
Vol.:(0123456789)

Journal of Statistical Theory and Applications (2024) 23:1–25
https://doi.org/10.1007/s44199-023-00068-2

1 3

RESEARCH ARTICLE

Randomly Censored Kumaraswamy Distribution

Aditi Chaturvedi1 

Received: 13 May 2023 / Accepted: 7 December 2023 / Published online: 22 January 2024 
© The Author(s) 2024

Abstract
In this paper, inferential procedures based on classical and Bayesian framework for 
the Kumaraswamy distribution under random censoring model are studied. We first 
propose estimators for the distribution parameters, reliability function, failure rate 
function, and Mean time to system failure based on the maximum likelihood esti-
mation method. Then, we calculate asymptotic confidence intervals for the param-
eters based on the observed Fisher’s information matrix. Also, for the parameters 
and reliability characteristics, Bayesian estimates are derived using the importance 
sampling and Gibbs sampling procedures. Highest posterior density credible inter-
vals for the parameters are constructed using Markov Chain Monte Carlo method. 
Expected time on test of experiment with random censoring is also calculated. A 
simulation study is conducted to compare the efficiency of the derived estimates. 
Finally, the analysis of a real data set is presented for the illustration purpose.

Keywords Gibbs sampling · Kumaraswamy distribution · Maximum likelihood 
estimation · Markov chain · Monte Carlo simulation · Random censoring
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Kum  Kumaraswamy
OBTT  Observed time on test
HPD  Highest posterior density
MCMC  Markov chain Monte Carlo
iid  Independent and identically distributed
pdf  Probability density function
cdf  Cumulative distribution function
min  Minimum
MTSF  Mean time to system failure
SELF  Squared-error loss function

1 Introduction

Censoring occurs in life-testing trials when only a subset of the test items have 
known exact lifetimes, and the remaining test items’ lifetimes are merely known to 
exceed predetermined values. There are several censoring techniques that can be uti-
lized for life-testing. Among them, the most popular and basic methods are Type I 
and Type II censorings. However, periodic removals of items from the life-testing 
trials are not permitted by these censoring techniques.

When the object of investigation is lost or arbitrarily taken out of the experiment 
before it fails, this is referred to as random censoring. Alternatively, to put it another 
way, at the end of the experiment, some of the subjects under consideration did not 
experience the particular incident. For instance, some subjects in a medical study or 
clinical trial might not receive treatment at all and end the course of treatment before 
it is completed. Some participants in a sociological study become disoriented during 
the follow-up. In these situations, the accurate survival time also called as time to 
the event of interest is unknown to the experimenter. Gilbert [20] was the pioneer of 
the random censoring model. Afterwards, Breslow and Crowley [6] and Koziol and 
Green [26] have done some preliminary research on the random censoring scheme. 
Ghitany and Al-Awadhi [19] used randomly right censored data to generate the ML 
estimators of the Burr XII distribution’s parameters. Using randomly censored data, 
Liang [34, 35] investigated empirical Bayesian estimation for the uniform and the 
exponential distributions. Under random censoring, Danish and Aslam [11, 12] 
introduced Bayesian estimates for Weibull and generalised exponential distributions. 
For some recent and notable advancements, one may refer to Krishna et  al. [27], 
Kumar and Garg [30], Garg et al. [18], Krishna and Goel [28], Kumar [29], Kumar 
and Kumar [31], Ajmal et  al. [2] and the references therein. Besides these refer-
ences, one may also refer to Chaturvedi et  al. [9], Shrivastava et  al. [44], Jaiswal 
et al. [22], where the authors have studied Bayesian analysis techniques and dynamic 
models. These Bayesian analysis techniques can be utilized to tackle uncertainties 
and variations in the data, making it suitable for situations like random censoring in 
reliability analysis. Also, the dynamic models can be utilized to understand how the 
reliability of a system changes over a certain period of time.

Kumaraswamy [33] suggested a distribution for double-bounded random pro-
cesses, which have applications in hydrology. Sundar and Subbiah [48], Fletcher and 
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Ponnambalam [16], Seifi et al. [43], Ponnambalam et al. [41], and Ganji et al. [17] con-
ducted in-depth studies on the other applications of this distribution in related fields. 
Jones [23] described some of the similarities and differences between the beta and 
Kum distributions as well as the origins, evolution, and characteristics of the Kum dis-
tribution. He continued by enumerating the Kum distribution’s several advantages over 
the beta distribution. Using type II censored data, Sindhu et al. [45] derived both clas-
sical and Bayesian estimates of the shape parameter of the Kum distribution. The Kum 
Burr XII distribution, which is an extension of the Burr XII distribution and comprises 
numerous lifetime distributions as special instances, was proposed by Paranaíba et al. 
[40]. They have researched a range of statistical characteristics, reliability metrics, and 
estimation techniques for this broader class of distributions. Eldin et al. [15], Kizilaslan 
and Nadar [25], Dey et al. [13, 14] and Wang et al. [50] are a few additional noteworthy 
contributors. Recently, Mahto et al. [36] have studied statistical inference for a compet-
ing risks model when latent failure times belong to Kum distribution. Sultana et al. [47] 
came up with the statistical inference based on the Kum distribution under type I pro-
gressive hybrid censoring model. Chaturvedi and Kumar [8] have developed estimation 
procedures for the reliability functions of Kum-G Distributions based on Type I and 
Type II censoring schemes. Modhesh and Basheer [39] used progressively first-failure 
censored (PFFC) data to examine the behaviour of the entropy of random variables 
that follow a Kumaraswamy distribution. Abo-Kasem et al. [1] have discussed optimal 
sampling and statistical inferences for the Kum distribution under progressive Type-II 
censoring schemes. One may also refer to Kumar and Chaturvedi [32], Chaturvedi and 
Kumar [7], Aslam et al. [4], Younis et al. [49] and Kiani et al. [24] for a quick review of 
inferential procedures based on different distributions.

In this paper, inferential procedures based on classical and Bayesian framework 
for Kum distribution under random censoring model are considered. The rest of the 
paper is organized as follows: the Kum distribution is discussed in Sect.  2. Also, 
mathematical formulation is given for random censoring with failure and censoring 
time distributions. Section 3 deals with the ML estimation and ACIs of the param-
eters. Section 4 deals with the ETT of items. The essence of Sect. 5 is to formu-
late the Bayesian inferential procedure using two techniques, namely (1) importance 
sampling procedure under SELF using non-informative and gamma informative pri-
ors, and (2) Gibbs sampling. HPD credible intervals for the parameters are derived 
using MCMC method. In Sect. 6 the features of the various estimates established in 
this research are explored through a rigorous simulation analysis. A real data set is 
analyzed in support of the practical utility of the proposed methodologies in Sect. 7. 
Finally, some concluding thoughts and future research directions are provided in 
Sect. 8 Note that the statistical software R is used for computation purposes through-
out the paper.

2  Random Censoring Model

Suppose the failure times X1,X2,… ,Xn are iid random variables with pdf fX(x), x > 0 
and cdf FX(x), x > 0 respectively. Let T1, T2,… , Tn are iid censoring times associ-
ated with these failure times with pdf fT (t), t > 0 and cdf FT (t), t > 0 respectively. 
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Further, let X′
i
s and T ′

i
s be mutually independent. We observe failure or censored time 

Yi = min(Xi, Ti); i = 1, 2,… , n and the corresponding censor indicators Di = 1(0) 
if failure (censoring) occurs. Since, Xi and Ti are independent, so will be Yi and Di, 
i = 1, 2,… , n. As a special case, the proposed censoring model includes complete sam-
ple scenario when Ti = ∞ for all i = 1, 2,… , n and Type I censoring scenario when 
Ti = t

◦
 for all i = 1, 2,… , n where, t

◦
 is the pre-fixed study period. Thus, the joint pdf 

of Y and D is given by

The marginal distributions of Y and D are obtained as

and

respectively, where, p stands for the probability of observing a failure and is given 
by

The Kum distribution is characterized by the pdf and cdf:

and

respectively. Then, the corresponding reliability function, R(t),  failure rate function, 
h(t) and MTSF are given, respectively, by

and

where, Γ(a) stands for the gamma function and B(a, b) = Γ(a)Γ(b)

Γ(a+b)
 is the beta function.

The present study considers that the failure time X and the censoring time T follow 
Kum distribution with common shape parameter �. Let X follow Kum(�1, �) and T 
follow Kum(�2, �), then, their pdfs are given by,

(1)fY ,D(y, d) =
{
fX(y)

(
1 − FT (y)

)}d{
fT (y)

(
1 − FX(y)

)}1−d
.

fY (y) = fX(y)
(
1 − FT (y)

)
+ fT (y)

(
1 − FX(y)

)
, y > 0

P[D = d] = pd(1 − p)1−d, d = 0, 1,

p = P[X ≤ T] = �
∞

0

(
1 − FT (y)

)
fX(y)dy.

(2)f (x;𝛼, 𝛽) = 𝛼𝛽x𝛽−1(1 − x𝛽)𝛼−1; 0 < x < 1, 𝛼, 𝛽 > 0,

(3)F(x;�, �) = 1 − (1 − x�)� ,

(4)R(t) = (1 − t𝛽)𝛼; t > 0,

(5)h(t) =
��t�−1(1 − t�)�−1

(1 − t�)�
=

��t�−1

1 − t�
,

(6)MTSF = �B

(
�, 1 +

1

�

)
,



5

1 3

Journal of Statistical Theory and Applications (2024) 23:1–25 

and

respectively. Using (1), (7) and (8), the joint density of Y and D is given by

Thus, from (9), the marginal distribution of Yi is

Hence, Y follows Kum(�1 + �2, �). The marginal distribution of Di is given by

where, p = P[Xi ≤ Ti] =
�1

�1+�2
.

3  ML Estimation

In this section, we obtain MLEs of the unknown parameters of the Kum distribution 
using random censoring technique. Let (y, d) = (y1, d1), (y2, d2),… , (yn, dn) be the 
randomly censored sample of size n generated from (9). Then, the likelihood func-
tion for this randomly censored sample (y, d) is given by

Taking logarithm on both the sides, we have

(7)fX(x, 𝛼1, 𝛽) = 𝛼1𝛽x
𝛽−1(1 − x𝛽)𝛼1−1; 0 < x < 1, 𝛼1, 𝛽 > 0,

(8)fT (t, 𝛼2, 𝛽) = 𝛼2𝛽t
𝛽−1(1 − t𝛽)𝛼2−1; 0 < t < 1, 𝛼2, 𝛽 > 0,

(9)fY ,D(yi, di, 𝛼1, 𝛼2, 𝛽) = 𝛼
di
1
𝛼
1−di
2

𝛽y𝛽−1
i

(1 − y
𝛽
i
)𝛼1+𝛼2−1; d = 0, 1, 0 < yi < 1.

(10)

fY (y) =

1∑
d=0

fY ,D(y, d)

= 𝛼1𝛽y
𝛽−1
i

(1 − y
𝛽
i
)𝛼1+𝛼2−1 + 𝛼2𝛽y

𝛽−1
i

(1 − y
𝛽
i
)𝛼1+𝛼2−1

= (𝛼1 + 𝛼2)𝛽y
𝛽−1
i

(1 − y
𝛽
i
)𝛼1+𝛼2−1; 0 < yi < 1.

(11)

P(Di = di) = ∫
1

y=0

fY ,D(y, d)dy

=

(
�1

�1 + �2

)di
(

�2
�1 + �2

)1−di

; di = 0, 1

= pdi(1 − p)1−di ,

(12)

L(y, d, �1, �2, �) =

n�
i=1

fY ,D(yi, di)

= �
∑

di
1

�
n−

∑
di

2
�n

n�
i=1

y
�−1
i

n�
i=1

(1 − y
�
i
)�1+�2−1
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Differentiating Eq. (13) with respect to unknown model parameters �1, �2 and � and 
equating them to zero, we have the normal equations as

Substituting (14) and (15) in (16), we obtain

Since, it is not easy to solve Eq. (17), we need an iterative method to solve it. Let �̂  
be the ML estimator of � then the ML estimator of �1 and �2 are given by

and

Then, by the invariance property of ML estimators, the ML estimator of R(t),  h(t) 
and MTSF are given by

(13)

log L =

n∑
i=1

di log(�1) + (n −

n∑
i=1

di) log(�2) + n log(�) + (� − 1)

n∑
i=1

log(yi)

+ (�1 + �2 − 1)

n∑
i=1

log(1 − y
�
i
).

(14)

� log L

��1
=

∑n

i=1
di

�1
+

n�
i=1

log(1 − y
�
i
) = 0

⟹ �1 =
−
∑n

i=1
di∑n

i=1
log(1 − y

�
i
)
,

� log L

��2
=

∑n

i=1
(n − di)

�2
+

n�
i=1

log(1 − y
�
i
) = 0

(15)⟹ �2 =
−
∑n

i=1
(n − di)∑n

i=1
log(1 − y

�
i
)
,

(16)
� log L

��
=

n

�
+

n∑
i=1

log(yi) − (�1 + �2 − 1)

n∑
i=1

y
�
i
log(yi)

1 − y
�
i

= 0.

(17)

n

�
+

n�
i=1

log(yi) +

� ∑n

i=1
di∑n

i=1
log(1 − y

�
i
)
+

∑n

i=1
(n − di)∑n

i=1
log(1 − y

�
i
)
− 1

�
×

n�
i=1

y
�
i
log(yi)

1 − y
�
i

= 0.

�̂1 =
−
∑n

i=1
di

∑n

i=1
log(1 − y

�̂
i
)
,

�̂2 =
−
∑n

i=1
(n − di)

∑n

i=1
log(1 − y

�̂
i
)
.
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and

3.1  The ACIs

In this subsection, in order to obtain ACI, we first obtain Fisher’s Information 
Matrix. The observed Fisher information matrix is given to evaluate the estimated 
variance of the �̂1, �̂2, �̂  respectively, and given by

The second order partial derivatives are

(18)�R(t) = (1 − t
�𝛽)�𝛼1 ; t > 0,

(19)ĥ(t) =
�̂1�̂t

�̂−1

(1 − t�̂)
,

(20)M̂TSF = �̂1B

(
�̂1, 1 +

1

�̂

)
.

(21)I(�̂1, �̂2, �̂) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�2 logL

��2
1

�2 log L

��1��2

�2 log L

��1��

�2 logL

�2��1

�2 log L

��2
2

�2 log L

��2��

�2 logL

����1

�2 log L

����2

�2 log L

��2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠�1=�̂1,�2=�̂2,�=�̂

.

�2 log L

��2
1

= −

∑n

i=1
di

�2
1

,

�2 log L

��2
2

= −
(n −

∑n

i=1
di)

�2
2

,

�2 log L

��2
=

−n

�2
− (�1 + �2 − 1)

n�
i=1

y
�
i

�
log(yi)

�
s2

(1 − y
�
i
)2

,

�2 log L

��1��2
=

�2 logL

��2��1
= 0,

�2 log L

��1��
= −

y
�
i

�
log(yi)

�

(1 − y
�
i
)

=
�2 log L

��2��

=
�2 logL

����1
=

�2 log L

����2
.
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The estimated variance of �̂1, �̂2 and �̂  are the diagonal terms of I−1(�̂1, �̂2, �̂), 
where I−1(�̂1, �̂2, �̂) is the inverse of the observed Fisher’s Information Matrix. The 
(1 − �)100% ACI for �1, �2 and � are given by

and

respectively.

4  The ETT

In this section, we discuss ETT. In lifetime experiments and reliability experi-
ments, since time is directly related to cost, it is therefore beneficial to have an idea 
about the expected time of the experiment. First time in literature, the ETT for ran-
domly censored data was introduced by Krishna et  al. [27]. Let Yi = min(Xi, Ti); 
i = 1, 2,… , n be the random sample of size n generated from Kum(�1 + �2, �). Let 
Yn = max(Y1, Y2,… , Yn) be the n th order statistic. Then, the cdf of Yn is given by

Thus, for randomly censored Kum data, the ETT is given by

Then, the ML estimator of ETTRC is given by

{
�̂1 − Z�∕2

√
var(�̂1), �̂1 + Z�∕2

√
var(�̂1)

}
,

{
�̂2 − Z�∕2

√
var(�̂2), �̂2 + Z�∕2

√
var(�̂2)

}
,

{
�̂ − Z�∕2

√
var(�̂), �̂ + Z�∕2

√
var(�̂)

}
,

FY(n)
= P[Yn ≤ y] = [1 − (1 − y�)�1+�2]n.

(22)

ETTRC = E(Y(n))

= ∫
1

0

[1 − FY(n)
]dy

= ∫
1

0

[1 − (1 − y�)�1+�2]ndy.

(23)ÊTTRC = ∫
1

0

[1 − (1 − y�̂)�̂1+�̂2]ndy.
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Further, the OBTT is the maximum ordered statistic in Y1, Y2,… , Yn, i.e.,

Similarly, let X(n) denote the nth order statistic in the case of complete sample. Then, 
ETT in case of complete sample is given by

Equations  (23) and (25) can now be solved for different combinations of �1, �2, � 
and n with the help of integral function in R software.

5  Bayesian Estimation

Here, we develop the Bayes estimates of the unknown model parameters of the ran-
domly censored Kum distribution. In order to compute the Bayes estimates, let �1, �2 
and � independently follow the gamma priors with hyper-parameters (a1, b1), (a2, b2), 
and (a3, b3), respectively, with their respective pdf’s

Following there pdf’s, we can obtain the joint prior distribution of �1, �2 and � as

Now using the likelihood function given in Eq.  (12) and the joint prior given in 
Eq. (26), the joint posterior distribution of the parameters �1, �2 and � is given by

(24)OBTTRC = Y(n).

(25)

ETTCS = E(X(n))

= ∫
1

0

[1 − FX(n)
]dx

= ∫
1

0

[1 − (1 − x�)�1]ndx.

g(𝛼1, a1, b1) =
a
b1
1

Γ(b1)
e−a1𝛼1𝛼

b1−1

1
; a1, b1 > 0,

g(𝛼2, a2, b2) =
a
b2
2

Γ(b2)
e−a2𝛼2𝛼

b2−1

2
; a2, b2 > 0,

g(𝛽, a3, b3) =
a
b3
3

Γ(b3)
e−a3𝛽𝛽b3−1; a3, b3 > 0.

(26)g(�1, �2, �) ∝ e−(a1�1+a2�2+a3�)�
b1−1

1
�
b2−1

2
�b3−1.
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Now, we compute the Bayes estimates under SELF. Let �(�1, �2, �) be any function 
of the parameters �1, �2 and �, then the Bayes estimate of �(�1, �2, �) under SELF is 
given by

One can clearly observe that it is not possible to obtain the closed form solution of 
Eq.  (28). Hence, we tend to exploit two approximation methodologies, namely (i) 
Importance Sampling, and (ii) Gibbs Sampling, to derive the Bayes’ estimates.

5.1  Importance Sampling Technique

In this subsection, we discuss the importance sampling method to derive the Bayes 
estimates of the parameters and the reliability characteristics. Note that the posterior 
distribution given in (27) can be rewritten as

where, A1 = a1 −
∑n

i=1
log(1 − y

�
i
), B1 = b1 +

∑n

i=1
d1, A2 = a2 −

∑n

i=1
log(1 − y

�
i
), 

B2 = b2 + n −
∑n

i=1
d1, A3 = a3 −

∑n

i=1
log(yi), B3 = n + b3, and 

W(�1, �2, �) =
e
−
∑n
i=1

log(1−y
�
i
)

A
B1
1
A
B2
2

. Now, for the computation of Bayes estimates using the 

importance sampling technique, following steps are used: 

 Step 1. Generate �(1) from gamma(A3,B3).

 Step 2. Generate �(1)

1
 from gamma(A1,B1) using �(1) generated in Step 1.

(27)

�(�1, �2, ��data) =
L(y, d, �1, �2, �)g(�1, �2, �)

∫ ∞

0
∫ ∞

0
∫ ∞

0
L(y, d, �1, �2, �)g(�1, �2, �)d�1d�2d�

⟹ �(�1, �2, �) ∝ �
∑

di
1

�
n−

∑
di

2
�n

n�
i=1

y
�−1
i

n�
i=1

(1 − y
�−1
i

)�1+�2−1 × �
b1−1

1
�
b2−1

2
�b3−1

× e−a2�2e−a3�

= �
b1+

∑
di−1

1
e−a1�1�

n−
∑

di+b2−1

2
e−a2�2�n+b3−1e−a3�e(�1+�2−1)

∑n

i=1
log(1−y

�
i
)

× e(�−1)
∑n

i=1
log(yi)

⟹ �(�1, �2, �) ∝ �
b1+

∑
di−1

1
e
−�1

�
a1−

∑n

i=1
log(1−y

�
i
)
�
�
(n+b2−

∑
di−1)

2
e
−�2

�
a2−

∑n

i=1
log(1−y

�
i
)
�

× �n+b3−1e−�(a3−
∑n

i=1
log(yi))e−

∑n

i=1
log(1−y

�
i
).

(28)
�∗ = E(�(�1, �2, �)|data)

= ∫
∞

0 ∫
∞

0 ∫
∞

0

�(�1, �2, �)�(�1, �2, �|data)d�1d�2d�.

�(�1, �2, �) ∝ gamma(A1,B1) × gamma(A2,B2) × gamma(A3,B3) ×W(�1, �2, �),
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 Step 3. Generate �(1)

2
 from gamma(A2,B2) using �(1) generated in Step 1.

 Step 4. Compute W
(
�(1)

1
, �(1)

2
, �(1)

)
.

 Step 5. Repeat steps 1 to 4, (M − 1) times to obtain importance samples.

Now, the approximate Bayes estimates of the parameters and reliability characteris-
tics under SELF are given by

and

5.2  MCMC Method

Here, we consider MCMC technique to compute Bayes estimates and the corre-
sponding HPD credible intervals. The Gibbs sampling is a particular type of MCMC 
method (see [46]). The full posterior conditional distributions for the parameters �1, 
�2 and �, respectively, are given by

�∗
1IS

=

∑M

i=1
�(i)

1
W
�
�(i)

1
, �(i)

2
, �(i)

�

∑M

i=1
W
�
�(i)

1
, �(i)

2
, �(i)

� ,

�∗
2IS

=

∑M

i=1
�(i)

2
W
�
�(i)

1
, �(i)

2
, �(i)

�

∑M

i=1
W
�
�(i)

1
, �(i)

2
, �(i)

� ,

�∗
IS
=

∑M

i=1
�(i)W

�
�(i)

1
, �(i)

2
, �(i)

�

∑M

i=1
W
�
�(i)

1
, �(i)

2
, �(i)

� ,

R∗
IS
(t) =

∑M

i=1

�
1 − t�

(i)
��(i)

1

W
�
�(i)

1
, �(i)

2
, �(i)

�

∑M

i=1
W
�
�(i)

1
, �(i)

2
, �(i)

� ,

h∗
IS
(t) =

∑M

i=1

�(i)
1
�(i)t�

(i)−1

1−t�
(i) W

�
�(i)

1
, �(i)

2
, �(i)

�

∑M

i=1
W
�
�(i)

1
, �(i)

2
, �(i)

� ,

MTSF∗ =

∑M

i=1
�(i)

1
B
�
�(i)

1
, 1 +

1

�(i)

�
W
�
�(i)

1
, �(i)

2
, �(i)

�

∑M

i=1
W
�
�(i)

1
, �(i)

2
, �(i)

� .
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and

From Eqs. (29) and (30), it can be seen that the posterior samples of �1 and �2 can be 
easily generated using gamma distributions, but the posterior sample of � cannot be 
generated directly. For the generation of the sample of �, we shall use the MH algo-
rithm, see Metropolis et al. [38] and Hastings [21]. Thus, we use the following steps 
to generate samples from the full conditional posterior densities given in Eqs. (29), 
(30) and (31), respectively: 

 Step 1. Start with an initial guess of �1, �2 and �, say �(0)

1
, �(0)

2
 and �(0).

 Step 2. Set j = 1.

 Step 3. Generate �(j) from �3(�|�(j−1)

1
, �

(j−1)

2
, data) using MH algorithm with normal 

proposal distribution as 

 (i) Generate a candidate point � jc from the proposal distribution N(�(j−1), 1).
 (ii) Generate u from Uniform(0, 1).

 (iii) Calculate � = min

(
1,

�3(�
(j)
c |�(j−1)

1
,�

(j−1)

2
,data)

�3(�
(j−1)|�(j−1)

1
,�

(j−1)

2
,data)

)
.

 (iv) If u ≤ �, set �(j) = �
(j)
c  with acceptance probability �, otherwise 

�(j) = �(j−1).

 Step 4. Generate �(j)

1
 from gamma(A1,B1) using �(j) generated in Step 3.

 Step 5. Generate �(j)

2
 from gamma(A2,B2) using �(j) generated in Step 3.

 Step 6. Set j = j + 1.
 Step 7. Repeat step 3 to step 6, N times, to obtain the sequence of the parameters as 

�(1)

1
, �(1)

2
,… , �(1), �(2)

1
, �(2)

2
,… , �(2),… , �(N)

1
, �(N)

2
… , �(N).

We discard first N
◦
= 20% of the N of the generated values of the parameters as 

the burn-in-period to obtain independent samples from the stationary distribu-
tion of the Markov chain which are typically the posterior distributions. Thus, the 
Bayes estimates of the parameters �1, �2, � and reliability characteristics R(t),  h(t) 
and MTSF under SELF, respectively, are given by

(29)�1(�1|�, data) ∝ gamma(A1,B1),

(30)�2(�2|�, data) ∝ gamma(A2,B2),

(31)�3(���1, �2, data) ∝ �n+b3−1e−�(a3−
∑n

i=1
log(yi))e(�1+�2−1)

∑n

i=1
log(1−y

�
i
).
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and

5.3  HPD Credible Interval

In this subsection, we construct HPD credible intervals of the unknown parameters 
�1, �2 and �, respectively, by using the algorithm proposed by Chen and Shao [10]. 
Let 𝛼1(1) < 𝛼1(2) < ⋯ < 𝛼1(N−N

◦
) denote the ordered form of the MCMC sample of �1 

generated in the previous subsection. Thus, the 100(1 − �)%, where 0 < 𝛿 < 1, HPD 
credible interval for �1 is given by

where j is chosen such that

here, [x] is the largest integer less than or equal to x. Similarly, we can construct the 
100(1 − �)% HPD credible intervals for �2 and �, respectively.

6  Simulation Study

A Monte Carlo simulation study is conducted in this section to evaluate the effec-
tiveness and performance of the various estimation techniques. We generate a ran-
domly censored sample from the Kum distribution an algorithm. The steps of the 
algorithm are provided below:

�∗
1GS

=
1

(N − N
◦
)

N∑
j=N

◦
+1

�
(j)

1
,

�∗
2GS

7
1

(N − N
◦
)

N∑
j=N

◦
+1

�
(j)

2
,

�∗
GS

=
1

(N − N
◦
)

N∑
j=N

◦
+1

�(j),

R∗
GS
(t) =

1

(N − N
◦
)

N∑
j=N

◦
+1

(1 − t�
(j)

)�
(j)

1 ,

h∗
GS
(t) =

1

(N − N
◦
)

N∑
j=N

◦
+1

�
(j)

1
�(j)t�

(j)−1

1 − t�
(j)

,

MTSF∗
GS

=
1

(N − N
◦
)

N∑
j=N

◦
+1

�
(j)

1
B

(
�
(j)

1
, 1 +

1

�(j)

)
.

(�1(j), �1(j+[(1−�)M])),

�1(j+[(1−�)M]) − �1(j) = min
1≤i≤�M

(
�1(i+[(1−�)M]) − �1(i)

)
; j = 1, 2,… ,M,
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Step 1. Generate a random sample u1, u2,… , un from standard Uniform distribu-
tion, i.e., U(0, 1).

Step 2. Make a transformation to obtain failure observations xi, i = 1, 2,… , n,

Step 3. Generate another random sample v1, v2,… , vn from U(0, 1).
Step 4. Make another transformation to obtain censoring observations ti, 

i = 1, 2,… , n,

Step 5. Now obtain yi and di by using the condition that if xi < ti, then yi = xi and 
di = 1, else yi = ti and di = 0. Hence, we obtain a randomly censored sample (yi, di) 
of n observations from Kum distribution.

We have generated 10,000 randomly censored samples using the aforementioned 
approach for various sample sizes n = 30(5)100 and parameter values �1, �2, and � 
in order to examine the behaviour of various estimates. We have used the procedure 
covered in Sect. 3 to calculate the average values of the ML estimators. Additionally, 
we have calculated the average length of the relevant CPs and the 95% asymptotic 
confidence intervals. By taking M = 10,000 as mentioned in Sect. 5, we were able 
to acquire the Bayes estimates using the Gibbs Sampling and importance sampling 
methodologies, as well as 95% HPD credible intervals of the parameters. Hyperpa-
rameters are selected so that the true value of the parameter equals the mean of the 
prior distribution.

The average ML estimates and the average Bayes estimates of �1 with hyperpa-
rameters a1 = 2, a2 = 2, a3 = 3, b1 = 1, b2 = 3, b3 = 6 and their corresponding MSE 
for true values of parameters �1 = 0.5, �2 = 1.5 and � = 2 are computed and the 
results are reported in Table 1. Comparing the estimates on the basis of MSE, from 
Table 1 we observe that the Bayes estimate based on Importance Sampling performs 
the best and ML estimate performs the least. Bayes estimate based on Gibbs sam-
pling method lies between the two. Further, as n increases, the performance of all the 
estimators improve and the three estimators come close to each other. Similarly, the 
average ML estimate and the average Bayes estimates for �2 and their correspond-
ing MSE are computed and the results are reported in Table 2. From Table 2 we can 
observe that the Bayes estimate of �2 based on the Importance Sampling performs 
better than the Bayes estimate based on Gibbs Sampling Method and ML estimate. 
However, as n increases, their MSE decreases and all the estimates become almost 
equally efficient. In case of �, for n < 60, Bayes estimate based on Importance sam-
pling performs the best, ML estimate performs the least and Bayes estimate based 
on Gibbs sampling lies in between the two. However, for n ≥ 60, Bayes estimate 
based on Gibbs sampling performs the best, ML estimate performs the least and 
the Bayes estimate based on Importance sampling lies between the two. Further, for 
n ≥ 85, Bayes estimate based on Gibbs sampling performs the best, Bayes estimate 
based on Importance sampling performs the least and ML estimate lies between the 
two. Also, as sample size increases, all the estimates become almost equally effi-
cient. The results for � are reported in Table 3. The average length and CPs of the 

xi = (1 − (1 − ui)
1∕�1 )1∕� .

ti = (1 − (1 − vi)
1∕�2)1∕� .
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Table 1  Different estimates of �
1 n ML estimate Bayes estimate 

(importance sam-
pling)

Bayes estimate 
(Gibbs sampling)

�̂
1

�∗
1IS

�∗
1GS

AE MSE AE MSE AE MSE

30 0.562 0.0708 0.5001 0.0287 0.5255 0.0335
35 0.5437 0.0568 0.4888 0.0276 0.5173 0.0318
40 0.5394 0.0444 0.4882 0.0236 0.5196 0.027
45 0.5443 0.0408 0.4851 0.0222 0.5249 0.0259
50 0.5365 0.0355 0.4777 0.0185 0.5209 0.0241
55 0.5207 0.029 0.4653 0.0178 0.5097 0.0207
60 0.5317 0.0294 0.4734 0.0174 0.5208 0.0216
65 0.5221 0.0241 0.4641 0.0154 0.5126 0.0179
70 0.5335 0.0237 0.4694 0.015 0.5235 0.018
75 0.527 0.022 0.4662 0.014 0.5188 0.0169
80 0.5166 0.018 0.4527 0.014 0.5099 0.0143
85 0.5239 0.0181 0.4559 0.0124 0.5172 0.0144
90 0.5217 0.0164 0.4584 0.012 0.5161 0.0134
95 0.5274 0.0167 0.4518 0.0114 0.5215 0.0137
100 0.5158 0.0144 0.4465 0.0118 0.5113 0.0121

Table 2  Different estimates 
of �

2

n ML estimate Bayes estimate 
(importance sam-
pling)

Bayes estimate 
(Gibbs sampling)

�̂
2

�∗
2IS

�∗
2GS

AE MSE AE MSE AE MSE

30 1.6933 0.3529 1.5097 0.0894 1.5839 0.1267
35 1.652 0.2577 1.4865 0.0767 1.5726 0.1145
40 1.6147 0.2137 1.466 0.0767 1.5549 0.1058
45 1.6405 0.1983 1.4701 0.0688 1.5814 0.1043
50 1.6092 0.1598 1.4432 0.0564 1.5634 0.091
55 1.5871 0.1387 1.4199 0.0548 1.552 0.0843
60 1.5715 0.1129 1.4036 0.0497 1.5421 0.0724
65 1.5886 0.1215 1.4038 0.0503 1.5586 0.079
70 1.5872 0.1241 1.3953 0.0531 1.5572 0.0831
75 1.574 0.0976 1.3845 0.0477 1.5502 0.0673
80 1.5686 0.0874 1.3701 0.046 1.5474 0.0619
85 1.5688 0.0858 1.3661 0.0462 1.5485 0.0619
90 1.5485 0.0739 1.3491 0.0508 1.5326 0.0549
95 1.5513 0.0683 1.3465 0.0503 1.5354 0.0515
100 1.5585 0.0678 1.3482 0.0464 1.5442 0.052
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95% ACIs and HPD credible intervals of the three parameters are obtained for dif-
ferent values of n and the results are presented in Table 4. From Table 4 we observe 
that the length of both the intervals for �1, �2 and � decreases as n increases, which 
shows the improvement in precision of the estimates as sample size increases. We 
also observe that the CPs of the interval estimates are much close to nominal values 
even for small values of n. The average length of ACI of �1 is smaller than average 
length of HPD credible interval, while, CP of HPD is higher than ACI. However, for 
�2 and �, the average length of HPD is smaller than the average length of ACI while, 
CP of ACI is higher than HPD.

For comparing the performance of ML estimate and Bayes estimate of reliability 
function R(t),   we obtain the average ML and Bayes estimates and their respective 
MSEs for �1 = 0.5, �2 = 1.5 and � = 2 and different values of n and t = 0.5 and the 
results are reported in Table 5. Comparing the estimates on the basis of MSE, we 
observe that the Bayes estimate of R(t) based on Gibbs sampling method performs 
better than the ML estimate and Bayes estimate based on Importance sampling 
method. Also, as n increases, MSE of the three estimates decreases and the estimates 
become almost equally efficient. Along the similar lines, we obtain the average value 
of ML estimate and Bayes estimate and their MSE of the failure rate function h(t) 
and the results are reported in Table 6. From Table 6, on the basis of MSE, we can 
conclude that the Bayes estimate of h(t) based on Gibbs sampling performs better 
than the ML estimate and the Bayes estimate based on Importance sampling method 
and the estimates improve and come close to each other as n increases. Similarly, for 

Table 3  Different estimates of � n ML estimate Bayes estimate 
(importance sam-
pling)

Bayes estimate 
(Gibbs sampling)

�̂ �∗
IS

�∗
GS

AE MSE AE MSE AE MSE

30 2.1514 0.2132 1.9838 0.0772 2.0722 0.1016
35 2.112 0.1709 1.9497 0.0672 2.052 0.0891
40 2.0838 0.1555 1.9219 0.0708 2.0359 0.0882
45 2.0884 0.1403 1.9018 0.0641 2.0415 0.0824
50 2.0799 0.1187 1.8928 0.0634 2.0405 0.0737
55 2.0594 0.1004 1.8677 0.0642 2.0291 0.0656
60 2.0533 0.091 1.8464 0.0614 2.0255 0.0612
65 2.0547 0.0864 1.8362 0.0623 2.028 0.059
70 2.0671 0.0847 1.8362 0.0657 2.0399 0.0589
75 2.0516 0.0717 1.8202 0.0628 2.029 0.0513
80 2.0591 0.0775 1.8131 0.0686 2.0377 0.0571
85 2.0473 0.0649 1.7925 0.0719 2.0271 0.0484
90 2.0386 0.0608 1.7794 0.0747 2.0216 0.0459
95 2.047 0.0555 1.7765 0.0741 2.0295 0.0426
100 2.0383 0.0513 1.7649 0.0793 2.0234 0.04
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Table 4  The 95% asymptotic confidence and HPD credible intervals

n ML estimate Bayes estimate ML estimate Bayes estimate ML estimate Bayes estimate

�̂
1

�∗
1

�̂
2

�∗
2 �̂ �∗

AL CP AL CP AL CP AL CP AL CP AL CP

30 0.93 0.93 2.0129 0.966 1.6847 0.964 0.7295 0.951 1.4964 0.971 1.2905 0.969
35 0.8334 0.929 1.8013 0.963 1.5356 0.963 0.6795 0.935 1.4054 0.979 1.2178 0.975
40 0.7692 0.943 1.6421 0.955 1.4225 0.952 0.6453 0.95 1.3231 0.962 1.1547 0.955
45 0.7347 0.939 1.5747 0.959 1.3397 0.945 0.6246 0.948 1.2891 0.959 1.1044 0.948
50 0.6845 0.945 1.4577 0.959 1.2684 0.951 0.5928 0.952 1.222 0.966 1.0639 0.959
55 0.635 0.936 1.3645 0.955 1.2016 0.956 0.5597 0.944 1.1666 0.965 1.0234 0.963
60 0.6157 0.935 1.2947 0.959 1.1475 0.951 0.5472 0.932 1.1229 0.961 0.9891 0.96
65 0.5859 0.951 1.2561 0.954 1.1024 0.951 0.5251 0.952 1.0962 0.963 0.9558 0.957
70 0.5735 0.944 1.2126 0.938 1.0681 0.945 0.5165 0.948 1.0661 0.939 0.933 0.945
75 0.5475 0.949 1.1575 0.956 1.0247 0.951 0.4975 0.951 1.0279 0.957 0.9023 0.953
80 0.5216 0.942 1.1142 0.961 0.9974 0.93 0.4774 0.95 0.9974 0.964 0.883 0.932
85 0.5114 0.96 1.0823 0.955 0.9611 0.952 0.4699 0.959 0.9744 0.96 0.8578 0.949
90 0.4933 0.946 1.0372 0.957 0.9328 0.944 0.4557 0.952 0.9417 0.963 0.8363 0.951
95 0.4842 0.944 1.0116 0.964 0.91 0.958 0.4486 0.95 0.9211 0.969 0.8177 0.952
100 0.4649 0.952 0.9886 0.962 0.8837 0.948 0.4329 0.953 0.9044 0.966 0.7972 0.951

Table 5  Different estimates of 
R(t) for t = 0.5

n ML estimate Bayes estimate 
(importance 
sampling)

Bayes estimate 
(Gibbs sampling)

R̂(t) R
∗
IS
(t) R

∗
GS
(t)

AE MSE AE MSE AE MSE

30 0.8694 0.0022 0.8651 0.0019 0.8686 0.0017
35 0.8693 0.002 0.8647 0.0018 0.8687 0.0016
40 0.8663 0.0019 0.8614 0.0018 0.8659 0.0015
45 0.8659 0.0015 0.8605 0.0016 0.8656 0.0013
50 0.8665 0.0015 0.8609 0.0016 0.8662 0.0013
55 0.868 0.0013 0.8619 0.0014 0.8677 0.0011
60 0.8651 0.0012 0.8578 0.0014 0.865 0.0011
65 0.8672 0.001 0.859 0.0013 0.8669 9.00e−04
70 0.8656 0.001 0.8575 0.0013 0.8654 9.00e−04
75 0.8658 9.00e−04 0.8567 0.0012 0.8656 8.00e−04
80 0.8684 9.00e−04 0.8596 0.0011 0.8681 8.00e−04
85 0.8657 8.00e−04 0.8564 0.0011 0.8655 7.00e−04
90 0.8653 7.00e−04 0.8545 0.001 0.8652 7.00e−04
95 0.8646 8.00e−04 0.8556 0.001 0.8645 7.00e−04
100 0.8665 7.00e−04 0.8562 0.001 0.8664 7.00e−04
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investigating the performance of MTSF, we have obtained average ML and Bayes 
estimates and their respective MSEs and the results are presented in Table 7. From 
Table 7 we conclude that Bayes estimate of MTSF based on Gibbs sampling per-
forms better than the Bayes estimate based on Importance sampling technique and 
ML estimate. Also, as n increases, MSE of the three estimates decreases and the 
estimates become almost equally efficient.

We have also calculated ETT based on complete sample and randomly generated 
sample and OBTT based on randomly generated sample as discussed in Sect. 4 for 
different sample sizes and the results are presented in Table 8. From Table 8, we 
observe that the random censoring reduces ETT and as n increases, ETT increases.

7  Real Data Analysis

We perform a real data analysis in this section. Here, we look at the data set that 
includes the monthly survival times (in months) of 24 patients who had Dukes’C 
colorectal cancer disease. This dataset was originally investigated by McIllmurray 
and Turkie [37]. Danish and Aslam [11] also examined this data set with a randomly 
censored Weibull distribution. The dataset is provided below: 3  +  6, 6, 6, 8, 12, 
12, 12 +, 15 + 16 + 18 + 20 + 22 + 24, 28 + 28 + 28 + 30 + 33 + 42. The cen-
soring times are indicated by the ‘+’ sign. To make computation easier, we first 
divide all observations by 50 without loss of generality. The resulting modified data 

Table 6  Different estimates of 
h(t) for t = 0.5

n ML estimate Bayes estimate 
(importance sam-
pling)

Bayes estimate 
(Gibbs sampling)

ĥ(t) h
∗
IS
(t) h

∗
GS
(t)

AE MSE AE MSE AE MSE

30 0.682 0.0649 0.6634 0.0479 0.6648 0.0451
35 0.674 0.0587 0.6585 0.0462 0.6606 0.0433
40 0.681 0.0496 0.6675 0.0423 0.6701 0.0384
45 0.6857 0.0436 0.6689 0.0378 0.6748 0.0343
50 0.681 0.0416 0.6633 0.0347 0.6715 0.0338
55 0.6681 0.0351 0.6526 0.0309 0.661 0.0292
60 0.6835 0.0343 0.6695 0.0308 0.6757 0.0288
65 0.672 0.0286 0.6604 0.0282 0.6655 0.0243
70 0.6838 0.0282 0.6677 0.0269 0.6767 0.0242
75 0.6799 0.0255 0.668 0.025 0.6737 0.022
80 0.6657 0.0223 0.6509 0.0233 0.6609 0.0197
85 0.6785 0.0218 0.6615 0.0213 0.6733 0.0192
90 0.6787 0.02 0.6684 0.0203 0.6739 0.0178
95 0.6844 0.0209 0.6609 0.0195 0.6794 0.0186
100 0.6722 0.0186 0.6555 0.0184 0.6681 0.0168
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are provided below: 0.06 +, 0.12, 0.12, 0.12, 0.12, 0.16, 0.16, 0.24, 0.24, 0.24 +, 
0.30 +, 0.32 +, 0.36 +, 0.36 +, 0.40, 0.44 +, 0.48, 0.56 +, 0.56 +, 0.56 +, 0.60, 
0.60 +, 0.66 +, 0.84.

Now we compare the fitted Kum distribution with some other well-known sur-
vival models, like, exponential, Rayleigh, and Weibull distributions for Dukes’C 
colorectal cancer data. The ML estimates of the parameters of these distribu-
tions under random censorship model are obtained. These estimates, along with 
the data, are used to calculate the negative log likelihood function −ln L, the AIC 
(AIC = 2 × k − 2ln L), proposed by Akaike [3] and BIC (BIC = k × kln (n) − 2ln L) 

Table 7  Different estimates of 
MTSF

n ML estimate Bayes estimate 
(importance 
sampling)

Bayes estimate 
(Gibbs sampling)

MTSF MTSF
∗
IS

MTSF
∗
GS

AE MSE AE MSE AE MSE

30 0.7873 0.003 0.7924 0.0025 0.7928 0.0023
35 0.7886 0.0027 0.7927 0.0024 0.7931 0.0022
40 0.7857 0.0024 0.7895 0.0022 0.7899 0.0019
45 0.7845 0.002 0.7884 0.002 0.7884 0.0017
50 0.7855 0.002 0.789 0.0019 0.789 0.0017
55 0.7878 0.0017 0.7908 0.0017 0.7908 0.0015
60 0.7843 0.0017 0.7866 0.0016 0.7873 0.0014
65 0.7865 0.0014 0.7882 0.0015 0.7891 0.0012
70 0.7839 0.0013 0.7861 0.0014 0.7865 0.0012
75 0.7845 0.0012 0.7856 0.0013 0.787 0.0011
80 0.7874 0.0011 0.7892 0.0013 0.7895 0.001
85 0.7845 0.001 0.7862 0.0012 0.7866 0.0009
90 0.7843 0.001 0.7842 0.0011 0.7863 0.0009
95 0.7831 0.001 0.7857 0.0011 0.7851 0.0009
100 0.7857 9.00e−04 0.7867 0.001 0.7874 0.0009

Table 8  The estimation of ETT 
or OBTT

n ETT
CS

ETT
RC ÊTT

RC
OBTT

RC

30 0.9989 0.9154 0.9068 0.9148
40 0.9994 0.9271 0.9177 0.9246
50 0.9996 0.9351 0.9304 0.936
60 0.9997 0.9409 0.9363 0.9403
70 0.9998 0.9454 0.9414 0.9438
80 0.9998 0.949 0.9452 0.948
90 0.9999 0.952 0.949 0.9525
100 0.9999 0.9545 0.9513 0.9535
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proposed by Schwarz [42], where k is the number of parameters in the reliability 
model, n is the number of observations in the given data set, L is the maximized 
value of the likelihood function for the estimated model and KS statistic with its 
p-value. The lowest −ln L, AIC,  BIC and KS statistic values and the highest p val-
ues indicate the best distribution fit. These values are listed in Table 9. It is clearly 
reflected from Table  9 that the Kum distribution is the best choice among other 
counterparts. We have also demonstrated the empirical cdf to fit the randomly cen-
sored data through the graphs. The graph of the empirical cdf along with the esti-
mates of cdfs for randomly censored exponential, Rayleigh, Weibull and Kum distri-
butions are represented by Fig. 1. One can observe from Fig. 1 that the estimate of 
cdf for Kum distribution is quite close to that proposed by empirical cdf estimator, 
which clearly indicates that the empirical cdf also supports the choice of Kum distri-
bution to represent the Dukes’ C colorectal cancer data.

We now examine how to estimate the randomly censored Kum distribution’s 
parameters for this set of data. Here, we have n = 24 and the effective sample size is 
m = 12. We also use the median mission time of the data, t = 0.34. We consequently 
use non-informative priors under SELF to derive the Bayes estimates of the param-
eters since we lack any prior knowledge. The hyperparameters for the non-inform-
ative priors are a1 = b1 = a2 = b2 = a3 = b3 = 0. The Gibbs sampling method and 
importance sampling approach are used to produce the Bayes estimates. We use 
M = 10,000 for the importance sampling approach and N = 50,000 with a burn-in-
period of N

◦
= 10,000 for the Gibbs sampling method. Furthermore, the 95% ACI 

and HPD credible intervals of the parameters are calculated. All results of the real 
data set are reported in Tables 10 and 11 respectively.

Table 9  Goodness-of-fit tests for the Dukes’ C colorectal cancer data

MODEL ML estimate − ln L AIC BIC K-S test

Statistic P-value

X ∼ Exp(�), �̂ = 1.3921 16.0603 36.1206 38.4767 0.2424 0.1193

T ∼ Exp(�) �̂ = 1.3921

X ∼ Rayleigh(�), �̂ = 5.8213 11.1734 26.3468 28.7029 0.1532 0.6262

T ∼ Rayleigh(�) �̂ = 5.8213

X ∼ Weibull(�, �), �̂ = 1.8095 10.9778 27.9557 31.4898 0.1261 0.8401
T ∼ Weibull(�, �) �̂ = 2.5673

�̂ = 2.5673

X ∼ Kum(�
1
, �), �̂

1
= 1.5904 10.6754 27.3508 30.885 0.1104 0.9318

T ∼ Kum(�
2
, �) �̂

2
= 1.5904

�̂ = 1.5267
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8  Concluding Remarks

In this study, we have developed estimation methods based on random censoring 
for the Kum distribution. Both point and interval estimations of the parameters are 
discussed. Extensive Monte Carlo experiments are conducted to examine the finite 
sample performances of the ML and the Bayes estimates based on the Importance 
sampling and Gibbs sampling methods. The MSE criterion is used to compare dif-
ferent estimates. Based on simulation experiments, we find that the ML estimator 
performs the least and the Bayes estimator based on importance sampling performs 
the best for �1. On the other hand, the Bayes estimate based on the importance sam-
pling approach outperforms the one based on the Gibbs sampling method and ML 
estimator for �2. When n < 60, the Bayes estimate based on importance sampling 
outperforms the Bayes estimate based on Gibbs sampling and ML estimator in case 
of �. Nevertheless, the Gibbs sampling based Bayes estimate outperforms the impor-
tance sampling and ML estimates for n ≥ 60. Furthermore, all the three estimators 
perform better and approach each other as n increases. Additionally, the length of 
CI and HPD reduces as n increases, demonstrating how the estimates’ precision 
improves with increasing sample size. We further find that when n increases, the 
estimates improve and approach each other, and that the Bayes estimates of R(t),   
h(t),   and MTSF based on the Gibbs sampling perform better than the Bayes esti-
mates based on Importance sampling and the ML estimator. Furthermore, we note 
that the ETT reduces with the random censoring and increases with n. Additionally, 
a real data set is examined to illustrate the proposed estimation techniques. The main 
focus of the paper is on drawing conclusions about the parameters under random 

Table 10  The ML and Bayes 
estimates of the parameters and 
reliability characteristics for 
the Dukes’ C colorectal cancer 
data set

Here, mission time t = 0.34 (median of the data), M = 10,000, 
N = 50,000, N

◦
= 10,000

Parameter ML estimates Bayes estimates

Importance 
sampling

Gibbs 
sampling 
method

�
1

1.5904 1.7945 1.5704
�
2

1.5904 1.6402 1.5741
� 1.5267 1.4648 1.4931
R(t) 0.7116 0.6765 0.7132
h(t) 1.7038 1.9197 1.6630
MTSF 0.5039 0.4841 0.5150

Table 11  The 95% asymptotic 
confidence and HPD credible 
intervals of the parameters for 
the Dukes’ C colorectal cancer 
data set

Parameter 95% ACI 95% HPD CI

�
1

(0.3741, 2.8067) (0.5544, 2.8096)
�
2

(0.3741, 2.8067) (0.5220, 2.7813)
� (0.9102, 2.1432) (0.8984, 2.0625)
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censoring. An extension of the work for the cases when one encounters with random 
non-responses may be interesting and considered in future research, see Basit and 
Bhatti [5].
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