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Abstract
The study of system safety and reliability has always been vital for the quality and 
manufacturing engineers of varying fields for which generally the continuous proba-
bility distributions are proposed. Bivariate and multivariate continuous distributions 
are the candidates while studying more than one characteristic of the system. In this 
article, an attempt is made to address this issue when the reliability systems generate 
bivariate and correlated count datasets. The bivariate generalized geometric distri-
bution (BGGD) is believed to serve as a potential candidate to model such types 
of datasets. Bayesian approach of data analysis has the potential of accommodating 
the uncertainty associated with the model parameters of interest using uninformative 
and informative priors. A real life bivariate correlated dataset is analyzed in Bayes-
ian framework and the results are compared with those produced by the classical 
approach. Posterior summaries including posterior means, highest density regions, 
and predicted expected frequencies of the bivariate data are evaluated. Different 
information criteria are evaluated to compare the inferential methods under study. 
The entire analysis is carried out using Markov chain Monte Carlo (MCMC) set-up 
of data augmentation implemented through WinBUGS.
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AIC	� Akaike information criterion
AICC	� Corrected AIC
BIC	� Bayes information criterion
HQC	� Hannan-Quinn criterion

1  Introduction

Reliability and system engineers often encounter the difficulty of dealing with 
uncertainties present in the system where more than one study variables are of inter-
est to them. Medical experts also face the similar situations when the life of patients 
goes at stake for the failure of vital organs like heart, brain, kidney, liver, lungs, and 
the likes. Choice of discrete or continuous and bivariate or multivariate distributions 
depends on the nature and number of the study variables. A vast literature exists on 
the construction of probability distributions. For this, one may refer to [1]. No hard 
and fast criteria could be established to construct probability distributions. More 
details on this issue may be found in [1–3].

If bivariate continuous distributions are to be used, we could choose from para-
metrical distributions to analyze bivariate lifetime data suggested in the literature, 
[4–8]. As our study corresponds to the reliability of system generating bivari-
ate count data, so the most suitable distribution to model such types of datasets is 
believed to be the bivariate generalized geometric distribution (BGGD) proposed by 
[9]. Many bivariate distributions for continuous random variables are introduced in 
the literature to be used in data analysis, especially in applications of survival data in 
the presence of censored data and covariates (see, for example, [10–20]. The recent 
study includes [21]. Alternatively, it can be observed in the literature that it is not 
very common the use of bivariate distributions for survival data assuming discrete 
data. Some discrete bivariate distributions have been introduced in the literature as 
the bivariate geometric distribution of [4] or the bivariate geometric distribution 
of [22], but these discrete distributions are still not very popular in the analysis of 
bivariate lifetime data, especially in the presence of censored data and covariates 
(see also, [4, 23–28]).

Classical methods are frequently used in the analysis but they suffer from a cer-
tain drawbacks. The frequentists consider parameters to be unknown fixed quanti-
ties and they just rely on the current data and deprive the results of any prior infor-
mation available about the parameters of interest. However, the Bayesians treat the 
parameters as random quantities and hence assign a probability distribution to the 
parameters. The Bayesian analysis is a modern inferential technique that endeavors 
to estimate the model parameters taking both the current data and prior informa-
tion about the parameters into account. As a result, we get a posterior distribution 
that is believed to average the current data and the prior information. The posterior 
distribution thus derived is the achilis heal and the work-bench of the Bayesians to 
infer about the parameters based on numerical procedures and the entire estimation 
is then based on the very posterior distribution. A good review of the advantages of 
using Bayesian methods may be seen in [29]. The posterior distributions often have 
complex multidimensional functions that require the use of Markov chain Monte 
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Carlo (MCMC) methods to draw results, [30–34]. Its use is very popular for analyz-
ing bivariate continuous or discrete random variables in presence of censored data 
and covariates (see for example, [29, 35–40]. Recently, [41] has considered weighted 
bivariate geometric distribution and [42] has used the q-Weibull distribution in clas-
sical as well as Bayesian frameworks. In recent years, the use of Markov Chain 
Monte Carlo (MCMC) methods has gained much popularity, [43, 44] and [45].

It has been established that the BGGD is a good choice to model and analyze reli-
ability count data appearing in medicine, engineering. The probability mass func-
tion (pmf) of BGGD is given as

for x = 0, 1,… , y = 0, 1,… , 0 < 𝜃1 < 1, 0 < 𝜃2 < 1, 𝛼 > 0, 𝛼
�

= 1 − 𝛼. And the 
cumulative distribution function (CDF) is

Here � , �1 and �2 are unknowns parameters that control the behavior of the data-
sets emerging from the BGGD. Estimating the unknown parameters is ultimate goal 
of the inferential statistics.

Due to variety of applications of the BGGD, the efficient estimation of the PDF 
and the CDF of the BGGD is the purpose of the present study. In [9] have recently 
worked out the classical maximum likelihood estimators for the BGGD. Taking into 
account and to avail the aforesaid advantages, we estimate the parameters of the 
BGGD in Bayesian framework. We have used the MCMC methods to draw results 
and applied different model selection criteria to compare the methods under con-
sideration. Such as ML, AIC, AICC, BIC is also known as Schwarz criterion), and 
HQC.

2 � The Frequentist Approach of Statistical Analysis

In statistical terminology, the data generating pattern of any system or model depends 
on the system-specific characteristics, called parameters. So the data being generated 
from the model is believed to advocate the values of the parameters causing the system 
to generate the dataset. The uncertainty associated with the data values is defined in 
terms of frequencies of the data values emerging again and again from the system under 
study. The objective of the analysis is to infer the characteristics of the system or model 
from the relevant data collected randomly. It is considered as the default approach to be 
used in variety of areas of sciences. Commonly used frequentist methods of statistical 
inference include uniformly minimum variance unbiased estimation, maximum likeli-
hood (ML) estimation, percentile estimation, least squares estimation, weighted least 
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squares estimation, etc. But we just report the most commonly used ML estimation 
method whose results will henceforth be compared with their Bayesian counterparts.

2.1 � Maximum Likelihood (ML) Estimation

The likelihood function gives the probability of the situation that the model, system 
or distribution under study have witnessed to generate the observed sample. The fre-
quentist method of maximum likelihood estimation professed by [46] calls for choos-
ing those values of the parameters that maximize the probability of the very observed 
sample. We generally opt for algebraic maximization of the likelihood function to find 
the ML estimates, but we may also opt for evaluating the probabilities of the observed 
samples at all possible values of the parameters and to choose those parametric values 
as the estimates that maximize the evaluated probabilities of the observed samples.

Algebraically, the ML estimation may be proceeded as follows. Let us consider the 
random sample of size n from the bivariate correlated data 

(
xi, yj

)
 for i = 1, 2,… , n1 

and j = 1, 2,… , n2 from the BGGD f
(
x, y;�, �1, �2

)
 given in (11). The log likelihood 

function l
(
x, y;�, �1, �2

)
 may be written as

Equating to zero the first partial derivatives of the log-likelihood function 
l
(
x, y;�, �1, �2

)
 with respect to the set of unknown parameters �, �1, �2 yields the nor-

mal equations which may be solved simultaneously to get the required ML estimates. 
However, if the normal equations are too complex to be solved simultaneously, we 
have to proceed to numerical methods or by direct maximization of the log-likelihood 
function.

2.2 � ML estimation–Algebraic approach

Let us consider the real dataset for the BGGD given in Appendix A1 in Table 8 appear-
ing in [47–49], where X represents the counts of surface and Y, the count of interior 
faults in 100 lenses. The summary of the data is presented in Table 1 along with its 
figurative representation made in Fig. 1.
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Table 1   Summary of the 
observed data
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3.250 5.46750 2.930 6.14510 − 0.17468
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Obviously, the observed data is positively skewed and negatively correlated. As 
stated in Sect. 3.1, the normal equations we get using the observed dataset are compli-
cated and hence the estimates are found using the numerical methods. Following [9], 
the ML estimates, standard error (SE) and 95% confidence intervals for the parameters 
are reported in Table 2.

2.3 � ML Estimation–Graphical approach

As already discussed in Sect. 3.1, we may opt for direct maximization of the likeli-
hood function to find the ML estimates. The ML estimation theory suggested by [46] 
calls for choosing those values of the parameters that maximize the probability of the 
observed sample, and these values are regarded as the ML estimates. This technique is 
used here to find the ML estimates by plotting the observed dataset of the BGGD at dif-
ferent parametric values. The resulting plots generated in R package and are displayed 
in Fig. 2. We observed that the highest probability is obtained at α = 2.288 , θ1 = 0.676 
, θ2 = 0.652 (the 1st one of the plots of Fig. 2), hence they may be regarded as the ML 
estimates.

The graph in first cell corresponds to that produced by using the ML estimates. The 
maximum likelihood is found to be 3.2619E-192 at the ML estimates, i.e., � = 2.288 
, �1 = 0.676 , �2 = 0.652. It is also interesting to note that the value of highest ordinate, 
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Fig. 1   Graphs of the BGGD at the observed data points

Table 2   ML estimates, standard 
error and 95% confidence 
intervals

Parameters MLEs Standard Errors 95% confidence intervals

� 2.288 0.198 (1.8999; 2.6761)
�1 0.676 0.024 (0.6290; 0.7230)
�2 0.652 0.025 (0.6030; 0.7010)
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i.e., 0.02822 appears at the data pair ( x = 2, y = 1 ) at the ML estimates and the value of 
negative log-likelihood is found to be -432.957.

3 � The Bayesian Approach of Statistical Analysis

A brief overview on this topic is already given in Sect. 1. Bayesian method com-
bines prior information about the model parameters with dataset using Bayes rule 
yielding the posterior distribution. The Bayes rule is named after Thomas Bayes, 
whose work on this topic was published in 1763, 2 years after his death, [50]. To 
establish Bayesian inference set-up, we need a model or system in the form of a 
probability distribution controlled by a set of parameters to be estimated, the sample 

=2.29, 1 =0.68, 2 =0.65 (MLEs) = 0.50, 1 = 0.75, 2 = 0.25 = 0.50, 1 = 0.75, 2 = 0.75

= 2.50, 1 = 0.25, 2 = 0.25 = 2.50, 1 = 0.75, 2 = 0.25 = 0.50, 1 = 0.25, 2 = 0.25

= 4.50, 1 = 0.25, 2 = 0.25 = 4.50, 1 = 0.25, 2 = 0.75 = 4.50, 1 = 0.75, 2 = 0.75

Fig. 2   BGGD at the observed data points and different parametric values and the parameters including 
the ML estimates, i.e., � = 2.288 ,�1 = 0.676 ,�2 = 0.652 (First cell)
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dataset generated by the model or distribution, and a prior distribution based on the 
prior knowledge of experts regarding the parameters of interest. These elements are 
formally combined in to posterior distribution which is regarded as a key-distribu-
tion and work-bench for the subsequent analyses. The algorithm is explained in [42].

If f (D|�) is the data distribution depending upon the vector of parameters �,p(�) 
is the joint prior distribution of vector of parameters � , L(D|�) is the likelihood func-
tion defining the joint probability of the observed sample data D  conditional upon 
the parameter vector � , then the posterior distribution of � conditional upon the data 
D , denoted by f (�|D) , is given by

The denominator is also termed as predictive distribution of data and is usually 
treated as the normalizing constant to make it a proper density. It may be omitted in 
evaluating the Bayes estimates but must be retained in comparing the models. The 
posterior distribution has the potential to balance the information provided by the 
data and prior distribution. It is of the supreme interest of the Bayesians but often 
has very complex and complicated nature and hence needs numerical methods to 
evaluate it.

3.1 � The Prior Distributions

It has already been highlighted that main difference between frequentist and Bayes-
ian approaches is to incorporate prior information regarding the model parameters 
into the analysis. The formal way of doing so it to quantify the initial knowledge of 
experts in the form of a prior distribution that can adequately fit to the nature of the 
parameter and the experts’ opinion. The parameters of the prior distribution, known 
as hyperparameters, are elicited in the light of the subjective expert opinion. So, the 
prior is leading if selected and elicited carefully and adequately, otherwise it may be 
misleading.

3.1.1 � Uninformative Priors

In the situations when there is lack of knowledge about the model parameters, we 
choose vague, defuse or flat priors. As the BGGD is based on the set of parameters 
�, �1, �2 , so we assume uninformative uniform priors for the parameters as follows:

where 𝛼 > 0, 0 < 𝜃1 < 1, 0 < 𝜃2 < 1, and hi > 0 , for i = 1, 2,… , 6 are the set of 
hyperparameters associated with the priors.

f (�|D) = p(�)L(D|�)
∫

�
p(�)L(D|�)d� ,

� ∼ uniform
(
h1, h2

)
, �1 ∼ uniform

(
h3, h4

)
, �2 ∼ uniform

(
h5, h6

)
,
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3.1.2 � Informative Priors

When there is sufficient information available about the model parameters, we 
assign informative priors to the model parameters in such a way that they can ade-
quately represent the knowledge available for the model parameters being examined. 
In the present situation, we assign an exponential distribution to �  and independent 
beta distributions to �1 and �2 given as under

Here again hi > 0 , for i = 7, 8,… , 11 are the set of hyperparameters associated with 
the priors that should be elicited in the light of expert opinion. It is to notice that the 
elicitation of hyperparameters is beyond the scope of this study, so we would opt for 
merely choosing the values of the hyperparameters to be used in the subsequent Bayes-
ian analysis.

3.2 � The Posterior Distribution

Being specific to estimation of the parameters of BGGD, let the vector of parameters 
of interest and the data are denoted by � = (�, �1, �2) and D = (X, Y) respectively. The 
data distribution is denoted by f (D|�) and prior distribution by p(�) . Then using the 
Bayes rule, the posterior distribution denoted by f (�|D) may be written as

where, all the notations are already defined. The posterior distribution f {�|D} may 
also be written as kernel density in proportional form as

The marginal posterior distributions g(�|D), g(�1|D) and g(�2|D) of the parameters 
�, �1 and �2 may be found by integrating out the nuisance parameters from the posterior 
distribution f

{
�, �1, �2|D

}
 as follows:

And

p(�) = h7e
−h7� , 𝛼 > 0,

p
�
�1

�
=

�(h8+h9)
�(h8)�(h9)

�
h8−1

1

�
1 − �1

�h9−1
, 0 < �1 < 1,

p
�
�2

�
=

�(h10+h11)
�(h10)�(h11)

�
h10−1

2

�
1 − �2

�h11−1
, 0 < �2 < 1,

⎫
⎪⎬⎪⎭
.

f{�|D} =
p(�)p

(
�1

)
p
(
�2

)
L{D|�)}

∫ ∞

�=1
∫ 1

�1=0
∫ 1

�2=0
p(�)p

(
�1

)
p
(
�2

)
L{D|�)}d�d�1d�2

.

f {�|D} ∝ p(�)p
(
�1
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1
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1
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3.3 � Bayes Estimates

To work out the Bayes estimates of the parameters (�, �1, �2) , we need to specify 
some loss function. A variety of loss functions is used to derive the Bayes esti-
mates. Under the well-known squared error loss function, the Bayes estimates �̂ , 
�̂1 and �̂2 are the arithmetic means of their marginal posterior distributions, and 
are evaluated as

The marginal posterior distributions are generally of complicated and com-
plex forms and hence need numerical methods to evaluate them. Markov Chains 
Monte Carlo (MCMC) is the most frequently used numerical method to be used 
in Bayesian inference. So we also proceed with MCMC with the WinBUGS pack-
age to find the posterior summaries of the parameters of interest.

3.4 � The MCMC Method

The MCMC method selects random sample from the probability distribution 
according to random process termed as Markov Chain where every new step of 
the process depends on the current state and is completely independent of previ-
ous states. The MCMC methods can be implemented using any of the standard 
softwares like R, Python, etc., but the most specific software being used for the 
Bayesian analysis is Windows based Bayesian inference using Gibbs Sampling 
(WinBUGS). We have implemented WinBUGS using the following scheme.

	 (i)	 Define model based on probability mass function (11) of BGGD and then click 
Check Model menu in WinBUGS software.

	 (ii)	 Load data given in Appendix.
	 (iii)	 Specify the nodes and run the codes for 10,000 times following a burn-in of 

5000 iterations.

WinBUGS codes used to analyze the data are given in Appendix A2.

3.5 � Bayesian Results Under Uniform Non‑informative Priors

Here we have assumed uniform priors for all the set of parameters under study as 
defined in section 0, and the resulting Bayes estimates, standard errors, medians 

g(�2|D) = ∫
∞

�=1∫
1

�1=0

f {�|D}d�d�1.

�̂ = E(�|D) = ∫ ∞

0
�.g(�|D)d�,

�̂1 = E
(
�1|D

)
= ∫ 1

0
�1.g

(
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)
d�1,

�̂2 = E
(
�2|D

)
= ∫ 1

0
�2.g

(
�2|D

)
d�2.
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and 95% highest density regions along with the values of the hyperparameters are 
presented in Table 3.

It is observed that the elicited hyperparameters have high impact on the Bayes 
estimates. The initial values have no effect no significant effects on the posterior 
estimates if the true convergence is achieved.

3.6 � Convergence Diagnostics

Sequential plots are used in WinBUGS to assess difficulties in MCMC and realiza-
tion of the model. In MCMC simulations, the values of the parameters of interest are 
sampled from the posterior distributions. So the estimates will be convergent if the 
posterior distributions are stationary in nature and the Markov chain will seem to be 
mixing well. To check convergence, different graphical representations of paramet-
ric behavior are used in MCMC implemented through WinBUGS.

3.6.1 � History Time Series Plots

The time series history plots of parameters are presented in Fig. 3. Here, Markov 
chain seems to be mixing well enough and is being sampled from the stationary 

Table 3   Summary of Bayes estimates under the uninformative priors

Uninformative uniform 
priors

Parameters Means Medians SEs MC error 95% Credible intervals

� ∝ uniform(0, 50)

�1 ∝ uniform(0.25, 0.75)

�2 ∝ uniform(0.25, 0.75)

� 25.020 25.010 14.4700 0.1030 (1.2330; 48.750)
�1 0.4993 0.4977 0.1450 0.0010 (0.2623; 0.7376)
�2 0.5008 0.4999 0.1446 0.0010 (0.2631; 0.7373)

� ∝ unoform(0.25, 10)

�1 ∝ uniform(0.1, 0.9)

�2 ∝ uniform(0.1, 0.9)

� 5.1290 5.1260 2.8210 0.0201 (0.4905; 9.7570)
�1 0.4990 0.4964 0.2319 0.0016 (0.1197; 0.8802)
�2 0.5013 0.4998 0.2313 0.0017 (0.1209; 0.8797)

� ∝ uniform(1, 5)

�1 ∝ uniform(0.1, 0.99)

�2 ∝ uniform(0.2, 0.95)

� 3.0020 3.0000 1.1570 0.0082 (1.0990; 4.9000)
�1 0.5438 0.5410 0.2580 0.0018 (0.1220; 0.9680)
�2 0.5762 0.5749 0.2168 0.0016 (0.2196; 0.9309)

� ∝ uniform(0, 30)

�1 ∝ uniform(0.25, 0.75)

�2 ∝ uniform(0.25, 0.75)

� 15.010 15.0000 8.6800 0.0618 (0.7400; 29.250)
�1 0.4993 0.4977 0.1450 0.0010 (0.2623; 0.7376)
�2 0.5008 0.4999 0.1446 0.0010 (0.2631; 0.7373)

� ∝ uniform(0, 25)

�1 ∝ uniform(0.25, 0.75)

�2 ∝ uniform(0.25, 0.75)

� 12.510 12.500 7.2340 0.0515 (0.6167; 24.380)
�1 0.4993 0.4977 0.1450 0.0010 (0.2623; 0.7376)
�2 0.5008 0.4999 0.1446 0.0010 (0.2631; 0.7373)

� ∝ uniform(0, 40)

�1 ∝ uniform(0.25, 0.75)

�2 ∝ uniform(0.25, 0.75)

� 20.020 20.000 11.5700 0.0824 (0.9867; 39.000)
�1 0.4993 0.4977 0.1450 0.0010 (0.2623; 0.7376)
�2 0.5008 0.4999 0.1446 0.0010 (0.2631; 0.7373)
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Fig. 3   Time series plots of the parameters �,�1,�2

Fig. 4   Dynamic traces and autocorrelation function
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distribution. The plots are in the form of horizontal bands with no long upward or 
downward trends. It indicates that the Markov chain has converged.

3.6.2 � Dynamic Traces and Autocorrelation Function

The traces of the parameters and autocorrelation graphs of α, θ1 and θ2 are presented 
in Fig. 4. These graphs also confirm convergence.

3.7 � Bayes Estimates Using Informative Exponential‑Beta Priors

The ideal characteristic of Bayesian analysis is that it can accommodate the prior 
information shared by the field experts about the unknown parameters in the analy-
sis. It is important to notice that the experts may not be the experts of statistics and 
hence cannot translate their expertise in statistical terms. So it is the sole responsi-
bility of the statisticians to formally utilize the experts’ prior information to elicit the 
values of the hyperparameters of the prior density which are to be subsequently used 
in the Bayesian analysis. Elicitation of hyperparameters is beyond the scope of our 
study. However, an exhaustive discussion on the elicitation of hyperparameters may 
be found in [51]. We have chosen the values of the hyperparameters with drastic 
changes and a summary of the Bayes estimates against all values are presented in 
Table 4.

Table 4   Summary of Bayes estimates under the informative priors

Exponential-Beta Priors Parameters Means Medians SEs MC error 95% Credible intervals

� ∝ exp(0.15)

�1 ∝ beta(4, 3)

�2 ∝ beta(2, 1)

� 6.6710 4.6880 6.6380 0.0448 (0.1756; 24.720)
�1 0.5720 0.5780 0.1749 0.0012 (0.2237; 0.8816)
�2 0.6657 0.7045 0.2360 0.0016 (0.1592; 0.9874)

� ∝ exp(0.20)

�1 ∝ beta(4, 3)

�2 ∝ beta(2, 1)

� 5.0030 3.5160 4.9780 0.0336 (0.1317; 18.540)
�1 0.5720 0.5780 0.1749 0.0012 (0.2237; 0.8816)
�2 0.6657 0.7045 0.2360 0.0016 (0.1592; 0.9874)

� ∝ exp(0.10)

�1 ∝ beta(4, 3)

�2 ∝ beta(2, 1)

� 10.0100 7.0320 9.9560 0.0671 (0.2634; 37.080)
�1 0.5720 0.5780 0.1749 0.0012 (0.2237; 0.8816)
�2 0.6657 0.7045 0.2360 0.0016 (0.1592; 0.9874)

� ∝ exp(0.07)

�1 ∝ beta(4, 3)

�2 ∝ beta(2, 1)

� 14.3000 10.0500 14.2200 0.0959 (0.3762; 52.980)
�1 0.5720 0.5780 0.1749 0.0012 (0.2237; 0.8816)
�2 0.6657 0.7045 0.2360 0.0016 (0.1592; 0.9874)

� ∝ exp(0.05)

�1 ∝ beta(4, 3)

�2 ∝ beta(2, 1)

� 20.0100 14.0600 19.9100 0.1342 (0.5267; 74.170)
�1 0.5720 0.5780 0.1749 0.0012 (0.2237; 0.8816)
�2 0.6657 0.7045 0.2360 0.0016 (0.1592; 0.9874)

� ∝ exp(0.02)

�1 ∝ beta(1, 5)
�2 ∝ beta(2, 10)

� 50.2800 34.8200 50.0600 0.3880 (1.2530; 183.000)
�1 0.1666 0.1300 0.1396 0.0010 (0.0052; 0.5172)
�2 0.1671 0.1483 0.1040 0.0007 (0.0231; 0.4158)
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It is observed that the elicited hyperparameters have high impact on the Bayes 
estimates. The initial values have no significant effect on the posterior estimates if 
the convergence in Markov chain is achieved. However, the change in the initial val-
ues causes a slight change in the parametric estimates.

3.8 � Possible Predictive Inference

After finding out the Bayes estimates, it is necessary to evaluate them based on the 
predictive inference. As we have the data having 100 observations, so predicted sample 
of size 100 observations is generated based on the Bayes estimates obtained through 
MCMC based analysis. The predicted data along with their summaries are presented in 
Tables 5, 6.

Obviously, there exist some differences in the predicted estimates as compared to 
those of the original observed dataset. Definitely, these changes may be due to different 
Bayes estimates that are evaluated after accommodating the prior information about the 
model parameters via the hyperparameters.

4 � Comparison of the Frequentist and Bayesian Approaches

An important aspect of this study is to compare the Bayes estimation method with the 
classical ML estimation method. We have accomplished this by using different model 
selection criteria presented as under.

Table 5   The predicted expected data of Counts of surface (X) and interior faults (Y) in 100 lenses

X Y

0 1 2 3 4 5 6 7 9 10 12 14

0 0.37 0.73 1.56 2.81 3.56 3.21 2.26 1.36 0.39 0.20 0.05 0.01
1 0.73 1.57 2.81 3.56 3.21 2.26 1.36 0.75 0.20 0.10 0.03 0.01
2 1.57 2.82 3.56 3.21 2.25 1.36 0.75 0.39 0.10 0.05 0.01 0.00
3 2.82 3.56 3.20 2.25 1.35 0.74 0.39 0.20 0.05 0.03 0.01 0.00
4 2.82 3.56 3.20 2.25 1.35 0.74 0.39 0.20 0.05 0.03 0.01 0.00
5 3.56 3.20 2.25 1.35 0.74 0.39 0.20 0.10 0.03 0.01 0.00 0.00
6 2.24 1.35 0.74 0.39 0.20 0.10 0.05 0.03 0.01 0.00 0.00 0.00
7 1.34 0.74 0.39 0.20 0.10 0.05 0.03 0.01 0.00 0.00 0.00 0.00
8 0.74 0.39 0.20 0.10 0.05 0.03 0.01 0.01 0.00 0.00 0.00 0.00
11 0.10 0.05 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.05 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6   Summary of the 
predicted dataset based on 
Bayes estimates

x s
2
x

y s
2
y

r
xy

2.764 4.382704 2.6526 4.328313 -0.47433
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4.1 � Model Selection Criteria

The classical and Bayesian methods of estimation are compared using the model 
selection criteria, i.e., ML, AIC, AICC, BIC, and HQC, which are defined by

and

Here ln[L
(
�, �1, �2

)
] denotes the log-likelihood, n denotes the number of observa-

tions and k denotes the number of parameters of the distribution under consideration. 
The smaller the values of these criteria are, the better the fit is. For more discussion on 
these criteria, see [52, 53]. The Maximum likelihood estimates, uninformative Bayes 
estimates and informative Bayes estimates along with their associated values of the 
model selection criteria are reported in Table 7.

Here we witness that the values of model selection criteria produced by Bayes 
method are less than those produced by the ML estimation method, which declare the 
Bayesian method more appropriate. Definitely, it is due to the distinct characteristic of 
the Bayesian methods that they incorporate the prior information related to the model 
parameters. However, it is pertinent to note that these results are sensitive to the selec-
tion of values of the hyperparameters. Hence a careful elicitation of the hyperparam-
eters is demanding and earnest need of using the Bayesian methods. Carefully selected 
or elicited values of the hyperparameters may lead to even better estimates.

5 � Summary and Conclusions

The bivariate generalized geometric distribution is believed to model reliability 
count datasets emerging from diverse phenomena. To understand the data gener-
ating phenomena, it is necessary to estimate the model parameters of the BGGD. 
To accomplish this, statistical theory offers two competing approaches, namely 
the frequentist and Bayesian approaches. The former approach is based on cur-
rent data only; whereas, the later one utilizes prior information in addition to the 
current dataset produced by system or phenomenon. This study offers a compar-
ison between the frequentist and Bayesian estimation approaches. To elaborate 
the frequentist approach, different descriptive measures and the maximum likeli-
hood estimates are evaluated. The Bayesian estimation approach has also been 
illustrated by using uninformative and informative priors. We have worked out 

ML = −2ln
[
L
(
�, �1, �2

)]

AIC = −2ln
[
L
(
�, �1, �2

)]
+ 2k

AICC = −2ln[L
(
�, �1, �2

)
] + 2k(n∕(n − k − 1)

BIC = −2ln[L
(
�, �1, �2

)
] + kln(n)

HQC = −2ln
[
L
(
�, �1, �2

)]
+ 2kln[ln(n)].
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the posterior summaries of the parameters comprising posterior means, stand-
ard errors, medians, credible intervals and predictions for both types of the pri-
ors using the MCMC simulation technique. Correlated bivariate count dataset on 
counts of surface and interior faults is used for the illustration purpose. Compari-
son of the two estimation methods has been made using different model selection 
criteria. It is proved by working out all the estimates that all the model selection 
criteria including ML, AIC, AICC, BIC, and HQC have proved that the Bayesian 
approach outperforms the competing ML approach across the board. It has also 
been observed that the results may coincide if the information contained in the 
prior distribution and the datasets agree. However, the improved prior informa-
tion may improve the results. As a future study, it is recommended that the Bayes-
ian analysis of datasets may be done by using the formally elicited hyperparam-
eters of the priors instead of values chosen by the experimenter.

Appendix A1

See Table 8.

Table 8   Data set: Counts of 
surface (X) and interior faults 
(Y) in 100 lenses

X Y

0 1 2 3 4 5 6 7 9 10 12 14

0 1 1 4 0 0 0 0 0 0 0 0 1
1 3 2 6 2 5 0 2 0 0 0 0 0
2 1 2 4 3 2 1 1 1 1 0 1 0
3 0 5 1 2 2 3 2 0 0 0 0 0
4 1 2 2 5 3 1 1 0 0 0 0 0
5 1 2 1 2 1 2 0 0 0 1 0 0
6 2 2 0 1 1 0 0 1 0 0 0 0
7 1 3 0 1 0 0 0 0 0 0 0 0
8 0 2 0 0 0 0 0 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0 0
12 0 1 0 0 0 0 0 0 0 0 0 0
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Appendix A2

WinBUGS codes for the Bayesian analysis of BGGD 
model
{
for (i in 1:n) { 
###########  log(likelihood) for ith observation of BGGD ############ 
n1[i] <- log(1 - pow((1 - alpha), 2) * pow(theta1, (2 * x[i] + 1)) * pow(theta2, (2 * y[i] + 1))) 
num[i] <- log(alpha) + x[i] * log(theta1) + y[i] * log(theta2) + log(1 - theta1) + log(1 - theta2) + 
n1[i] 
d1[i] <- log(1 - (1 - alpha) * pow(theta1, (x[i] + 1)) * pow(theta2, y[i])) 
d2[i] <- log(1 - (1 - alpha) * pow(theta1, (x[i] + 1)) * pow(theta2, (y[i] + 1))) 
d3[i] <- log(1 - (1 - alpha) * pow(theta1, x[i]) * pow(theta2, y[i])) 
d4[i] <- log(1 - (1 - alpha) * pow(theta1, x[i]) * pow(theta2, (y[i] + 1))) 
denom[i] <- d1[i] + d2[i] + d3[i] + d4[i] 
logLike[i] <- num[i] - denom[i]  # BGGD 
}
################# Prior distributions of the model parameters ##################### 
alpha ~ dunif(0, 25)  
theta1 ~ dunif(0.25, 0.75) 
theta2 ~ dunif(0.25, 0.75)  
}
################# Data ##################### 
list(n=100, x=c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,  
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4,  4, 4, 4, 4, 4, 4, 4, 
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8,  11,  12),  
y=c(0, 1, 2, 2, 2, 2, 14, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 6, 6, 0, 1, 1, 2, 2, 2, 2, 3, 3, 
3, 4, 4, 5, 6, 7, 9,  12, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 
0, 1, 1, 2, 3, 3, 4, 5, 5, 10, 0, 0, 1, 1, 3, 4, 7, 0, 1, 1, 1, 3, 1, 1, 1, 1)) 
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