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Abstract
Justification logics provide frameworks for studying the fine structure of evidence and
justification. Traditionally, these logics do not impose any closure requirements on
justification. In this paper, we argue that for some applications they should subject
justification to closure under some variety of logical consequence. Specifically, we
argue, building on ideas from Beall, that the non-classical logic FDE offers a particu-
larly attractive notion of consequence for this purpose and define a justification logic
where justification is closed under FDE consequence. We show the resulting logic to
be sound and complete. Lastly, we discuss how the closure of justification under FDE
contrasts closure under related non-classical logics and how our approach contrasts
with some alternatives.

Keywords Justification logic · Epistemic logic · Epistemic closure · First-degree
entailment · Non-classical logic

1 Introduction

How should a computer think? In seminal work, Nuel Belnap (1977a; 1977b) sug-
gested that the four-valued logic of first-degree entailment (FDE) provides a good logic
for drawing inferences from a database of information that may be incomplete or
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inconsistent.1 Belnap’s idea was that one can give an epistemic interpretation to the
semantic values of FDE, namely 1, 0, b, n, corresponding to what a database, or com-
puter, has been told by different sources. To explain, suppose that information sources
supply a computer with their verdicts about different formulas. When a source tells
the computer a formula is true, ‘t’ is transcribed in the database entry for that formula.
When it says a formula is false, ‘ f ’ is transcribed. Since the database may contain
judgments from different sources, it is possible for an entry in the database to include
conflicting judgments of both t and f . Nothing at all is written in entries for formu-
las not reported on. These four possibilities for the contents of the entry for a given
formula—{t}, { f }, {t, f }, ∅—correspond to the four semantic values of FDE. A for-
mula receives 1 or 0, respectively, when its entry is {t} or { f }. It receives the value
b(oth) when its entry is {t, f }. And, it receives n(either) when its entry is ∅. With this
understanding in place, the logic FDE provides a good notion of consequence for a
computer to be able to extract consequences from a database containing inconsistent
or incomplete information while retaining the ability to say that some things do not
follow from it.2

Perhaps that’s how a computer should think about judgments stored in a single
database that does not also include information about the sources of those judgments.
But, a computer may have information stored across a few different databases, or in
a single database with information about the sources of each stored judgment. This
prompts the question of whether Belnap’s idea can extend to these cases. While there
are a number of different ways to address this question, we will pursue one promising
option using the tools of justification logic to provide a fine-grained way of tracking
information derived from different databases or sources.3 This requires strengthening
justification logic and modifying its models. As we will see, these modifications are
further motivated on broader philosophical grounds.

The formal development of justification logic originates in the work of Sergie
Artemov (1994, 1995) on the logic of proofs.4 Artemov’s idea was to enrich modal
provability logic with a class of justification terms (s, t, . . .) that serve to name individ-
ual arithmetical proofs in its modalities.5 Earlier modal logics of provability include
modalities of the form ‘Prv(A)’ and assigned the reading ‘A is provable’. Of course,
to say that something is provable is to commit to the existential claim that there exists
some proof of it. Thus, the justification terms in the logic of proofs supply the expres-
sive power for us to cite witnesses for these implicit existentials so that the modality
‘�t�A’ is read ‘t is a proof of A’. As will be evident shortly, these modalities are non-

1 See Anderson et al. (1992, 506–541). See Dunn (2010) for a recent development of this idea. FDE has
been used in many epistemic applications, such as Camp (2002).
2 We are not intending to claim that this is the only (or even the best) way to go about inferring on the basis
of inconsistent information.
3 Another way that we will not explore in more detail here is via the judgment aggregation literature. See
Pigozzi (2016) for an overview.
4 See Artemov and Fitting (2016) for an overview and history of justification logic and the logic of proofs.
See Artemov and Fitting (2019) or Kuznets and Studer (2019) for sustained treatment.
5 For an overview of traditional provability logics, see Boolos (1995).

123

39 Page 2 of 25



Asian Journal of Philosophy (2023) 2:39

normal and create hyperintensional contexts whose particular treatment has important
philosophical consequences. The general purpose epistemic models for the logic of
proofs were developed later by Melvin Fitting (2005). Fitting’s models extend the
standard Kripke models for modal logics with an evidence function adapted from the
earlier models provided by Mkrtychev (1997). This function specifies, for each world
and term, an evidence set comprised of the formulas justified by that term at that world.
Although the evidence function is crucial to securing the non-normality and hyperin-
tensionality of justification logic, it is subject to surprisingly sparse constraints. As we
will discuss, this may be plausible for a logic of proofs but is inadequate for certain
other applications.

The basic apparatus of justification logic provides an excellent framework to
model finely individuated sources of evidence and justification, such as proofs. That
application requires a strongly hyperintensional account of justification capable of
distinguishing between, e.g., any two classical tautologies,6 At the other end of the
spectrum, one might consider a weaker notion of justification according to which a
claim is justified by some evidence if it follows classically from the evidence. This
weak notion does not distinguish between any classical tautologies and, thus, evidence
for one would justify every classical tautology. This washes out much of the important
texture of justification. We will argue that there are interesting intermediate notions
of justification between these two—one that is not as fine-grained as may be found
in the basic justification logic models yet not as permissive as the weak notion just
described. These intermediate notions can be modeled using the tools of justification
logic by imposing some closure conditions on its evidence sets. Our focus in this paper
will be on applications aiming to model certain varieties of epistemic justification. The
most natural target in the vicinity is propositional justification as explored by episte-
mological internalists; however, as we will discuss in the next section, much of what
we say is relevant to doxastic justification modulo certain idealisations on agents.

The largely unconstrained models for justification logic developed by Fitting fail
to establish a number of intuitively plausible and widely accepted properties of justi-
fication. This is because in justification logic the fact that t justifies A entails nothing
about what else is justified by t . While closure under classical consequence is clearly
far too demanding, it is widely accepted that evidence is subject to some closure con-
ditions.7 As such, realising the often cited ambition to use justification logic in a more
general epistemic setting requires more tightly constrained models that impose certain
(limited) closure conditions. However, some care is needed here, since many of the
obvious candidates would rob justification logic of its most desirable features. We will
aim to walk a fine line between enriching the treatment of evidence, while retaining
the logic’s distinctive behaviour. To this end, we will argue that evidence sets should
be closed under FDE in logics for epistemic justification. The result will be a logic

6 We will return to discuss this very specific type of justification, which we will call sentential justification
in Sect. 4 fn. 20, where we will contrast it with the two more familiar varieties, doxastic and propositional
justification, that will be discussed in the next section.
7 Our focus will be exclusively on closure conditions. Smith (2018) looks at additional logical conditions
for the logic of epistemic justification, which fall outside the scope of this paper.
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of justification that relies on both classical and non-classical consequence to yield a
compelling and well-motivated model of epistemic justification.8

The choice of FDE to use for closure of evidence is further motivated by the philos-
ophy of logic of Jc Beall. Beall (2017; 2018) has compellingly argued that FDE is the
universal closure relation on theories. Evidence, or justification, is, we think, naturally
understood as a theory, rather than just an arbitrary collection of principles. We can
view the evidence sets in Fitting models as providing the basic axioms of a theory,
the consequences of which are elaborated by closure under FDE consequence. FDE
consequence is fairly weak, and it only provides consequences that obtain in virtue of
the logical form of the axioms, without involving their non-logical content. One can,
of course, consider models that include consequences involving non-logical content,
but Beall’s view provides good reason for using FDE as a logical starting point. In the
final section of this paper, we will consider some stronger candidate logics and show
that they do not share the nice features of FDE.

We begin by introducing our target varieties of epistemic justification in Sect. 2.
Then in Sect. 3, we briefly summarise the pertinent details of justification logics.
We return in Sect. 4 to explain issues relating to the introduction of different closure
requirements in justification logic and why some of the obvious candidates will not
do. The formal details of our proposal will be provided in Sect. 5, where we introduce
the new system of justification logic, JFDE, which uses tools from the study of non-
classical logic in its closure requirement. Additionally, we construct the Hilbert-style
system HJFDE for the logic JFDE and establish soundness and completeness. Finally,
we conclude in Sect. 6 by exploring some of the noteworthy features of the proposed
logic and some related logics.

2 Varieties of epistemic justification

Shortly after Artemov’s first work on the logic of proofs, Johan van Benthem (1991)9

suggested that epistemic logic would benefit from the introduction of an explicit rep-
resentation of justification. There is a striking disconnect between the emphasis given
to justification as a necessary condition for knowledge by mainstream epistemolo-
gists and the complete lack of discussion that justification has received from epistemic
logicians. To wit, he suggested that epistemic logic “seems hampered by the absence
of any systematic way of bringing out the justifications underlying our knowledge as
first-class citizens” (van Benthem 1991, 9–10). The proposal he sketches was to con-
servatively extend epistemic logic with devices to cite the justifications that ground

8 Cf. the use of non-classical logic by Restall (1996) in the context of truthmaker theory, or Sedlár (2015)
in the context of epistemic logic.
9 The appearance that this publication predates the first work on justification logic by Artemov and Straßen
(1992) is the result of a retroactive publication date. In personal correspondence, van Benthem confirmed
that his contribution was prepared sometime in 1993—after the publication of Atremov and Straßen’s work
on the topic.
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particular pieces of knowledge. In parallel to the motivation we saw in the previous
section for the logic of proofs, van Bentham observed that since justification is a nec-
essary component of knowledge, knowledge claims carry an implicit commitment to
the existence of some justification. Thus, the standard reading of ‘S knows that p’ for
the epistemic modality ‘Kp’ can be replaced by the conceptually equivalent gloss ‘S
knows that p on the basis of some justification’. In this light, justification logic can
be interpreted as an epistemic logic that explicitly cites witnesses for the existential
commitments to justification that are implicit in ordinary knowledge claims where
‘�t�p’ is read ‘S knows that p on the basis of t’.

A different route—indeed, the one that we will pursue—is to first define a separate
logic of epistemic justification that could later be used in the construction of a richer
epistemic logic.10 To this end, we will give our modalities the reading ‘For S, t is
justification for p’. To clarify the precise meaning of this gloss, we will need to take
a brief detour to rehearse the distinction between two familiar varieties of epistemic
justification.

In the dispute between internalists and externalists about knowledge, much is made
of the distinction between doxastic justification and propositional justification.11 The
distinction itself, however, is not a partisan one and, as such, we freely make use of the
distinction without taking sides in the debate. To understand the difference between
these two types of justification, observe that the claim that one has a justified belief that
p could be understood in two ways. On the one hand, it could mean that their belief
that p is held on the basis of some sufficient justification for p. Here, we say that their
belief is doxastically justified. On the other hand, it could mean simply that there exists
some sufficient justification for p. Under this understanding, we say that their belief is
propositionally justified. The crucial differences are that doxastic justification—unlike
propositional justification—depends on the structure of the agent’s attitudinal state.
Firstly, belief in a proposition is required for an agent to have doxastic justification for
that proposition; and, second, that belief must be based on the salient justification.12

With this distinction in hand, we may now clarify the reading we assigned to the
modalities in a logic of epistemic justification. We will return in Sect. 4 to discuss
the merits of these two interpretations and defend our claim that they require cer-
tain closure requirements. Recall that we proposed that ‘�t�p’ should be read ‘For
S, t is justification for p’. When understood an attribution of doxastic justification,
this implies that S accepts that t is justification for p. The important point here is
that the agent must stand in some special attitudinal relationship to the justificatory
relationship that holds between t and p as mentioned above. By contrast, there is no

10 Further discussion of the available epistemic interpretations of justification logic are found in Artemov
(2016), Artemov and Fitting (2019), Artemov et al. (1999), Artemov and Nogina (2005a, b), and Fitting
(2006).
11 The distinction between doxastic and propositional justification was first introduced by Firth (1978) and
has since generated a large literature. See Audi (1993) for further discussion.
12 We do not intend this proposal to come with the commitment to any specific account of what is required
for this to obtain. It may be, for example, that their belief that p must causally depend on t , or that the agent
occupies some special mental state with respect to t and p, or a variety of other things. There is a large
literature on what is required for the so-called “basing relation” to hold, but the details are irrelevant for
current purposes. See Korcz (1997) for more details.
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such requirement in place for a logic of propositional justification. This is because
our target is the internal structural properties of justifications rather than anything
dependent on how the agent regards them. Reference to the agent is still included in
the intuitive parse, since there are good reasons to think that justification is not an
objective, agent-independent matter and instead depends on contextual features ( e.g.
on the agent’s total evidence). Nonetheless, the point here is that the determination
of whether t is propositional justification for p relies only on the conceptual nature
of justification rather than whether they have the propositional attitude toward that
justification necessary for doxastic justification.

3 Justification logics

Tomake things more concrete, we begin by presenting the languageL of propositional
justification logic alongwith theFittingmodels used to interpret its logic. The signature
of L includes a set of justification terms, Term, constructed by closing a countable set
of variables, {x1, x2, . . .}, and constants, {c1, c2, . . .}, under a binary dot operation (·).
In service of simplicity, our language only contains the operations on terms necessary
for present purposes and lacks several of the operations commonly included.13 In
Backus-Naur form, we define the set Term using the rule

t :: = x | c | t · t ′

where x is any variable and c is any constant. Letting At be a countable set of atomic
formulas, we define the set of formulas of L in the usual way by the rule

A:: = p | ∼A | A& A′ | A ∨ A′ | A ⊃ A′ | �t�A

where p ∈ At and t ∈ Term. The logical connectives receive their ordinary readings
and the modality is given the reading ‘For S, t is justification for A’ as previously
discussed.

The Fitting models used to interpret formulas of L are quadruple, M =
〈W , R, E, V 〉, whereW is some (non-empty) set of worlds, R ⊆ W ×W is an accessi-
bility relation, E : W ×Term �→ ℘L is the evidence function mentioned above, while
V : W �→ ℘At is a valuation function for the atomic formulas. The crucial element
of Fitting models is its evidence function, which assigns an evidence set, E(w, t), to
each pair consisting of a world w and justification term t . Intuitively, E(w, t) contains

13 These include the sum operation (+), which will be discussed later in Sect. 6, as well as positive and
negative verifiers (!) and (?), respectively. For more on the verifiers, see Pacuit (2005). Shear and Quiggin
(2020) further enrich justification terms with confidence terms to provide a logic of justification with
confidence.
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the propositions for which t is justification at w. Evidence functions are only subject
to the single condition provided below.14

Application If A ⊃ B ∈ E(w, t) and A ∈ E(w, s), then B ∈ E(w, t · s)
This condition requires that whenever both a material conditional and its antecedent
are in the evidence sets assigned to t and s at some world, respectively, its consequent
is in the evidence set of t · s at that same world.

The truth conditions for the classical connectives are as usual, while the semantic
clause for the modal formulas is given below.

M, w � �t�A iff ∀u(If wRu then M, u � A) and A ∈ E(w, t)

As we can see, this adds the condition that A is in the evidence set assigned to t at the
world of evaluation to the familiar requirement that A is true in all accessible worlds.
Readers versed in awareness logic, as introduced by Fagin and Halpern (1985, 1988),
may find this semantic clause familiar. Awareness logic was developed to provide an
epistemic logic for explicit belief capable of avoiding the classic problem of logical
omniscience from Hintikka (1975). That is, to avoid requiring that belief is closed
under logical consequence, the semantic clause for the epistemic modalities depends
on the assignments of an awareness function that works in much the same way as the
evidence function. The non-normality of awareness logic’s epistemic operators needed
to avoid logical omniscience follows from the further syntactic restriction provided
by its awareness function. Indeed, one widely advertised virtue of justification logic
is its similar capacity to restrict logical omniscience.

4 Getting some closure

In the previous section, we introduced the Application condition imposed on the
evidence function. This condition is needed to guarantee the validity of justification
logic’s characteristic axiom:

�t�(A ⊃ B) ⊃ (�s�A ⊃ �t · s�B).

This variant of the familiar K axiom from normal modal logics imposes a certain
(albeit restricted) type of closure on justifications: the fact that a material conditional
and its antecedent each have some justification, say t and s respectively, implies that
its consequent has some justification, namely t · s. So, justification is transmitted in
a limited fashion through material implication via the dot product of justifications of
premises. Nonetheless, when considered individually, evidence sets remain entirely

14 Justification logics relying on expressively richer languages require imposing further conditions on the
evidence function. However, since these additional conditions do not resolve the deficiencies central to our
argument, we choose for the sake of brevity to focus only on the simple case.
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unconstrained—the fact that A is a member of E(w, t) implies nothing else about what
E(w, t) contains.

To see this, observe that it is possible that M, w � �t�p, but neither M, w �
�t�(p& p) norM, w � �t�(p∨q). Still further, it could be the case thatM, w � �t�p
without there being any constant s such that either M, w � �s�(p& p) or M, w �
�s�(p ∨ q). Although these latter possibilities may be ruled out by requiring that all
truth-functional tautologies have some justification, that approach will fall short of
ensuring that M, w � �t�p implies M, w � �t�(p& p).15 It will only guarantee, for
example, that M, w � �s · t�(p& p) for some s that is a justification of the truth-
functional tautology p⊃ (p& p) and, similarly, thatM, w � �s′ · t�(p∨ q) for some
s′ that is a justification for the truth-functional tautology p ⊃ (p ∨ q). Alternatively,
we could adopt the most liberal assignment of evidence sets to justification constant
so that every justification term justifies every truth-functional tautology.16 This would
suffice to guarantee that �t�p implies both �t · t�(p& p) and �t · t�(p∨q). It may then
seem plausible that we require that t be understood as equivalent to t · t , which would
give us the desired result that M, w � �t�p implies M, w � �t�(p& p). However,
the cost of this maneuver would be too great for our purposes. Requiring that every
truth-functional tautology is justified by every justification constant strips the logic of
its ability to distinguish between and keep track of different justifications.

When taken as models for arithmetic provability, as in Artemov’s logic of proofs,
this failure of closure is appropriate. Under a standard definition, an axiomatic Hilbert
proof is a sequence of formulas, each of which is either an axiom or follows from
earlier items in the sequence by one of the rules. To check whether such a sequence is
a proof of A, it suffices to confirm that A is the final formula in the sequence. Thus,
there is a bright line between a proof of A and a proof of A& A. The existence of
the former may entail the existence of the latter, but that falls short (if only by one
step) of the former being the latter. One could loosen the definition of proof slightly,
permitting a sequence to count as a proof of any formula appearing anywhere in the
sequence, rather than in terminal position. Even with this more permissive definition,
although a proof of A may sometimes be a proof of A& A, a proof of A would not in
general be a proof of A& A. Again, it would be inappropriate to close evidence sets
under logical consequence.17

15 This constraint may be imposed by adopting what is called an “axiomatically appropriate” constant
specification function that requires that every instance of an axiom schema is assigned some justification
constant.
16 Imposing this constraint would involve adopting a total constant specification. Since neither of these
options is acceptable, we will not further address the subtleties of justification constants and constant
specifications. Readers interested in a thorough discussion of constant specifications are invited to consult
Artemov and Fitting (2016, §2.3) or Fitting (2005, 4–5).
17 Although these observations suffice to assuage worries about the failure of closure under the provability
interpretation, there may still be some motivation in this context for the introduction of some restrictions
on evidence sets. For example, assuming something akin to the usual understanding of proof provides
motivation for requiring that evidence sets be at most finite.
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Let us now turn to consider how things fare under the epistemic interpretations intro-
duced in the previous section. The formal apparatus does not change with a change
to the philosophical interpretation. As before, evidence sets are only subject to the
closure principle on their evidence function provided by Application. This may be
plausible for some of these applications. For instance, this seems apt if our target is
doxastic justification for non-ideal agents. Recall that doxastic justification requires
that the agent stands in the necessary attitudinal relation to the justification so that
(possibly among other things) it must be that the agent accepts t as justification for A.
Under this interpretation, the satisfaction of themodal formulas is subject to facts about
the agent’s mental states. Realistic agents often fall short of holding the explicit atti-
tudes required of idealised unboundedly rational agents due to computational bounds
or a simple failure to draw out all (or even very many) consequences of claims that
they accept.18 Such agents are appropriately captured by models with minimally con-
strained evidence sets.19 There are then some epistemic interpretations of justification
logic where it is appropriate to admit nearly arbitrary evidence sets: when our target is
doxastic justification for non-ideal agents. But, there are others for which this simply
will not do.

For instance, suppose that we are building a logic of propositional justification.
As previously discussed, propositional justification (unlike doxastic justification) is
obtained independently of whether the agent is aware of it. So, even if we are dealing
with non-ideal agents, the agent’s failure to explicitly accept an available justification
for a proposition poses no threat to its standing. Alternatively, we may be interested
in a logic of doxastic justification for heavily idealised agents for whom doxastic and
propositional justification coincide. As we will now argue, adopting either of these
interpretations requires imposing some closure requirements on evidence sets.

Suppose that t is justification for p at worldw—model-theoretically,M, w��t�p.
Since nothing further than justifying p is required to justify p& p, it should then be
the case that t is justification for the conjunction,M, w� �t�(p& p). However, as we
have seen, this inference is invalid in the traditional models. Similarly, it is plausible
that if t is justification for p, then it also justifies any logically weaker entailment of
p,20 That is, for example, M, w � �t�p should imply that M, w � �t�(p ∨ q), but,

18 See Giordani (2016) for a justification logic that includes both explicit and implicit justification modal-
ities. Similar suggestions have also been made elsewhere in the literature, e.g. in Fitting (2008).
19 While the use of nearly arbitrary evidence sets is appropriate whenwe have not imposed any idealisations
on agents, computationally bounded agents require imposing closure on evidence sets that is bounded by
complexity. This type of suggestion has been put forward in the context of awareness logic (see Fagin and
Halpern, 1988, 54–55 and Fagin et al., 1995, §9.5), but has not been undertaken in the context of justification
logic.
20 An anonymous referee points out that this would appear to be in conflict with the earlier claim that an
arithmetic proof of p need not be a proof of p& p. The claim about transmission of justification is meant to
apply to propositional justification. An arithmetic proof is often used to provide what we will call sentential
justification which is a species of neither propositional nor doxastic justification. Sentential justification
relates formal proofs to the formulas justified by them, e.g. an axiomatic proof provides sentential justifi-
cation for the final formula of the proof. This can fall short of propositional justification, although a formal
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as before, this inference remains invalid.21 Similar examples can be multiplied. These
considerations suggest that evidence sets should be subject to some closure conditions,
but do not settle which would be appropriate.

What happens if we were to close evidence sets under classical logical conse-
quence? This would have the unfortunate effect of turning the modalities into normal
modal operators obeying the rule of necessitation and satisfying the usual K axiom
of modal logics, i.e. it would validate �t�(A ⊃ B) ⊃ (�t�A ⊃ �t�B). Necessitation
licenses the modalisation of any theorem, while the K axiom distributes a necessity
modality over the material conditional. The cost here is the same as the one we saw
earlier for requiring both that every justification term justifies every truth-functional
tautology and that every justification term t is equivalent to t · t . Specifically, we would
be saddled with the untoward consequence that both of the following two conditions
are satisfied: (i) every evidence sets would contain every theorem, and (ii) A ∈ E(w, t)
and A ⊃ B ∈ E(w, t)would imply B ∈ E(w, t). By satisfying these conditions, justi-
fication logic would lose its distinctive ability to avoid imposing logical omniscience.
For some interpretations of the modality, logical omniscience is too heavy-handed an
idealization. For example, when they have epistemic content, it requires that agents
know every tautology and every logical consequence of their knowledge.22 As Arte-
mov and Kuznets (2009) observe, it is implausible to require that agents know every
complex tautology and that knowledge of the rules of chess should imply knowledge
of whether there exists a winning strategy for White.23 This also seems to be too
strong a requirement for some interpretations of the justification modalities. This is
obviously the case for interpretations sensitive to the possibly bounded rationality of
agents, such as those discussed above.

A second related downside of closing evidence sets under classical logical con-
sequence is found in the loss of hyperintensionality. Indeed, the hyperintensionality
of justification operators is one of its more attractive features. Closing evidence sets
under classical consequence flattens much of the structure of justifications and washes
out much of the hyperintensionality. In particular, it prevents different justification
terms from distinguishing distinct tautologies or distinct contradictions. It is here that
the tension lies. Our challenge then is to establish appropriate conditions under which
a specific justification for a formula transmits to related formulas without spreading it

proof can provide propositional justification, once the sort of entailment is specified. A formal proof does
not, on its own, provide doxastic justification, since formal proof does not involve any agents. Our response
to the referee’s worry is that a proof can provide sentential justification for p but not p& p, while a proof
that p would provide propositional justification for p& p as well.
21 This implication holds on various understandings of evidence such as those found in Bayesian episte-
mology. The simplest version of the Bayesian account of evidence regards t as evidence for A just in case
Pr(A) < Pr(A | t). Then since the probability axioms guarantee that Pr(p) ≤ Pr(p ∨ q), it follows that if t
is evidence for p, then it is also evidence for p ∨ q.
22 See Yap (2014) for discussion of idealization in epistemic logic.
23 The problem is more general, since certain other problems in epistemology get going because of issues
with logical omniscience. For further discussion see Christensen (2004), Dretske (2005), and Holliday
(2015). A useful survey of various approaches to dealing with the problem of logical omniscience in the
literature on epistemic logic can be found in Humberstone (2016, 331–369).
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to all classical consequences. Justification logic should, it seems, naturally accommo-
date these sorts of considerations. But, doing so requires isolating some appropriate
class of models short of the class of all Fitting models. We think that bringing in some
insights from Beall’s philosophy of logic is the way to respond to this challenge. Beall
argues that FDE is the universal logic of theory closure, and, as such, it provides a
compelling option for generating consequences of one’s evidence. In the next section,
we will utilize tools from non-classical logics to make good on our claims.

5 Getting some non-classical closure

To provide a precise specification of our proposal, we will need to introduce some
additional logical apparatus. We begin with some definitions: first, for a given logic L ,
let |�L be the relation of L-logical consequence. Next, say that a set of formulas X is
an L-theory just in case (i) if A ∈ X and B ∈ X , then A& B ∈ X , and (ii) if A |�L B
and A ∈ X , then B ∈ X . So, an L-theory is any set of formulas that is closed under
adjunction and L-logical consequence.

Wewill focus on the case where our chosen L is the logic FDE.24 Valuations for FDE
are simple four-valued extensions of classical valuations. Because we have dropped
the assumption that each formula must have exactly one of the two standard truth
values—1 or 0—the semantic clauses of formulas in FDE require separate conditions
for each. For the conjunction, we have the following two conditions:

A& B has value t iff A has value t and B has value t

A& B has value f iff A has value f or B has value f

Similarly, the following two conditions suffice to define disjunction:

A ∨ B has value t iff A has value t or B has value t

A ∨ B has value f iff A has value f and B has value f

These conditions generate the truth-tables for the connectives in FDE provided below.
∼
1 0
b b
n n
0 1

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

& 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

⊃ 1 b n 0
1 1 b n 0
b 1 b 1 b
n 1 1 n n
0 1 1 1 1

In FDE, B is a logical consequence of a set of formulas X , X |�FDE B, iff for all
valuations v, if v(A) ∈ {1, b}, for each A ∈ X , then v(B) ∈ {1, b}. One notable
feature of FDE is that despite not having any tautologies, its consequence relation
remains rich and in many ways similar to classical consequence. For instance, we
retain the inferences licensed by the usual de Morgan laws, distribution laws, and

24 See Anderson and Belnap (1975, 150ff.), Priest (2008, Ch. 7), or Omori and Wansing (2017) for further
discussion of FDE. For arguments that FDE is the correct logic, see Beall (2017, 2018).
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double negation introduction and elimination, as well as disjunction and conjunction
normal form properties.

With these basic definitions in place, we proceed to our proposal. As we have seen,
the minimal constraints imposed on evidence functions in Fitting models lead to the
problematic consequence that nearly arbitrary sets may stand as evidence sets. Our
proposed remedy for this shortcoming is to adopt the following further condition that
evidence sets are FDE-theories.

FDE-Closure If X ⊆ E(w, t) and X |�FDE B, then B ∈ E(w, t).

Let F be the class of all Fitting models satisfying the constraint above (as well as
the Application constraint introduced earlier). The definition of validity for the jus-
tification logic is kept the same, namely truth in all worlds in all models in F . The
justification logic over F will be the class of all validities, which we will call JFDE.
There are further conditions that one may consider placing on the models. For exam-
ple, one could require that evidence sets be prime FDE-theories, where a theory X is
prime just in case A ∨ B ∈ X only if either A ∈ X or B ∈ X .

Primeness A ∨ B ∈ E(w, t) only if either A ∈ E(w, t) or B ∈ E(w, t).

While this condition is sometimes useful for obtaining certain meta-theoretic results,
it is not plausible as a general condition for our purposes. After all, it seems reasonable
that evidence for a disjunction need not be evidence for either disjunct. That the lamp
does not turn on when the button is pushed is evidence that either the bulb is out or
that the lamp is not plugged in, without providing more specific evidence regarding
one or the other disjunct. It is worth noting that, even if adopted, the condition does
not have the undesirable consequence that justification distributes over disjunction.
That is to say, �t�(p ∨ q) ⊃ (�t�p ∨ �t�q) is invalid even if we consider only models
which satisfy Primeness. To see this, let θp = {A : p |�FDE A}, namely the ⊆-
least prime FDE-theory containing p. By FDE-closure, p ∨ q ∈ θp. Take a model M
with W = {x, y, z}, with E(x, t) = θp, x Ry and x Rz, with V (x, p) = V (x, q) =
0, V (y, p) = V (z, q) = 0, and V (z, p) = V (y, q) = 1. Further specification
of the evidence function is not needed for the example. As desired, this gives us
M, x � �t�(p ∨ q) butM, x � � �t�p ∨ �t�q. For this counterexample, it is important
to note that the evidence function is not doing any important work, which is handled
entirely by the modal aspect of the justification terms. Depending on the application,
Primeness may be adopted, or not, so we will not let it delay us further.

Instead, we turn to some of the more technical aspects of our proposal and construct
the Hilbert-style system HJFDE that we show is sound and complete for JFDE. Readers
who are less interested in these more technical points may proceed without loss in
continuity to the next section for discussion of our proposal. The axiom system HJFDE
has the following axioms and rules, where A�FDEB means that sequent is derivable
in the proof system for FDE subsequently characterised.

(A1) All classical tautologies
(A2) �t�(A ⊃ B) ⊃ (�s�A ⊃ �t · s�B)

(A3) From A and A ⊃ B to infer B
(A4) From A�FDEB to infer �t�A ⊃ �t�B
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(A5) �t�A& �t�B ⊃ �t�(A& B)

We now define the sequent-based proof system for FDE. This system includes the
axiom sequents (B1)–(B6) and rules (C1)–(C5) provided below.

(B1) A�FDEA
(B2) A& B�FDEA, A& B�FDEB
(B3) A�FDEA ∨ B, B�FDEA ∨ B
(B4) A& (B ∨ C)�FDE(A& B) ∨ C
(B5) ∼A�FDEA ⊃ B, B�FDEA ⊃ B
(B6) ∼∼A�FDEA, A�FDE∼∼A

(C1) From A�FDEB and B�FDEC to infer A�FDEC
(C2) From A�FDEB and A�FDEC to infer A�FDEB&C
(C3) From A�FDEC and B�FDEC to infer A ∨ B�FDEC
(C4) From ∼A�FDEC and B�FDEC to infer A ⊃ B�FDEC
(C5) From A�FDEB to infer ∼B�FDE∼A

Observe that this system is equivalent to one that replaced both (A4) and the proof
system for FDE with additional axioms capturing FDE-consequence inside the scope
of the modality. However, this option is less attractive to us as it would provide less
clarity about what is going on and, thus, we choose to leave it aside. In the remainder
of this section, we sketch the proofs of soundness and completeness for HJFDE with
respect to the class of Fitting models whose evidence sets are FDE-theories.

We start with some definitions. Let a generalized atom be any formula that is a
member of At or whose main connective is a modal. We modify the definition of
|�FDE from earlier to incorporate generalized atoms. A valuation v is a function from
the set of generalized atoms to the set {1, 0, b, n} that obeys the truth-tables from
earlier. B is a logical consequence of a set X of formulas, X |�FDE B, iff for all
valuations v, if v(A) ∈ {1, b}, for all A ∈ X , then v(B) ∈ {1, b}. We will only need
the case in which X is a singleton, which we will write as A |�FDE B.

Now, we note the following fact connecting the proof system for FDE and its con-
sequence relation, treating formulas whose main connective is a modal as an atom.

Fact 1 A�FDEB iff A |�FDE B. See Anderson and Belnap (1975, 204–205) for a proof.
Another fact that we will appeal to below is the following.

Fact 2 If A |�FDE B, then A classically entails B.
As before, we say that a set X of formulas is an FDE-theory just in case (i) if A ∈ X

and B ∈ X , then A& B ∈ X , and (ii) if A ∈ X and A |�FDE B, then B ∈ X . Let T is
the set of all FDE-theories over the language L. Say that a modelM is in the class F
of Fitting models iff for any t ∈ Term and any w ∈ WM we have E(w, t) ∈ T (where
E ∈ M). That is to say, the classF of Fitting models contains all and only the models
in which all evidence sets are drawn from T .

Next, we define the relevant notions of theoremhood and validity. We say that A is
a theorem of HJFDE and write �HJFDE A iff A is provable under the axioms and rules
of HJFDE above. We say that A is valid in HJFDE and write |�JFDE A iff for all models
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M ∈ F and every w ∈ WM, we have that M, w � A. Now, we show that our proof
system for logic JFDE is sound with respect to F .

Theorem 1 (Soundness). If �HJFDE A, then |�JFDE A.

Proof The proof is by induction on the length of the proof of A. Since all Fitting
models use classical worlds, the axioms in (A1) are valid. As these are Fitting models
obeying the Application condition, (A2) is valid. The classicality of the models also
suffices to show that (A3) preserves validity.

For (A4), suppose that A�FDEB but �|�JFDE �t�A ⊃ �t�B. Then there is a model M
and a world w such thatM, w � �t�A andM, w � � �t�B. There are two cases: either
there is a world u such that wRu and M, u � � B or B /∈ E(w, t). We begin with
the former case. By assumption, wRu and M, u � � B. It follows that M, u � � A.
Since A�FDEB, it follows that A |�JFDE B, whence by Fact 2 M, u � B, which is a
contradiction. We proceed to the latter case, where B /∈ E(w, t). SinceM, w � �t�A,
A ∈ E(w, t). As A�FDEB, and E(w, t) is an FDE-theory, B ∈ E(w, t), which is a
contradiction.

For (A5), suppose there is some model, M, and world, w, such that M, w � �
�t�A& �t�B⊃�t�(A& B). So,M, w��t�A& �t�B, butM, w � � �t�(A& B). There
are then two cases: there is a u such thatwRu andM, u � � A& B or A& B /∈ E(w, t).
The former case leads straightforwardly to a contradiction, so consider the latter.
Suppose A& B /∈ E(w, t). It follows from the assumption that M, w � �t�A& �t�B
that A ∈ E(w, t) and B ∈ E(w, t). As E(w, t) is an FDE-theory, A& B ∈ E(w, t),
contradicting the assumption. ��

Having established the soundness of the proof system, we turn to completeness,
which largely follows the proof provided by Fitting (2005).

Theorem 2 (Completeness) If |�JFDE A, then �HJFDE A.
For the proof, we will show the contrapositive, using a fairly standard canonical

model construction.25 This will require some additional definitions. If X is a set of
formulas, then X �HJFDE A iff �HJFDE (B1 & · · · & Bn) ⊃ A, for some B1, . . . , Bn ∈ Y .
Let a JFDE-theory X be a set of formulas containing the theorems of HJFDE and closed
under classical consequence. A set X of formulas is consistent iff for no formula
A, X �HJFDE A&∼A; and, X is maximally consistent iff X is consistent and there
is no consistent set of formulas Y such that X ⊂ Y . By the usual Lindenbaum-style
construction, any consistent set of formulas can be extended to amaximally consistent,
prime JFDE-theory.

We may now proceed with the construction of our the canonical model, Mc =
〈Wc, Rc, Ec, vc〉, where
• Wc is the set of maximally consistent, prime JFDE-theories,
• wRcu iff {A : ∃t ∈ Term(�t�A ∈ w)} ⊆ u,
• Ec(w, t) = {A : �t�A ∈ w}, and
• vc(w) = {p : p ∈ w}.

We must verify that Mc ∈ F . That Rc is properly defined is routine.

25 See Blackburn et al. (2002, Ch. 4) or Humberstone (2016, Ch. 2.4), among others, for more on canonical
model constructions for modal logics.
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Lemma 1 For all t ∈ Term, for all w ∈ Wc, Ec(w, t) ∈ T .

Proof Suppose t ∈ Term and w ∈ Wc. There are two conditions to check. Suppose
that A ∈ Ec(w, t) and A |�FDE B. It then follows that �t�A ∈ w and�HJFDE �t�A⊃�t�B.
As w is a JFDE-theory, �t�A ⊃ �t�B ∈ w, and so �t�B ∈ w. From the definition of Ec,
B ∈ Ec(w, t).

Suppose that A ∈ Ec(w, t) and B ∈ Ec(w, t). By definition, it follows that �t�A ∈
w and �t�B ∈ w. From axiom (A5) and the definition of JFDE-theory, we then have
�t�(A& B) ∈ w, and so A& B ∈ Ec(w, t), as desired. ��
Lemma 2 The canonical model Mc satisfies Application.

Proof Suppose A⊃B ∈ Ec(w, t) and A ∈ Ec(w, t). It follows that �t�(A⊃B) ∈ w and
�s�A ∈ w. From axiom (A2) together with the definition of JFDE-theory, �t · s�B ∈ w,
so B ∈ Ec(w, t · s), as desired.
Next, we establish the crucial truth lemma.

Lemma 3 A ∈ w iffMc, w � A.

Proof The proof is by induction on the complexity of the formula A. The base case
of an atom is immediate by the definition of vc. The conjunction case is handled
by the inductive hypothesis. The disjunction case is handled by the primeness of the
theories and the inductive hypothesis. The negation case is handled by the maximal
consistency of the theories and the inductive hypothesis. The material conditional is
handled similarly to the preceding two cases. This just leaves the modal case.

Let A be of the form �t�B. Suppose that �t�B ∈ w. By definition, B ∈ Ec(w, t)
so B ∈ {C : ∃t ∈ Term, �t�C ∈ w}. Suppose wRcu, so {C : ∃t ∈ Term, �t�C ∈
w} ⊆ u, whence B ∈ u. By the inductive hypothesis, Mc, u � B. This suffices for
Mc, w � �t�B. For the converse, suppose Mc, w � �t�B and assume for reductio
that �t�B /∈ w. By definition, this gives us B /∈ E(w, t). However, this implies
Mc, w � � �t�B contradicting our assumption. Therefore, �t�B ∈ w. ��
Proof We may now complete the sketch of the proof of theorem 2 establishing com-
pleteness. Suppose �HJFDE A. Then we can extend the set {∼A} to a maximally
consistent, prime JFDE-theoryw. In the canonicalmodel,Mc, w�∼A, soMc, w � � A,
demonstrating �|�JFDE A, as desired. ��

Having established the soundness and completeness of the proof system HJFDE for
the logic JFDE, we turn now to philosophical discussion. Specifically, we will provide
further argumentation for our proposal and contrast it with some alternatives.

6 Discussion

To provide further motivation for the logic JFDE, we begin by examining some of its
consequences. First, recall from Sect. 4 that the sparse constraints on evidence sets
in the traditional models for justification logic allowed for t to be justification for p
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without also being justification for either p& p or p ∨ q. This is remedied in JFDE,
where M, w � �t�p implies both M, w � �t�(p& p) and M, w � �t�(p ∨ q). In
fact, this extends to cover all FDE-entailments: ifM, w � �t�A and A |�FDE B, then
M, w � �t�B. So, we find that evidence is transmitted across FDE-consequence. This
brings us to our second observation that, despite this newfound closure, we have not
stripped the logic of its characteristic hyperintensionality. This is because it need not
be the case in JFDE that any piece of evidence justify all classical tautologies. That is,
it is possible thatM, w � �t�p butM, w � � �t�(q ∨ ∼q). These features resolve the
tension for the unconstrained models that we highlighted earlier.

To get a better feel for how the logic works, we examine some of the (in)validities
of JFDE. We start by noting the validities listed below.

1. |�JFDE �t�(A& B) ≡ (�t�A& �t�B)

2. |�JFDE �t�A ⊃ �t�(A ∨ B)

3. |�JFDE �t�∼(A ∨ B) ≡ �t�(∼A&∼B)

These are immediate consequences of the fact that the modalized formulas in the
consequents are FDE-entailments of those found in the antecedents. But, even though
evidence sets are now theories, we retain the invalidities below.

4. �|�JFDE �t�(p ∨ ∼p)
5. �|�JFDE �t�(p&∼p) ⊃ �t�q

A closer inspection of these observations helps to reveal some of the benefits of our
approach.

By considering the invalidity in 4, we can see that even though we have closed
evidence sets under a type of logical consequence, this does not entirely strip our logic
of its ability to avoid the problem of logical omniscience. Since FDE does not include
any tautologies, closing evidence sets under FDE-consequence will not entail that any
sentences are required to be included in every evidence set. So, we retain many of the
intuitively plausible aspects of closure principles on evidence without paying the cost
of imposing full-blown logical omniscience.

Next, the invalidity in 5 makes it clear that the closure condition on evidence
sets does not trivialise inconsistent evidence sets. This observation also highlights
the non-normality of the modalities. The smallest normal modal logic K validates
�(p&∼p)⊃�q. However, the analogue given in 5 remains invalid, since there exists
a model and a world w, not R-related to any worlds, such that p&∼p ∈ E(w, t) yet
q /∈ E(w, t). To further explain, say that a theory is inconsistent iff it contains some
formula, A, and its negation, ∼A. Say that a theory is trivial iff it contains every
formula. There is only one inconsistent classical theory, the trivial theory. By contrast,
there are many non-trivial inconsistent FDE-theories. This makes FDE well-suited to
modeling databases of potentially inconsistent information. As suggested at the outset
of this paper, the logic JFDE can be understood to provide a logic for reasoning about
inconsistent or incomplete databases.

Using the machinery of justification logic, we can reason about the consequences
of combining different databases, which extends Belnap’s idea presented in the intro-
duction, using classical logic as the underlying logic. This allows one to maintain
classical intuitions about the truth and falsity of formulas while capturing many of
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the intuitions behind Belnap’s idea.26 Given this, JFDE can be understood as a logic of
justification for Belnapian databases.

As mentioned, Beall has argued that FDE is the logic of universal theory closure.
We are using FDE consequence to close the evidence sets while we are not using
FDE as the underlying logic. We think, nonetheless, that the combination adopted fits
with Beall’s philosophy of logic. The use of FDE as the logic for evidential closure
adds consequences to evidence sets but still respects some motivating intuitions of
justification logics. One can strengthen the closure operator for some or all justification
terms, tomodel situationswhere a particular sort of evidence has additional non-logical
content.

The use of classical logic as the basic logic for reasoning about evidence strengthens
the universal logic, FDE. There are two, related reasons for this. The first is that, as
Beall notes, strengthening the base logic with consequences beyond FDE may be
justified depending on the particular theory at issue, in this case a theory of evidence
or of Belnapian databases. Second, we are adopting a default classicality for reasoning
about evidence.27 The approach developed here takes it that reasoning about evidence
will be consistent with no gaps about evidence, but if situations are encountered that
violate this assumption, then one can fall back to using FDE as the base logic, while
preserving many virtues of the current approach.

Earlier we said that one of the intuitions we wanted to capture was that justi-
fication transmits to ‘related’ formulas. Here, related formulas are those that are
FDE-consequences. The FDE-consequences of p are a proper subset of the classi-
cal consequences of p. For example, q ∨ ∼q is not a FDE-consequence of p. The
justificatory connections are then tighter than classical logical consequence.

The claim that justificatory connections are then tighter than classical logical con-
sequence naturally suggests involvement of topics or subject matters. While topics
and subject matters do not have a formal role in our models, there are some formal
connections which can be seen in the truth maker semantics of Fine (2016). Berto et al.
(2022) show how to incorporate topics into models explicitly, so that each formula is
assigned a topic, and topic inclusion plays an important role in the truth conditions of
various operators, such as knowledge relative to information, KAB. The topic inclu-
sion clause for relative knowledge has the consequence that one may not know some
tautologies, say q ∨ ¬q, relative to some given information, say p, because the topic
of the tautologies is not contained in that of the information.28 In the setting of jus-
tification logic, assigning topics to formulas and to justification terms could provide
a way to maintain a strong closure condition while not requiring all tautologies to be
justified by all justification terms, namely adding a topic inclusion condition to the
semantic clause for the justifications.

On a suitable understanding, evidence may fail to be total just as it can be incon-
sistent. A bit of, say, perceptual justification for the claim that grass is green, need not
itself constitute a bit of justification for the claim that either Launceston is north of

26 Fitting (2017) presents a justification logic whose underlying logic is paraconsistent. The underlying
logic in our case remains classical.
27 See Beall (2011).
28 See Hawke (2020) for an approach to logical omniscience using topics.
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Geelong or it is not. More generally, a piece of evidence or bit of justification need not
take an evidential stand on all matters. It may remain silent about a good many claims,
including but not limited to logical truths. This allows the justification logic JFDE to
preserve some of the hyperintensionality mentioned earlier. Perceptual justification
for the claim that either grass is green or it is not, need not justify the claim that either
Cairns is north of Geelong or it is not.

One might think that the K axiom of justification logic has a tight connection with
detachment, or modus ponens for material implication, which is invalid in FDE. The
connection, it turns out, is not that tight. Say that a set of formulas X is detached iff
it is the case that if A ∈ X and A ⊃ B ∈ X then B ∈ X . Evidence sets in Fitting
models are not required to be detached, and there are many FDE-theories that are not
detached, although some are. This has consequences for the dot operation. One of these
consequences is that, generally, the dot is not idempotent, E(w, t) �= E(w, t · t), and,
relatedly, �t · t�A⊃ �t�A is invalid. In addition, the dot is generally neither associative
nor commutative.

Closure under FDE-consequence affects the interpretation of the dot operation as
a consequence of the logical behavior of the material conditional. Since A |�FDE

B ⊃ A, it follows that E(w, t) ⊆ E(w, t · s) whenever E(w, s) is non-empty. To see
this, suppose A ∈ E(w, t) and let E(w, s) be non-empty. From this it follows that
B ⊃ A ∈ E(w, t), where B ∈ E(w, s), and so by definition, A ∈ E(w, t · s). This
has consequences for inconsistent evidence sets, which we will define as evidence sets
E(w, t) such that for some B, B∧∼B ∈ E(w, t). Since A&∼A |�FDE (A&∼A)⊃B,
for all A and B, if E(w, t) is inconsistent, then E(w, t ·t)will be trivial. Yet, it is still the
case that there are inconsistent evidence sets E(w, s) such that E(w, t ·s) is non-trivial.
It appears that there is much to explore in the fine structure of evidence composition,
as given by the dot operation, in the present approach.

Let us say that a justification term t is inconsistent at a world w iff the evidence
set assigned to t at w is inconsistent. As we saw above, there are some limits on
composition of inconsistent justifications. We can sharpen those limits some. We
begin by noting that for all formulas A and B,

A |�FDE ∼A ⊃ (B ∧ ∼B).

As a consequence, �t�A⊃(�s�∼A⊃�t · s�B) is valid. Even in a logic as inconsistency-
tolerant as FDE, the combination of the dot operation and the logical behavior of the
material conditional present problems for non-trivial combination of justifications for
contradictory claims. Say that two evidence sets are contradictory iff for some formula
B, one set contains B and the other contains ∼B. Composing contradictory evidence
sets leads to triviality of justification. Composing an inconsistent evidence set with
itself leads to triviality as two copies of an inconsistent evidence set are contradictory.

There are two reactions that onemight have these limitations. The first is to place the
blame on the material conditional, and think that the logic should use a more restricted
conditional, a route we will not explore here as it would take us to far afield.29 The
other reaction is to place the blame on the dot operation, prompting the question of

29 See Standefer (2019, 2023a, b) and Savić and Studer (2019) for developments along these lines.
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whether there are any other operations on justification that may be more suited to FDE.
We will briefly explore this idea.

In Sect. 3, we mentioned that there is another operation on justification terms that
is often used, the binary sum operation. We can add that operation as a new way to
form terms. On the model-theoretic side, we place the condition

Sum E(w, t) ∪ E(w, s) ⊆ E(w, t + s)

on the models. On the axiomatic side, we adopt the axioms �t�A ⊃ �t + s�A and
�t�A ⊃ �s + t�A. As an intuitive gloss, the sum operation pools the evidence and
generates FDE consequences of the result. Not all FDE-theories are detached, so one
can sum inconsistent justifications without triviality. In contrast, the dot operation
forms a new theory using some detachment, which is evidently trivializing in the face
of some modest inconsistency.

There are two non-classical logics related to FDEwhose consequence relations one
may be tempted to use instead of FDE for closing evidence sets. These logics are K3 and
LP.30 These logics can be obtained from FDE by considering only the valuations that
do not assign b or do not assign n, respectively, and otherwise using the same truth-
tables. The definition of consequence remains the same, considering only these classes
of valuations rather than all FDE valuations. Rather than interpret the justification terms
by FDE-theories, one would interpret them by K3- or LP-theories. From the definition
of K3- and LP-consequence, one can see immediately that if X |�FDE B, then X |�K3 B
and X |�LP B.

Like FDE, K3 does not have any theorems and also avoids imposing logical omni-
science. But, unlike FDE, K3-consequence satisfies (A&∼A) |�K3 B, for all B. This
means that K3-theories are non-starters for dealing with inconsistent evidence. An
upside of K3 is that since modus ponens is valid, i.e. A ∧ (A ⊃ B) |�K3 B, all K3-
theories are detached, so the formula �t�(A& (A ⊃ B)) ⊃ �t�B will be valid. The
downside is that, due to there being only one inconsistent theory, the trivial one,
�t�(A&∼A) ⊃ �t�B is valid. These properties might not be problematic if one is
interested in applications where justifications and evidence are factive, in which case
the T axiom, �t�A ⊃ A, should be in the logic.

As we saw above, the dot operation rules out non-trivial combination of some
justifications, e.g. �t�A and �s�∼A. The result of combining them with the sum oper-
ation need not be trivial when interpreting the justification terms with FDE-theories.
This is not the case when using K3-theories: If A ∈ E(w, t) and ∼A ∈ E(w, s),
then A ∧ ∼A ∈ E(w, t + s), so E(w, t + s) must be the trivial theory. Relatedly, if
A ∈ E(w, t) and A⊃ B ∈ E(w, s), then B ∈ E(w, t+s). In the context of K3-theories
the sum and dot operations are quite similar.

Using LP-theories is, perhaps surprisingly, less attractive than using K3-theories. All
(non-empty) LP-theories contain all classical tautologies.31 Consequently, the use of
(non-empty) LP-theories as evidence sets will result in all terms justifying all classical

30 See Priest (2008, Ch. 7) for more on these. This LP, Priest’s logic of paradox, should not be confused
with Artemov’s LP, the logic of proofs. The former is a paraconsistent, non-modal logic, while the latter is
a modal extension of classical logic.
31 Although ∅ |�LP B, where B is any classical tautology, the definition of an L-theory given has the
condition that if A |�L B and A ∈ X , then B ∈ X , which permits the empty theory. On the adopted
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tautologies and �t�(A ∨ ∼A) will be valid, as will �t�B ⊃ �t�(A ∨ ∼A). We view
this as a serious drawback since distinguishing classical tautologies is one of the key
features of justification logic that makes it suited to formalize notions of justification.

There are some differences with the logic obtained from interpreting justification
terms via K3-theories, as one might expect. There are non-trivial, inconsistent LP-
theories, so �t�(A&∼A) ⊃ �t�B will be invalid. Note that the approach using LP-
theories as evidence sets inherits the limitations on using the dot operation to combine
inconsistent and contradicting justifications that we saw with the approach using FDE-
theories.

Another point of difference between approaches using K3- and LP-theories as evi-
dence sets comes outwhen looking at the dot and sumoperations. There are LP-theories
that are not detached, so there will be more distance between the dot combination of
two justifications and their sum, similar to what we saw with the approach using
FDE-theories as evidence sets.

Based on the preceding considerations, it seems that LP-theories are not well suited
to be used as interpretations of justification terms. They do collapse distinctions that
justifications might draw among classical tautologies. K3-theories, on the other hand,
maintain those distinctions, although they are not well suited to considering inconsis-
tent justifications. FDE-theories are suited to inconsistent justifications, although, as
we saw, there are limits to this enforced by dot operation.

The discussion above highlights an important feature in the comparison of FDE, K3,
and LP.K3 and LP are asymmetric, in the sense that gaps and gluts are treated differently
in the two logics. Considerations of symmetry can lead one to treat them in logically
the same way, as noted by Beall (2017), whence one can arrive at FDE. In the current
context, there is a difference between the K3 and LP, illustrated by the following
two observations. Intuitively, we don’t want every piece of evidence to justify every
classical tautology, a desire that can be satisfied by K3 but not LP.K3 will treat all
inconsistent evidence alike, namely trivially, which LP does not do. In the present
context, maintaining the intuition about evidence is more important. In the context of
closure of evidence sets, there is some asymmetry between K3 and LP. Despite this
difference, FDE still maintains the advantages of both logics.

Another non-classical logic, weak Kleene logic WK3, provides an alternative way
of modeling topics that fits naturally with the ideas we have been exploring. Beall
2016 argues that WK3 provides a logic of preservation of both truth and topic.32 WK3
is a three-valued logic where if a subformula takes the intermediate value, then the
whole formula takes the intermediate value, and like K3, only the value 1 is designated.
WhileWK3 shares some features with K3, such as contradictions entailing everything,
in WK3, p does not entail p ∨ q . This means that closing (consistent) evidence sets
under WK3 consequence need not result in every atom appearing in the evidence set,
even as a disjunct.33

definition, there is room for the empty theory, while if one requires instead that if Y |�L B and Y ⊆ X ,
then B ∈ X , there is not room for the empty theory. We will exclude it here, although there is room for
debate on this point.
32 See Francez (2019) and Joaquin (2022) for discussion.
33 We will note that there are some logics related to WK3, the infectious logics, that could offer similar
virtues in the context of justification logics. The infectious logics that share the feature of a value of a
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To recap, our proposal highlights a philosophically motivated subclass of the more
general class of Fitting models. Some known ideas from philosophical logic can be
used to relieve tensions between the unconstrained Fittingmodels and epistemic appli-
cations of justification logic. Since theFittingmodels are soflexible, one could focus on
models that build additional closure conditions into the evidence sets. Natural closure
conditions will push one to adopt theories for evidence sets; however, as mentioned
above, the use of classical theories, i.e. theories closed under classical consequence,
removes much of the interest of the justification terms. Thus, we have suggested using
FDE-theories.

One might object that what we have said motivates some closure conditions but
perhaps falls short of the closure needed by FDE-theories. For example, one might
adopt the following conditions but no others.34

• A& B ∈ E(w, t) iff A ∈ E(w, t) and B ∈ E(w, t).
• A ∈ E(w, t) only if A ∨ B ∈ E(w, t) and B ∨ A ∈ E(w, t).

Many of the conditions one might adopt, including the above, are bundled into FDE-
theories. There may be applications for which these closure conditions, but not the full
closure under FDE-consequence, are motivated and desirable. Indeed, onemay still see
fit to only require closure under an evenweaker type of consequence if concerned about
the closure under adjunction and issues related to the Preface Paradox.35 However,
these issues remain separate from the present point and addressing them would take
us too far afield for the current work.

One closure condition that is notably not built into FDE-theories is closure under
classical logical equivalence. Call a set of sentences X an equivalential theory iff X
is closed under adjunction and Eq-logical consequence, where A |�Eq B iff A ≡ B
is a classical tautology. There are non-trivial, inconsistent equivalential theories, and
equivalential theorieswill be closedundermany, thoughnot all, of the sameentailments
as FDE-theories. Equivalential theories have a downside not shared by FDE, which we
think makes it unattractive. If an equivalential theory contains a tautology, it contains
all tautologies, and, relatedly, if it contains the negation of any tautology, it contains
the negation of each tautology. This washes out much of the hyperintensionality of
justification logic, which we think should be preserved.

Before concluding, we will briefly discuss a somewhat related approach to epis-
temic logic with an explicit representation of evidence pursued by Sedlár (2015).
Sedlár presents a bimodal epistemic logic whose modal operators are interpreted, in
effect, via theories in different substructural logics. Sedlár uses two operators, � for
implicit belief by an agent and A for support by the evidence available to an agent.
Sedlár’s approach, like ours, employs non-classical theories in the interpretation of
modalities over a classical base. Because of this, on Sedlár’s approach there are failures
of substitution of logical equivalents in the scope of modals, just as there are on our

subformula being the value of the whole. See Omori and Szmuc (2017), Ciuni et al. (2019), and Szmuc
et al. (2020), among others, for more. The failure of disjunction introduction is shared by logics of analytic
containment, which could also provide ways to model closure that respects conceptual content. For more
on these logics, see Fine (2016); French (2017), and Ferguson (2017), for example.
34 This proposal is suggested in the context of awareness logic by Fagin and Halpern (1988).
35 For example, see Hawthorne and Makinson (2007).
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approach. Sedlár uses the modalities � andA that are less fine-grained than the range
of justification modalities, and so the K axioms used by Sedlár impose fewer con-
straints. Additionally, Sedlár’s approach validatesA(B ∨C) ⊃ (AB ∨AC), whereas
the corresponding formula for our approach, �t�(B ∨ C) ⊃ (�t�B ∨ �t�C), is invalid,
as noted above.

Nonetheless, some caution is needed in comparing Sedlár’s approach with ours
as there are important differences at the foundational level. Sedlár is using models
for substructural logics with more connectives, so his models are more complex than
ours. In contrast, we are using Fitting models, which only interpret the usual classi-
cal vocabulary and justification modalities. Sedlár is also motivated to avoid logical
omniscience, an issue which we do not see as a problem for our approach, as agents
do not enter into our approach. Sedlár responds to the problem of logical omniscience
by pointing out that even if A and B are classically equivalent, AA is not, in gen-
eral, equivalent to AB.36 A similar point holds in our framework, replacing A with a
justification modal.

The approach of van Benthem et al. (2014) uses a single evidence modality, [E],
interpreted via a function E : W �→ ℘W . The semantic clause for the evidence
modality is that w � [E]A iff there is X ∈ E(W ) such that for all x ∈ X , x � A.
An evidence set on this approach is a set of sets of worlds, which cannot contain
the empty set, glossed by saying “evidence per se is never contradictory.”37 Given
the semantic clause for the evidence modality, an empty evidence set, contradictory
evidence, would justify everything. This differs from the present approach, which
accepts the possibility of non-trivial contradictory evidence. A point of agreement
between the two approaches is that the justification and evidencemodalities obey a rule
of monotonicity, although our approach uses FDE consequence rather than classical.
As such, while the approach of van Benthem et al. (2014) has the result that evidence
for anything is evidence for every classical tautology, our approach remains closer
to basic justification logic in claiming that some evidence can justify one classical
tautology without justifying all of them.

To conclude, justification logics offer flexible frameworks for investigating the
logical fine structure of evidence. The philosophical interpretation of these logics,
however, suggest that it would be appropriate for some purposes for evidence sets to
be closed under some sort of consequence relation. This closure should not be closure
under classical consequence, and instead, following some ideas of Beall, we suggest
the use of FDE-consequence, which has some distinct advantages over the closely
related logics K3 and LP. The resulting logic and models provide another view of
Belnap’s early motivation for FDE, as a logic of databases, as well as illustrating an
application of Beall’s more recent motivation for FDE, as the universal closure relation
on theories.
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