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Abstract
Depending on the uniformity of the quality attribute within agricultural products, there is often a need to develop non-
destructive and efficient evaluation methods to assure their qualities. Near-infrared spectroscopy (NIRS) is a well-suited 
method to characterize organic compounds, particularly when coupled with multivariate analysis methods. This review 
article introduces scientific and technical reports using the NIRS to evaluate food, agriculture, and forest products. Overall, 
basic spectroscopic research is continuously progressing; indeed, in combination with big-data information technology and 
spectral imaging techniques, material analysis is improving to maximize performance. Portable and low-cost devices have 
also been designed and produced, enabling remote analysis. Future advancements are expected to result in its applications 
in even more fields for online or at-line quality monitoring.

Keywords Near-infrared spectroscopy · Food agriculture and forest products · Non-destructive quality evaluation · Quality 
mapping · Portable design

Introduction

Near-infrared spectroscopy (NIRS), in terms of reflected 
or transmitted absorbance of electromagnetic energy in the 
range 800–2500 nm, has been studied for the non-destructive 
measurement of organic materials such as foods, agricultural 
products, and forest products.

Figure 1 shows the NIR spectra of apple, chocolate, 
kiwifruit, spinach, and wood. The NIR absorption is attrib-
uted mainly to overtones and combinations of vibrational 
bands involving C–H, O–H, and N–H in the infrared (IR) 
region. The weaker absorption of NIR energy, compared 
to the IR region, leads to the measurement of high den-
sity and concentration organic materials non-destructively. 
Since the molar absorptivity of water in the NIR range is 
1/1000–1/10000 compared to that in the IR region, it is 
also useful for high water content samples, such as fruits. 
However, as the overtones or combinations of fundamental 
vibrations multiply and are, therefore, overlapped in the NIR 
range, measured spectra are “opaque information”.

Chemometrics is a term applied to the generic discipline 
involving computational mathematics to derive meaningful 
information from the measured spectra. It utilizes multivari-
ate techniques to calibrate the NIR spectra with reference 
data that obtained through traditional standard methods. The 
commonly used chemometric methods for the analysis of 
NIR spectra include, mathematical pretreatments, classifica-
tion methods (e.g., soft independent modelling by class anal-
ogy) [1], and regression methods (e.g., partial least squares 
(PLS) regression analysis) [2]. Review papers concerning 
chemometrics have been written by Lavine [3], and Roggo 
et al. [4].

Karl Norris, who was an agro-industrial researcher at the 
United States Department of Agriculture, discovered the 
usefulness of the NIRS in the 1960s. [5] In 1975, Phil Wil-
liams utilized NIRS to determine protein in wheat instead 
of conventional Kjeldahl testing method [6], which was the 
first-ever industrial application. Since then, NIRS has rap-
idly extended to cover a broad scope of agriculture products 
as a rapid and non-destructive quality control tool [7, 8]. In 
the case of forest products, Brikett and Gambino investigated 
NIRS to evaluate Kappa number over 30 years ago [9]. This 
method has demonstrated a marked improvement, as it is 
also suitable for high moisture samples. Although only over-
tones and combination tones in relation to the stretching of 
C–H, O–H, and N–H bonds absorb are mainly observed in 
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the NIR region, calibration models could also be developed 
to predict the physical, mechanical, and anatomical proper-
ties of wood materials [10–12]. With the development of 
powerful computers and data analysis tools, the application 
of quality monitoring and quality control, as much as is prac-
tical, is desired as the next step. This review will briefly dis-
cuss quantitative and qualitative NIRS to food, agriculture, 
and forest products.

Food and agriculture products

Cereals and cereal products

Cereals are the most important agricultural crops world-
wide and provide more than half of the dietary calorific 
intake [13]. The approach of NIRS has successfully been 
developed to predict protein and water content in wheat 
decades ago [14, 15]. Since then, it has been characterized 
by rapid development from the prediction of major con-
stituents to the prediction of functional properties, such as 
fiber added to semolina [16], talc content [17], and texture 
properties of cooked cereals [19]. It can help to meet the 
requirements of the intended purposes, such as the pro-
duction of pasta, bread, and cookies. Thanks to the devel-
opment of NIRS approaches, cereal quality control can 
be rendered more efficient compared to traditional chem-
istry methods [18, 20]. However, the conventional NIR 
approach has the difficulty on the quaintly evaluation of 
small cereals all individually. Additionally, the calibration 

accuracy is affected by the non-uniform quality attributes 
within cereal products. In contrast, NIR hyperspectral 
imaging (HSI) provides an NIR spectral image at each 
wavelength and enables quality evaluation across an entire 
surface. Recently, Mahesh et el. utilized the NIR–HSI for 
the prediction of protein and hardness of Canadian wheat 
[23]. Sun et al. evaluated the HSI for rapid identification 
of rice origin [25]. It is expected that the HSI method will 
be increasing adopted in this field.

Meat and meat products

The first NIRS models were developed to determine the 
intramuscular fat and MC in meat [18]. Nowadays, NIRS 
instruments are well designed for various meat products 
taking into prediction of their various physico-chemical 
properties [21]. The sensory characteristics have also been 
considered, both intramuscular fat and water content seem 
to be useful in calibration model construction [22]. One of 
the recent new areas for investigation has been the assess-
ment of minced beef adulteration [24, 26]. More recently, 
a new NIR-based classification method of turkey meat 
products was also reported [27]. For the traditional “point” 
spectral measurement, it is important to provide a homo-
geneous sample, as well as to be consistent between spec-
tral data collections. In contrast, ElMasry et al. utilized 
HSI method to successfully access the quality of cooked 
turkey hams [28], and the major constituents (water, fat, 
and protein) in beef [29]. Ropodi et al. used multispectral 
imaging coupled with a two-step support vector machines 
for the detection of beef adulteration with horsemeat, 
approximately 95% classification accuracy was achieved 
for independent validation [30]. Such spectral imaging 
approaches are more powerful to evaluate the heterogene-
ous characteristics of meat products.

Fish and fish products

Fish freshness and microbial spoilage are essential qual-
ity characteristics due to their highly perishable nature. 
Researchers have presented evidence that NIRS can quan-
tify moisture, fat, and free fatty acids in fish [31]. It is of 
particular importance to sell frozen and thawed fish with a 
guarantee of freshness. Reis et al. demonstrated the ability 
of NIRS in the quality control of frozen-then-thawed tuna 
samples [32]. Cascant et al. reported the NIRS coupled with 
PLS regression analysis can be used to predict triglycerides, 
free fatty acids, and diglycerides in salmon oil [33]. O'Brien 
et al. demonstrated a miniature handheld NIR device in fish 
authenticity studies, proving the added advantage of its 
onsite analysis [35].

Fig. 1  NIR spectra of different agricultural products
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Milk and milk products

Milk is a highly scattering medium that contains casein 
micelles and fat globules [36]. Thus, NIRS had initially 
only been used on milk powders, typically the detection 
of melamine [37, 38]. Melamine gives a false indication 
of increased protein content. Since it is harmful to health 
[39], sensitive method is essential to detect the presence 
of melamine. However, with the development of powerful 
hardware and chemometrics, NIRS is more widely evalu-
ated for the quality control of various dairy products, such 
as cheese, liquid milk, and ice cream. Generally, it has 
been used to estimate the contents of moisture, fat, and 
protein. [16, 40, 41].

Tea, coffee, and alcoholic beverages

NIRS is also has application in functional food and bioac-
tive ingredients, such as quantifying bioactive compounds 
within tea [42], and rapid geographical origin classifica-
tion of roast green tea [43]. Correia et al. (2018) used a 
handheld device to grade Arabica coffee and detect the 
presence of sticks, maize, and Robusta coffee [44]. The 
quality analysis of wine is another hot topic in the NIR 
field, and many previous studies have been reported on 
the successful prediction of total acid, total sugar, and 
alcohol [45–47]. NIRS also has been developed for pro-
cess control in beer production, with the main application 
is being selection of the best barley varieties to produce 
high-quality malt [48].

Soil

Soil is a fundamental natural resource for food and energy 
production [47]. NIRS also has been well evaluated for soil 
analysis [46]. Hutengs et al. compared the performance of a 
portable NIR device to that of mid-infrared device in assess-
ing organic carbon in soils [51]. Another application is to 
use the NIRS to detect microplastics (i.e., persistent contam-
inants) in soil. The microplastics come mainly from mulch-
ing film, sludge, wastewater irrigation, and atmospheric 
deposition that influence soil physio-chemistry and biota 
[52]. Soil components which were estimated by a NIR sen-
sor built into a tractor [54]. Such application can easily visu-
alize the soil quality characteristics from hundreds of areas 
in farmlands [55]. Such cooperation will be more effective 
for fertilization management and understanding farmland 
characteristics. With the visible-NIR HSI techniques, global 
soil quality mapping and monitoring is undergoing a rapid 
development, supporting for a more sustainable use of soil 
resources [56].

Fruit and vegetables

Since the beginning of the twentieth century, NIRS has been 
comprehensively evaluated as non-destructive technique to 
rapidly and cost-effectively assess the quality of fruit and 
vegetables. [57, 58] Some authors have reported using NIRS 
to determine soluble solids content (SSC), polyphenols, vita-
min C, acidity, and firmness in apple with sufficient reliabil-
ity [59–61]. Marques et al. measured SSC and dry matter 
in mango fruits during ripening using a handheld device 
(950–1650 nm), results show that approximately 7.4 mm 
into the fruit tissue could be evaluated [62]. Yang et al. cali-
brated the NIR-HSI to evaluate the nitrate contents (NC) in 
spinach effectively (Spinacia oleracea L.) leaves. The map-
ping results display their distribution in the petiole, vein, 
and blade. Finally, the mapping results could also visual-
ize the dynamic changes of the NC under different storage 
conditions [63]. Ma et al. successfully mapped the SSC in 
apple at a high spatial resolution using the same NIR-HSI 
approach. The key wavelengths were selected to improve 
the stability of the prediction model and reduce the time 
required for data analysis [64]. The same team also mapped 
the SSC and pH in kiwifruit by an object rotation approach. 
The mapping results showed a distinct spatial distribution 
of their values in each sample (Fig. 2) [65]. Several of the 
existing models in the field conditions have been restricted 
in applicability due to the large instrument size and low 
robustness. The development of NIR spectrometers and data 
acquisition strategies have significantly reduced the size and 
cost of these instruments. Recently, a novel multifiber-based 
spectra measurement system was designed and evaluated for 
the firmness prediction of apples. The experimental results 
showed remarkably accurate predictions without using com-
plex and time-consuming data analysis algorithms [66].

Information and communication technology (ICT) 
in agriculture

Information and communication technology (ICT) has 
a significant effect on equipment management and data 
transfer, dramatically expanding the applications of NIRS. 
There is a notable advantage in connecting the NIR net-
work to the internet [67]. Taira et al. utilized a NIR net-
work system to assist sugarcane quality evaluation [68]. 
The data analysis result was used for fertilization. NIRS 
has also received significant attention in the application of 
unmanned aerial vehicle (UAV). The utilization of a UAV 
is a potential approach to explore desired crop parameters. 
A sugarcane monitoring platform was established in Thai-
land, including the applications of UAV and multispectral 
cameras. It is operated with a customizable flight planner 
and analysis software for visualizing the quantity and qual-
ity of sugarcane in fields. It enables monitoring of yield, 
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Brix, fertilizer requirement, and white leaf disease spots. 
The yield of cane was predicted using a density-adjusted 
digital surface volume with coefficient of determination 
(R2) of 0.75. The Brix was predicted by an optimum veg-
etation index involving pre-processing, resulting a calibra-
tion with an R2 of 0.91 [69, 70]. NIRS coupled with the 
ICT is promising for optimizing limited natural resources 
and positively supporting smart farming.

Forest products

Chemical composition

Wood is a heterogeneous matrix that suffers from poor 
dimensional stability and suffers from swelling, shrinking, 
and twisting. Non-destructive evaluation methods are needed 
to reduce the uncertainties in quality. Many researchers have 
proposed and developed various NIR-based approaches. 
Except for the main chemical components: cellulose, hemi-
cellulose, and lignin, wood also contains extractives that 
play an essential role in protecting the living tree and wood 
products [71]. Da Silva et al. showed that NIRS is useful to 
evaluate the total phenolic compounds and the extractive 
contents of mahogany wood [72]. Lepoittevin et al. reported 
that the extractives should be previously removed to con-
struct more robust prediction model of wood chemistry traits 
[73]. Üner et al. calibrated the NIR spectra to the extrac-
tive content and lignin content of Turkish pine trees [74], 
where the standard error of calibration and validation ranged 
between 0.35 and 2.40%.

Moisture content

Since the NIR spectra include rich absorption information 
of moisture, a number of studies have been carried out using 
NIRS to predict moisture content (MC) in wood samples. 
Watanabe et al. evaluated NIRS to sort green timbers based 
on MC [75]. They pointed out that NIRS can estimate the 
average MC of green timber, although it only measures 
the sub-surface area. Due to the limitation of penetration 
depth, Tham et al. tested the approach using NIRS coupled 
with a capacitance sensor to predict MC in wood samples 
with various thicknesses and wood species. The accuracy 
was R2 = 0.80, root mean square error of cross-validation 
(RMSECV) 25.70%, and performance to deviation (RPD) 
2.22 from greenwood to totally dried conditions. It suggests 
that NIRS can be assisted by other techniques with higher 
transmission abilities when measuring timber and lumber 
woods [76].

Density and wooden anatomical features

Density measurement is important to estimate wood proper-
ties, such as strength and stiffness. Previous studies indicated 
NIRS is useful to predict wood density indirectly via the 
relationship between density and the light absorption caused 
by the wood chemical components. Alves et al. successfully 
calibrated wood density reference values measured by X-ray 
to NIR spectra for the species of Hybrid larch and Maritime 
pine. [77] Fujimoto et al. indicated the prediction of wood 
density with few effects from MC. From PLS regression 
coefficients, the absorption bands of 7000  cm−1, 7160  cm−1, 
and 7320  cm−1 contributed a lot in predicting wood density 

Fig. 2  Kiwifruit (a) RGB photos (b) SSC and pH mapping results
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[78]. Hans et al. evaluated time-of-flight NIRS for the den-
sity prediction based on the light scattering information in 
sample [79]. Ma et al. used a NIR imaging camera to catch 
the light scattering patterns on the wood surface illuminated 
by a spot light, namely spatially resolved spectroscopy 
(SRS). Wood density could be predicted using the estimated 
light absorption and scattering coefficients by a steady-state 
diffusion theory [80]. Ma et al. further constructed density 
calibration models using NIR-HSI imaging using density 
from the SilviScan analysis system [81]. Wood density was 
successfully mapped at a spatial resolution of 156 μm/pixel 
(Fig. 3) [10]. Isik et al. have built the prediction models for 
air-dry density, MFA, modulus of elasticity (MOE), cell wall 
thickness, and coarseness of Loblolly pine [82]. 

Mechanical properties

The mechanical properties could also be predicted well 
using the NIRS combined with chemometrics. Horvath 
et  al. evaluated NIRS to predict the green mechanical 
properties of transgenic and wild-type aspen [83]. A good 
prediction accuracy (R2 = 0.78) was achieved in the pre-
diction of green MOE. Additionally, there was a strong 
correlation (R2 = 0.91) between green ultimate compres-
sion strength and NIR spectra. KothIyal et al. investigated 
the estimation of specific gravity and mechanical prop-
erties for Eucalyptus by NIRS under a wide MC range 
[84]. Scimleck et al. constructed the calibration models 
of MOE, modulus of rupture (MOR), and density together 
using NIR spectra collected from the transverse surface 
of Pernambuco blocks [85]. Kobori et al. and Sofianto 
et al. tested acquisition of NIR spectra from Hinoki [86] 
and Sugi [87] lumbers at a feed rate of 120 m  min−1 to 
assess their effectiveness. Sufficient prediction accuracy 
was achieved with PLS analysis, although the Sugi lumber 

samples had more knots, which affected the robustness of 
spectra collection.

Wood modification and degradation

Wood modification and degradation have been well stud-
ied by NIRS. Green et al. used NIRS to monitor the wood 
degradation in pine sapwood wafers [88]. They illustrated 
that the early stages of wood decay could be predicted 
well, as well as the levels of white-rot degradation in Cot-
tonwood [89]. Jones et al. evaluated NIRS to predict the 
natural durability of the heartwood of coast Redwood [90]. 
Inagaki et al. collected NIR reflectance spectra from wood 
samples thermally treated at 90, 120, 150, and 180 ℃ in 
an air-circulating oven for periods ranging from 5 min to 
approximately 1.4 years. Principal component scores cou-
pled with kinetic analysis could be utilized to understand 
the chemical changes in thermally treated wood samples 
[91].

Pulp and paper

NIRS research on pulp and paper has a long tradition. 
Downes et al. evaluated NIRS to predict radial variation in 
Kraft pulp yield and cellulose content in Eucalyptus wood 
[92]. Meder et al. performed a non-destructive prediction 
of Kraft pulp yield from increment cores using NIRS 
[93]. Tyson et  al. constructed NIR calibration models 
for evaluating the eucalyptus pulp properties of mill-line 
origin [94]. Yonenobu et al. utilized NIRS to investigate 
the chemical conditions of literally “Japanese paper”, the 
obtained results were consistent well with conventional 
sugar analysis [95].

Fig. 3  a NIR-HSI system, b Wood density mapping results
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Classification

Conventional wood classification methods based on mac-
roscopic characteristics are time-consuming and require in-
depth training in wood histology and anatomy systematics 
[96]. Due to the high diversity of species, rapid and non-
destructive method for wood identification is needed in the 
modern timber trade. Some investigators have investigated 
whether NIRS is useful for classification purposes. Batista 
et al. tested the wood classification using NIRS [97]. The 
discriminant models showed high accuracy for each species. 
Abe et al. compared the spectral data between softwood spe-
cies and indicated that light-transmitting properties inside 
wood might be used for wood species classification with 
advanced measurement systems [98]. Recently, Ma et al. 
evaluated the light scattering characteristics in 15 wood spe-
cies by Visible-NIR SRS and utilized the light scattering pat-
terns for wood species classification [99]. Kanayama et al. 
(2019) tested a deep convolutional neural network approach 
to study the NIR-HSI data of 38 hardwood species. The clas-
sification accuracy was 90.5% using 6 PC scores, which was 
much higher than that of 56.0% obtained with RGB images 
(Fig. 4) [100].

Conclusion

Due to its distinctive simplicity, speed, and accuracy, NIRS 
is preferred over the food and beverage industries as a promi-
nent analytical tool, especially for quality control purposes. 

With the development of spectral imaging techniques, the 
capabilities of NIR instrumentation are continually improv-
ing to maximize its performance. Additionally, small 
handheld instruments are getting more affordable. Future 
advancements are expected to result in applications in more 
fields for online or at-line quality monitoring.
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