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Abstract
The paper focuses on the economic design of group chain sampling plans (GChSP) 
for the Weibull distribution using Bayesian methodology. The GChSP is a technique 
to accept or reject a product based on a sample from a lot. The study addresses situ-
ations where destructive testing is costly and utilizes the Bayesian approach to make 
informed decisions. The research outlines the methodology of developing GChSP 
including the stages of construction, performance evaluation, and cost estimation. 
The study compares the proposed plans with an existing one and demonstrates that 
the Bayesian approach generally yields lower costs. We will provide tables, figures, 
and calculations related to various aspects of the proposed plans and their compari-
son with existing methods.
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1 Introduction

As stated by Balakrishnan et al. [2] the significance of quality has evolved from 
being a mere option or aspiration for companies to become an essential require-
ment in the global business landscape. Quality now serves as a pivotal factor dis-
tinguishing competitive enterprises. Within this context, two pivotal methodolo-
gies for ensuring quality are statistical quality control and acceptance sampling. 
Acceptance sampling, a prevalent technique within statistical quality control, 
involves inspecting a sample of products to make a determination of acceptance 
or rejection. This method was originally introduced by Dodge and Romig dur-
ing World War II for testing bullets, as referenced in Schilling and Neubauer [1]. 
The rationale behind acceptance sampling is rooted in the understanding that sub-
jecting every individual bullet to testing is both impractical due to destructive-
ness and time constraints, and refraining from testing any bullet poses substantial 
risks, potentially leading to accidents. The cornerstone of global industrial manu-
facturing lies in quality assurance. Within the framework of acceptance sampling, 
a random sample is extracted from a larger batch, and the decision to accept or 
reject the entire batch hinges upon the insights gleaned from this sample. It’s 
important to note that while acceptance sampling is a quality control technique 
facilitating batch-level acceptance or rejection, it doesn’t inherently provide a 
direct means of estimating the overall quality of the entire batch.

Dodge [6] proposed a chain sampling plan that utilizes historical lot data. 
Dodge and Stephan [7] proposed two-stage chain sampling, proceeds into two 
steps. The basic feature was the utilization of cumulative results, where the cumu-
lative criteria are based on two acceptance numbers c1 = 0, c2 = 1 into two stages. 
Additionally, the concept of grouping in sampling plans is introduced, aiming to 
enhance efficiency by enabling the simultaneous testing of multiple items. Build-
ing on this, Mughal et al. [12] introduced a group chain acceptance sampling plan 
based on the second kind of Pareto distribution, incorporating a minimum sample 
size and a lot acceptance probability determined by meeting consumer risk crite-
ria. Extending this work, Mughal [21] presented a range of group chain accept-
ance sampling plans founded on truncated life tests.

Various forms of acceptance sampling techniques have been extensively docu-
mented in the literature. These techniques serve a central purpose: determining 
whether submitted products should be accepted or rejected. The ordinary scheme 
comes into play when an experimenter is only capable of inspecting one prod-
uct at a time. In such a scenario, the products submitted for testing are grouped 
together, forming the basis for a group acceptance sampling plan. This approach 
is operationalized as follows: a sample (n=rg) is drawn from the lot size, N , with 
the sample size, n , being a multiple of both the number of testers, r , and the num-
ber of groups, g . The submitted products are deemed acceptable for consumer 
use if the number of defective items found in the acceptable quantity, denoted 
as c, and does not exceed a certain threshold. For instance, if an experimenter 
aims to test 10 products, they would employ 10 testers to handle these products 
individually. Conversely, group acceptance sampling plans are enacted when the 
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experimenter has the capacity to assess multiple products simultaneously. This 
approach offers advantages in terms of time and cost efficiency. In the case of test-
ing 10 products as a group, the experimenter can employ 5 testers, thus requiring 
2 groups for testing. Notably, the group acceptance sampling plan also ensures 
rigorous inspection prior to products being cleared for consumer use. Aslam et al. 
[3] investigated and demonstrated the efficacy of this group sampling plan, high-
lighting its superiority over established plans in terms of achieving the minimum 
required sample size. Aslam et al. [30] used the Pareto distribution of the second 
kind as lifetime distribution and through results they proved that their proposed 
plan provides better results than Aslam and Jun [20] plan based on Weibull dis-
tribution. In their plan, the minimum sample size was determined and L(P) was 
determined by different ratios of true mean life to the specified mean life and 
it was proven that the established plan reduced the cost and time of the experi-
ments. Mughal et  al. [13] developed a group acceptance sampling plan tailored 
for Pareto distribution of the 2nd kind using two-sided chain sampling. Mughal 
et al. [14] extended this work by proposing a generalized group chain acceptance 
sampling plan based on truncated life tests. Additionally, Aziz et  al. [5] intro-
duced a generalized modified group chain sampling plan that takes into account 
non-symmetrical data distributions.

Addressing economic aspects, Hsu [8] outlined the economic design of a single 
acceptance sampling plan, while Aslam et  al. [19] adopted a Bayesian approach 
with Weibull distribution to propose an economic design for a group sampling plan. 
Hafeez and Aziz [27] proposed a Bayesian Group Chain Sampling Plan Based on 
Beta Binomial Distribution through Quality Region. They introduced BGChSP by 
considering beta as prior distribution and considering the producer’s as well as con-
sumer’s risk. They utilized BGChSP for the Quality Region for the specified AQL 
and LQL. Latha and Suresh [24] explored construction and performance measures 
through a Bayesian chain sampling scheme employing a gamma prior. Belbachir & 
Benahmed [35] developed a two-sided sampling plan for exponential distribution 
under type II censored samples in which an exponential distribution single varia-
ble sampling strategy is based on type II censored samples and a random decision 
function. Furthermore, The Bayesian Sampling Plan was applied by Belbachir and 
Benahmed [36] for the Weibull Distribution with Type II Hybrid Censoring under 
Random Decision Function.

M. Hafeez et  al. [22] devised a group chain sampling plan for quality regions. 
Tanveer and Khattak [25] introduced economical group and modified group chain 
sampling plans applicable to the Weibull distribution. Hafeez et al. [31] suggested a 
Bayesian group chain sampling scheme in which the Gamma distribution is utilized 
as a prior distribution with the Poisson distribution. In Hafeez et al. [32] proposed 
Bayesian Two-sided GChSP for Poisson distribution with Gamma prior. Hafeez 
et al. [29] proposed a Bayesian new two-sided group chain sampling plan for quality 
regions based on beta as prior distribution.

Despite the existing literature, no prior work has ventured into an economic model 
for a group chain sampling plan utilizing the Bayesian approach with the Weibull 
distribution. The primary objective of this study is to present an economic model 
for such a group chain sampling plan, employing the Bayesian methodology. The 
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overall cost is estimated using the economic model proposed by Aslam et al. [19] for 
the group sampling plan. This research outlines the phases involved in developing 
and accessing the performance of the economic model for the group chain sampling 
plan (GChSP) using the Bayesian approach. In the initial phase, the complete proce-
dure of the group chain sampling plan (GChSP) is elucidated. The subsequent phase 
focuses on constructing the economic design for group chain acceptance sampling. 
Finally, the last phase involves developing the economic model for the group chain 
sampling plan using the Bayesian approach.

2  Methodology

As mentioned earlier, in the group acceptance sampling plan, the sample size n is 
distributed to g groups and r items. Such that r items are put into g groups and tested 
simultaneously on each different tester for a pre-assigned time a . The lot is accepted 
if the number of failures in the sample is smaller than the acceptance number c, 
otherwise, reject it. Also, the lot will be considered good quality if the average mean 
life ( � ) of a product is greater than the specified mean life ( �0 ). The main purpose is 
to achieve the maximum acceptance probability with a minimum sample size. This 
acceptance sampling plan is the extension of the work of Dodge [6] the probabil-
ity of lot acceptance for the group chain sampling plan (GChSP) can be derived by 
using acceptance sampling procedures shown in Table 1 and in Fig. 1.

Mughal et al. [12] introduced a truncated version of the GChSP specifically tai-
lored for the Pareto distribution of the second kind. The cumulative distribution 
function (CDF) of the Weibull distribution is as follows:

Furthermore, the average value of the Weibull distribution is given by

where � , the mean of Weibull distribution is based on the m scale and λ shape 
parameters.

(1)F(t;�,m) = 1 − ���

(
−
(

t

�

)m)
t ≥ 0

(2)� =
�

m
Γ
(
1

m

)

Table 1  Procedure for GChSP

• From each of the submitted lots select the sample of size n = r ∗ g such that r items are allocated into 
groups g

• Observe the number of defective d in the sample
• Accept the lot, if no defective is found in the current sample i.e., d = 0

• Reject the lot, if more than one defective is found in the current lot i.e. d > 0

• Also accept the lot, if one defective is found in the current lot, but no defective is found in i(di = 0) 
preceding lots
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In this acceptance sampling strategy, various design parameters are analysed to 
ensure that the average lifespan ( � ) of a product is greater than a specified life value 
( �0 ). We consider a product as acceptable if its average lifespan � ≥ �0 , under prede-
termined design parameters, using the minimal sample size values ( n = r ∗ g ). Our 
primary focus is on the consumer, so we adopt a one-point approach to construct the 
operating characteristic (OC) curve. The process of determining the required sample 
size and the sampling plan involves solving an inequality while considering differ-
ent values of � . Specifically, we aim for the condition L(p) ≤ β to hold, where L(p) 
represents the lot acceptance probability for the GChSP. This is achieved through a 
systematic evaluation of various values, ensuring that the product consistently meets 
quality standards. The OC function of the group Chain Sampling plan is given by

Upon examining the general expression of L(p) in Eq. (3), it becomes evident that 
the binomial distribution is the suitable choice for handling scenarios involving zero 
and one defective item. After simplifying L(p) for GChSP, we obtain the following 
result:

(3)L(p) = P(0, rg) + P(1, rg)(P(0, rg))i

Fig. 1  The procedure of GChSP
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where p is the probability of failure of the product during the test termination time t0
,which is the multiple of the specified mean life �0 as t0 = a�0.

It is important to emphasize that L(p) and p can be easily calculated for the 
group chain sampling plan by utilizing predefined values of,r, i and�∕�0 . Vari-
ous parameters are set for the acceptance sampling plan, including consumer’s 
risk(�) , pre-specified termination ratio(a) , the number of testers(r) , and the num-
ber of preceding lots(i) . The next step is to find the minimum number of groups 
for sampling plans by satisfying the inequality as

In this approach, recommended plan combinations are developed based on pre-
defined design parameter values provided in Table 2. This methodology has also 
been utilized in prior studies by Mughal et al. [11], Mughal and Aslam [10], and 
Aslam et al. [4]. The primary focus here is on consumer risk at various levels of�
,a,r , andi , all of which are used to determine the number of groups. For a shape 
parameter of m =2 in the Weibull distribution, Table 3 displays the optimal num-
ber of groups. It’s noteworthy that the number of groups decreases as thea,r , and 
i increase. Once the optimal number of groups is determined using the prede-
fined design parameters, the next step is to assess the lot acceptance probability 
for the desired design parameters across various mean ratio values (1, 2, 4, 6, 8, 
and 10). Specifically, when considering r =3 and i=2, Table  4 presents the lot 
acceptance probability for a shape parameter of m=2. It is evident that for m=2, 
under the same design parameters such as r=3, i=2, �=0.01, a=1.0, and g=2, the 
lot acceptance probability increases rapidly from 0.00898 to 0.9975 as the mean 
ratio is raised from 1 to 12. With the data derived from the Group Chain Sam-
pling Plan (GChSP), which includes values like,r,i , andL(p) , it becomes invalu-
able in determining the design parameters for the economic model. The math-
ematical structure of this model, designed to minimize the overall cost for the 
GChSP, takes the following form

(4)L(p) = (1 − p)rg + (rg)(p)(1 − p)(rg)−1(1 − p)rgi

(5)p = F
�
t0;�,m

�
= 1 − exp

⎡
⎢⎢⎢⎣
−

⎛
⎜⎜⎜⎝

aΓ
�

1

m

�

m

�
�

�0

�
⎞
⎟⎟⎟⎠

m⎤
⎥⎥⎥⎦

(6)L(p) = (1 − p)rg + rgp(1 − p)(rg)−1(1 − p)rgi ≤ β

Table 2  Pre-specified values of 
design parameters

Design parameters values

Pre-specified termination, a 0.7 0.8 1.0 1.2 1.5 2.0
Consumer’s risk, β 0.25 0.10 0.05 0.01
Number of testers in a group, r 2 3 4 5
Allowable preceding lots 1 2 3 4
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In the context of Eq.  (7), the symbols hold distinct meanings: Ci denotes the 
inspection cost per item, Cf  represents the cost associated with internal failures, C0 
encompass the cost linked to outgoing defectives, and Cg signify the cost per group, 
as elucidated in Hsu [8].

where

When considering specific values for ther,i,a , the total required cost is calcu-
lated. Additionally, the optimal parameter for the economic model of the GChSP 
plan is determined using the Weibull distribution with a shape parameter of m=2, 
as indicated in Table 5. To account for stochastic variability, the Bayesian technique 
becomes essential for establishing the defect distribution from one lot to another. 
The prior distribution represents the expected quality distribution of a lot before 
undergoing inspection. This distribution is termed "prior" because it is formulated 
prior to the sample collection process. As demonstrated by Aslam [19], the Bayesian 

(7)Minimize(TC) = Ci(ATI) + CfDd + C0Dn + gCg

(8)ATI = rg + (1 − L(p))(N − rg)

(9)Dd = rgp + (1 − L(p))(N − rg)p

(10)Dn = L(p)(N − rg)p

(11)AOQ = pL(p)(N − rg)∕N

Table 3  Number of optimal 
groups for GChSP with m = 2

a

� r i 0.5 0.7 0.8 1.0 1.2 1.5 2.0

0.25 2 1 5 3 2 2 1 1 1
3 2 3 2 1 1 1 1 1
4 3 2 1 1 1 1 1 1
5 4 2 1 1 1 1 1 1

0.10 2 1 7 4 3 2 2 1 1
3 2 4 2 2 1 1 1 1
4 3 3 2 2 1 1 1 1
5 4 3 2 1 1 1 1 1

0.05 2 1 8 5 4 3 2 1 1
3 2 5 3 2 2 1 1 1
4 3 4 2 2 1 1 1 1
5 4 3 2 1 1 1 1 1

0.01 2 1 11 6 5 3 3 2 1
3 2 8 4 3 2 2 1 1
4 3 6 3 3 2 1 1 1
5 4 5 3 2 2 1 1 1
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approach was employed to estimate the value of p for the group acceptance sam-
pling plan. Within the Bayesian framework, the prior distribution of p is assumed 
to follow a beta distribution characterized by parameters � and� , both of which are 
greater than 0. The probability density function (PDF) governing the beta distribu-
tion is given by:

In order to calculate the average cost for lots of size N with x defectives, Hald 
[33] used the Bayesian approach and suggested using the prior distribution accord-
ing to the percent defective p that will be the beta distribution. Wetherill [34] uti-
lized the Bayesian approach of designing a sampling plan. To assess the costs and 
losses involved in operating the plan he tried to minimize the total costs by multiply-
ing with prior distribution. By considering the Hald [33] in which the average cost 
function is multiplied with prior distribution the Eq. 8 through Eq. 11, incorporating 
a mixture of beta distribution, can be reformulated as follows:

(12)Beta(p) =
p�−1(1 − p)�−1

B(�, �)

Table 4  Lot acceptance Probability for m = 2, r = 3, i = 2

� g a 1 2 4 6 8 10 12

0.25 2 0.7 0.10210 0.6686 0.9603 0.9911 0.9970 0.9988 0.9994
1 0.8 0.24259 0.8155 0.9822 0.9962 0.9987 0.9995 0.9997
1 1.0 0.09781 0.6660 0.9601 0.9910 0.9970 0.9987 0.9994
1 1.2 0.03384 0.5051 0.9252 0.9822 0.9940 0.9974 0.9987
1 1.5 0.00498 0.2969 0.8476 0.9601 0.9860 0.9940 0.9970
1 2.0 0.0000 0.0978 0.6660 0.8944 0.9601 0.9822 0.9910

0.10 2 0.7 0.10210 0.6686 0.9603 0.9911 0.9970 0.9988 0.9994
2 0.8 0.04945 0.5541 0.9370 0.9852 0.9950 0.9979 0.9990
1 1.0 0.09781 0.6660 0.9601 0.9910 0.9970 0.9987 0.9994
1 1.2 0.03384 0.5051 0.9252 0.9822 0.9940 0.9974 0.9987
1 1.5 0.00498 0.2969 0.8476 0.9601 0.9860 0.9940 0.9970
1 2.0 0.0000 0.0978 0.6660 0.8944 0.9601 0.9822 0.9910

0.05 3 0.7 0.03144 0.4883 0.9180 0.9807 0.9935 0.9972 0.9986
2 0.8 0.04945 0.5541 0.9370 0.9852 0.9950 0.9979 0.9990
2 1.0 0.00898 0.3458 0.8696 0.9667 0.9884 0.9950 0.9975
1 1.2 0.03384 0.5051 0.9252 0.9822 0.9940 0.9974 0.9987
1 1.5 0.00498 0.2969 0.8476 0.9601 0.9860 0.9940 0.9970
1 2.0 0.0000 0.0978 0.6660 0.8944 0.9601 0.9822 0. 9910

0.01 4 0.7 0.00987 0.3531 0.8722 0.9674 0.9887 0.9951 0.9976
3 0.8 0.01085 0.3632 0.8767 0.9687 0.9891 0.9954 0.9977
2 1.0 0.00898 0.3458 0.8696 0.9667 0.9884 0.9950 0.9975
2 1.2 0.00112 0.1954 0.7775 0.9687 0.9891 0.9954 0.9977
1 1.5 0.00498 0.2969 0.8476 0.9601 0.9860 0.9940 0.9970
1 2.0 0.0000 0.0978 0.6660 0.8944 0.9601 0.9822 0.9910



137

1 3

Journal of Statistical Theory and Applications (2024) 23:129–144 

Now, Average total inspection (ATI) and Average outgoing quality AOQ is:

(13)Dd =

1

∫
0

[
rgp + (1 − L(p))(N − (rg))p

]p�−1(1 − p)�−1

B(�, �)
dp

(14)Dn =

1

∫
0

[
L(p)(N − rg)p

]p�−1(1 − p)�−1

B(�, �)
dp

(15)ATI =

1

∫
0

[
rg + (1 − L(p))(N − (rg))

]p�−1(1 − p)�−1

B(�, �)
dp

Table 5  Optimal parameters of 
economic design for GChSP 
when r = 3, i = 2m = 2  

� g a ATI Dd Dn AOQ TC

0.25 2 0.7 898.509 287.036 32.422 0.03242 1511.003
1 0.8 758.137 299.535 95.550 0.09556 1455.764
1 1.0 902.477 491.021 53.059 0.05310 1940.576
1 1.2 966.258 654.447 22.853 0.02285 2301.005
1 1.5 995.630 825.075 4.1210 0.00412 2652.301
1 2.0 999.919 956.716 0.0769 0.0000 2916.429

0.10 2 0.7 898.509 287.036 32.422 0.03242 1511.003
2 0.8 950.843 375.672 19.422 0.01942 1727.608
1 1.0 902.477 491.021 53.059 0.0531 1940.576
1 1.2 966.258 654.447 22.853 0.02285 2301.005
1 1.5 995.630 825.075 4.1210 0.00412 2652.301
1 2.0 999.919 956.716 0.0769 0.0000 2916.429

0.05 3 0.7 468.842 309.504 9.9536 0.00995 1606.804
2 0.8 950.843 375.672 19.422 0.01942 1727.608
2 1.0 991.068 539.221 4.8599 0.00486 2080.369
1 1.2 966.258 654.447 22.853 0.02285 2301.005
1 1.5 995.630 825.075 4.1210 0.00412 2652.301
1 2.0 999.919 956.716 0.0769 0.0000 2916.429

0.01 4 0.7 990.244 316.341 3.1165 0.00312 1638.043
3 0.8 989.246 390.844 4.2489 0.00429 1784.184
2 1.0 991.068 539.221 4.8599 0.00486 2080.369
2 1.2 998.877 676.539 0.7603 0.00076 2358.717
1 1.5 995.630 825.075 4.1210 0.00412 2652.301
1 2.0 999.919 956.716 0.0769 0.0000 2916.429
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We have investigated various pairs of hyper-parameter values in the proposed 
model, ranging from (1, 1) to (3, 3). Amongst these pairs, (1, 3) consistently yield 
the lowest cost compared to others. Consequently, for the sake of simplification, 
we have chosen to employ the hyper-parameter values � =1 and �=3. The out-
comes of the mixture with the beta distribution are as follows:

The Bayesian approach is employed to determine the optimal parameter of the 
economic model for the GChSP plan, using the Weibull distribution with a shape 
parameter of m =2 as outlined in Table 6. For m =2 and �=0.01, the total cost is 
1276.850 when ′a′ is 0.7 (Fig. 2). However, this cost decreases from 1276.850 to 
854.850 as ′a′ increases from 0.7 to 2.0, as illustrated in Fig. 3. Optimal parame-
ter of the economic model for the GChSP with shape parameter m = 2 and �=0.01, 
the total cost is 1638.043 when a is 0.7, and it rises from 1638.043 to 2916.429 as 
a increases from 0.7 to 2.0, as depicted in Fig. 2.

The process for optimizing the group size and inspection cost is outlined 
through the following steps:

Step #1: We initiate by deriving the OC function, denoted as L(p) , and proceed 
to determine the minimum group size (g) . This is accomplished by satisfying 
the inequality L(p) ≤ � across various levels of β defined as per Eq. (6).
Step #2: Utilizing the optimization function incorporated within the cost 
model, we ascertain the inspection cost as detailed in Eq. (7). We further iden-
tify the optimal parameters (ATI,  Dd,  Dn, and AOQ) for the cost model, as 
explained in Eq. (8–11).
Step #3: We proceed to design the plan by employing a Bayesian approach, 
specifically to estimate the parameter p . In this context, the prior distribution 
of p conforms to a beta distribution, as described in Eq. (12).

(16)AOQ =

1

∫
0

[
pL(p)(N − rg)

N

]
p�−1(1 − p)�−1

B(�, �)
dp

(17)ATI = rg + (N − rg)

[
1 −

3

(rg + rgi + 3)
−

3rgi

(rg + rgi + 3)(rg + rgi + 2)

]

(18)

Dd =
rg

4
+ (N − rg)

[
1

4
−

3

(rg + 4)(rg + 3)
−

6rg

(rg + rgi + 4)(rg + rgi + 3)(rg + rgi + 2)

]

(19)

Dn = (N − rg)

[
3

(rg + 4)(rg + 3)
+

6rg

(rg + rgi + 4)(rg + rgi + 3)(rg + rgi + 2)

]

(20)

AOQ =
(N − rg)

N

[
3

(rg + 4)(rg + 3)
+

6rg

(rg + rgi + 4)(rg + rgi + 3)(rg + rgi + 2)

]
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Table 6  Optimal parameter of 
an economic model for GChSP 
by using the Bayesian approach 
for Weibull distribution with 
m = 2 when r = 3, i = 2

Β g a ATI Dd Dn TC

0.25 2 0.7 626.067 212.994 37.006 1095.061
1 0.8 433.523 168.328 81.672 854.850
1 1.0 433.523 168.328 81.672 854.850
1 1.2 433.523 168.328 81.672 854.850
1 1.5 433.523 168.328 81.672 854.850
1 2.0 433.523 168.328 81.672 854.850

0.10 2 0.7 626.067 212.994 37.006 1095.061
2 0.8 626.067 212.994 37.006 1095.061
1 1.0 433.523 168.328 81.672 854.850
1 1.2 433.523 168.328 81.672 854.850
1 1.5 433.523 168.328 81.672 854.850
1 2.0 433.523 168.328 81.672 854.850

0.05 3 0.7 721.495 228.958 21.042 1209.453
2 0.8 626.067 212.994 37.006 1095.061
2 1.0 626.067 212.994 37.006 1095.061
1 1.2 433.523 168.328 81.672 854.850
1 1.5 433.523 168.328 81.672 854.850
1 2.0 433.523 168.328 81.672 854.850

0.01 4 0.7 778.400 236.45 13.55 1276.850
3 0.8 721.495 228.958 21.042 1209.453
2 1.0 626.067 212.994 37.006 1095.061
2 1.2 626.067 212.994 37.006 1095.061
1 1.5 433.523 168.328 81.672 854.850
1 2.0 433.523 168.328 81.672 854.850

Fig. 2  Total cost vs. pre-specified testing time a 
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Step #4: To refine our approach, we multiply and integrate the optimal param-
eters (ATI, Dd, Dn, and AOQ) of the cost model using the Bayesian approach in 
conjunction with the prior distribution, as elaborated in Eq. (13–16).
Step #5: Following simplification, we arrive at the desired parameters of the cost 
model, as specified in Eq. (17–20). These parameters enable us to determine the 
minimum total cost through the Bayesian approach for GChSP.

3  Comparison of Proposed Plans

A comparison is conducted between the total costs of Group Chain Sampling plans 
with and without the Bayesian approach. Furthermore, the results are also juxta-
posed with the total cost of the established plan by Aslam et al. [19]. These com-
parisons are based on data derived from the number of million revolutions before 
the failure of 23 ball bearings in the truncated life tests previously discussed by Rao 
and Ramesh [18], as presented in Table 7. The suitability of the data distribution in 
Table  7 is determined using the Kolmogorov–Smirnov (K-S) goodness of fit test. 
The K-S statistic for the Weibull distribution is found to be 0.2202, compared to a 
tabulated value of 0.3295 at a 1% level of significance. Given the smaller K-statistic 
compared to other tabulated values, it is evident that the Weibull distribution offers 
the best fit for the submitted product’s lifetime data. Considering the aforemen-
tioned design parameters ( �=0.10, r=3, i=2, and i = j = 1 ), the total cost of Group 
Chain Sampling plans is compared with the established plan by Aslam et al. [19], 
as detailed in Table 8. From Table 8, it can be observed that the total cost fluctu-
ates with changes in the sample size (n = r ∗ g) , both increasing and decreasing. For 
all sample sizes, the Bayesian approach consistently yields the lowest cost, prov-
ing to be more cost-effective in terms of total expenditure for both sampling plans. 
Horizontally across the tables, it is evident that the Bayesian approach consistently 

Fig. 3  TC vs.a (Bayesian Approach)
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results in the lowest total cost compared to the economic model and the previously 
proposed plan by Aslam et  al. [19]. The impact of termination time ′a′ in Group 
Chain Sampling plans on the total cost, while maintaining the aforementioned 
design parameters ( � = 0.10, r = 3, i = 2 , and i = j = 1 ), is presented in Table  9. 
The economic model for Group Chain Sampling plans shows that the total cost 
increases with an extended termination time ′a′ . In contrast, the economic model 
using the Bayesian approach demonstrates that the total cost remains unaffected by 
the termination time ′a′ due to the incorporation of prior information. Clearly, the 
Bayesian approach consistently offers the lowest cost compared to the economic 
model and the existing plan developed by Aslam et  al. [19]. This proposed plan 

Table 7  Number of million revolutions earlier failure for each of 23 ball bearings

Ball bearings Million revolu-
tions before 
failure

Ball bearings Million revolu-
tions before 
failure

Ball bearings Million revolu-
tions before 
failure

1 17.88 9 51.96 17 93.12
2 28.92 10 54.12 18 98.64
3 33.00 11 55.56 19 105.12
4 41.52 12 67.80 20 105.84
5 42.12 13 68.44 21 127.92
6 45.60 14 68.64 22 128.04
7 48.80 15 68.88 23 173.40
8 51.84 16 84.12

Table 8  Comparison of the total cost of the group chain sampling plan

r i g Total Cost based on 
economic model

Total Cost based on 
Bayesian approach

Aslam et al. (2014)

2 1 2 1899.319 899.022 1527.110
3 2 2 1990.389 1095.061 1740.001
4 3 1 1918.689 984.344 1527.110
5 4 1 1964.657 1067.313 1650.798

Table 9  Comparison of total cost of the group chain sampling plan r = 3, i = 2,� = 0.10

a g Total Cost based on eco-
nomic model

Total Cost based on Bayes-
ian approach

Aslam et al. (2014)

0.7 2 1990.389 1095.061 1740.000
0.8 1 1959.847 854.850 1328.343
1.0 1 2185.191 854.850 1328.343
1.2 1 2354.093 854.850 1328.343
1.5 1 2537.034 854.850 1328.343
2.0 1 2727.721 854.850 1328.343
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effectively utilizes maximum information about the lot, combining current experi-
mental data with past knowledge, referred to as prior information, to minimize the 
total cost (Fig. 4).

4  Concluding Remarks

In conclusion, this study has contributed significantly to the field of quality con-
trol and acceptance sampling, particularly in the context of group chain sampling 
plans (GChSP) for the Weibull distribution. The integration of Bayesian methodol-
ogy into the economic design of GChSP has proven to be a valuable approach for 
making informed decisions while optimizing cost-efficiency. Through a meticulous 
exploration of various design parameters, such as consumer’s risk, termination time, 
number of testers, and preceding lots, this research has provided a comprehensive 
framework for developing and evaluating GChSP. The proposed economic model, 
which considers inspection costs, internal failures, outgoing defectives, and group 
costs, is a practical tool for industries seeking to enhance their quality control pro-
cesses. The comparison of the Bayesian approach with existing methods has demon-
strated its superiority in terms of minimizing total costs, thus making it a compelling 
choice for organizations aiming to maintain high-quality standards while optimizing 
resource allocation. This study has filled a significant gap in the literature by offer-
ing a comprehensive economic model for GChSP with Weibull distribution, further 
emphasizing the importance of Bayesian techniques in modern quality management. 
Overall, the findings of this research provide valuable insights for practitioners and 
researchers alike, offering a robust foundation for the implementation of cost-effec-
tive group chain sampling plans in various industries, ultimately contributing to 
improved product quality and customer satisfaction.

Fig. 4  Comparison of Total cost of proposed plan vs. termination time a
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