

(13)P−
k = APk−1A

T

Finally, X̂k is the final estimate of the user’s two-dimen-
sional coordinate vector.

4  Experiment and results
4.1  Experimental setup
Our investigation carried out in an office buliding at 
Shenzhen University. The chosen venue typically exhibits 
the limitations of indoor spaces for GPS navigation, mak-
ing it a suitable testbed for our indoor positioning sys-
tem. We established three different scenarios to evaluate 
the performance of our fusion algorithm, demonstrating 
the validity of our method.

As depicted in Fig. 4, pedestrians holding smartphones 
traversed the coverage area at a uniform speed in a coun-
ter-clockwise direction. They started from the yellow 
pentagon and moved along a black dotted rectangular 
path with dimensions of 5.7m by 5.65m.

In Fig.  4a, Scenario 1 acts as the control group, with 
black triangles representing three fixed UWB base sta-
tions. The pedestrian’s position was determined using a 
fusion of PDR and UWB positioning.

Figure  4b introduces Scenario 2, where a mobile robot 
base station, represented by the green triangle and tracked 
by Lidar positioning, is added to the system presented in 
Scenario 1. The robot follows the direction indicated by 
the green arrow. The addition of the robot base station is 
plausible as the era of Internet of Things invites the use of 
robots as base stations, a move that can enhance the accu-
racy of positioning based on existing base stations.

(14)Kk = P−
k H

T
(

HP−
k H

T + R
)−1

(15)X̂k = X̂−
k + Kk

(

Zk −HX̂−
k

)

(16)Pk = (I − KkH)P−
k

Fig. 4 Experiment setup
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Finally, as shown in Fig. 4c, Scenario 3 builds upon Sce-
nario 1 by lefting only two fixed base stations and add-
ing two mobile robot base stations. Although positioning 
would typically be impossible with only two fixed base 
stations, utilizing robot base station makes our indoor 
positioning more robust, minimizing instances of posi-
tioning loss.

4.2  Performance of the human‑robot collaboration
As shown in Fig. 5a, the positioning results for Scenario 
1 demonstrate that the integrated positioning outcome 
significantly outperforms the independent UWB and 
PDR methods. The trajectory calculated using only UWB 
information occasionally aligns well with the actual path, 
yet it often exhibits considerable jumps between some 
computed points, and there are instances of missing loca-
tion data.

As illustrated in Fig.  5b, the blue line represents the 
results for Scenario 1, while the red line denotes those 
for Scenario 2. It’s apparent that the red line is closer to 
the ground truth than the blue line, indicating a more 
accurate positioning outcome, and the continuity of the 
positioning result is notably stable. Figure 5c displays the 
positioning results for Scenario 3. Here, even with only 
two fixed base stations, basic positioning capabilities are 
maintained, although there is some drift evident.

To evaluate the efficacy of our proposed method and 
provide a direct comparison with the standard scenarios, 
we use the Root Mean Square Error (RMSE), which gives 
a direct measure of how our proposed method performs 
in comparison to standard setups.

Table 1 shows the RMSE values for each method under 
Scenario 1. The regular PDR method experiences drift 
issues, resulting in an error of 6.890 meters. The regular 
UWB has an error of 1.178 meters, with challenges like 
human interference and multi-path effects in dense areas. 
Our proposed method reduces this error to 0.478 meters, 
showing a precision improvement of about 59.38% over 
regular UWB. The integration not only mitigates the PDR 
drift but also rectifies the intermittent inconsistencies 
presented by UWB.

Table 2 shows the comparison of RMSE for three sce-
narios.In Scenario 1, utilizing standard positioning with 
three fixed base stations, the error measured was 0.478 
meters. In Scenario 2, introducing an additional mobile 
base station decreased the positioning error to 0.355 
meters, marking a notable  25.7% improvement from 
Scenario 1. Scenario 3 simulates an environment with 
insufficient fixed base stations; while positioning would 
typically be unfeasible with just two fixed base stations, 
our method, incorporating two mobile base stations, 
maintained positioning with an error of 0.437 meters. 
By leveraging mobile base stations, we can substantially 
enhance indoor positioning accuracy, ensuring more reli-
able results even in settings with fewer fixed base stations.

As shown in Fig.  6, the cumulative distribution func-
tion (CDF) of position results of three scenarios. In 
the scenario 1, we found that approximately 80% of the 
localization results have an error within 0.56 meters, 
and around 90% of the results have an error within 0.68 
meters. In the Scenario 2, roughly 80% of the results are 
within 0.44 meters of error, and 90% of the results are 

Fig. 5 Positioning result

Table 1 Comparison of RMSE(m) based on different methods

PDR UWB Proposed method

RMSE 6.890 1.178 0.478

Table 2 Comparison of RMSE(m) based on different scenarios

Scenario 1 Scenario 2 Scenario 3

RMSE 0.478 0.355 0.437
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within 0.51 meters of error. In the Scenario 3, about 80% 
of the results have an error within 0.53 meters, and 90% 
of the results are within 0.62 meters of error. The effec-
tiveness of our proposed methodology is confirmed by 
the enhanced positioning performance of both Scenario 
2 and Scenario 3, where collaborative robot positioning is 
employed, in comparison to Scenario 1, which uses three 
fixed base stations.

5  Conclusion
This paper introduces a novel methodology that leverages 
robot localization to enhance pedestrian indoor position-
ing accuracy when using smartphones. The core innova-
tion lies in utilizing mobile robots equipped with UWB 
as substitutes for fixed base stations. This effectively 
addresses the prevalent challenge of insufficient base sta-
tions in many indoor settings.

The proposed approach exploits the complementary 
strengths of PDR using the inertial sensors on smart-
phones and UWB distance measurements from the 
robots. To integrate the data, coordinate system trans-
formations are first performed to unify the robot and 
pedestrian coordinate systems. Then, an EKF fuses these 
heterogeneous sources of positioning information, con-
sidering various error sources.

Experimental results validate the effectiveness of 
the proposed methodology. Three scenarios were set 
up to assess the performance of the fusion algorithm, 
demonstrating that the positioning accuracy was sig-
nificantly improved when mobile robot base stations 
were added to the system. Even in situations with only 
two fixed base stations, basic positioning capabilities 
were maintained, suggesting that the proposed method 
enhances the robustness of indoor positioning sys-
tems.The CDF of position results further attests to the 
superior performance of the proposed method. Sce-
narios incorporating collaborative robot positioning 
demonstrated improved accuracy compared to those 
with fixed base stations alone. One limitation of our 
study is that we did not consider optimizing for multi-
path effects. Additionally, the scenarios explored in 
this study may not be comprehensive enough to cover 
all possible real-world conditions. Potential areas of 
improvement for future research include node opti-
mization for multi-robot scenarios, exploring a more 
diverse range of scenarios, and improving fusion 
methods. Besides, the methods for measuring distance 
are not confined to UWB, as they also incorporate 
options such as ultrasonic, WiFi RTT, and Bluetooth 
for enhanced versatility.

Fig. 6 Comparison of CDF
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In conclusion, the research showcases a promis-
ing advancement in indoor positioning. The proposed 
method harnesses the potential of human-robot collab-
oration, leading to improved positioning accuracy and 
overall system robustness. These findings mark a signifi-
cant step towards the optimization of indoor positioning 
systems in the IoT era. Future research can build on these 
insights, further refining the methodology and broaden-
ing its applicability in diverse real-world scenarios.
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