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Abstract
The use of information criteria, especially AIC (Akaike’s information criterion) and 
BIC (Bayesian information criterion), for choosing an adequate number of principal 
components is illustrated.
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Abbreviations
AIC	� Akaike’s information criterion
BIC	� Bayesian information criterion
DIAS	� Diastolic blood pressure
HT	� Height
LC	� Linear combination
LL	� Maximum log likelihood
MLE	� Maximum likelihood estimate
MSE	� Mean squared error
PC	� Principal component
SYS	� Systolic blood pressure
WT	� Weight

1  Introduction

This paper applies model selection criteria, especially AIC and BIC, to the problem 
of choosing a sufficient number of principal components to retain. It applies the con-
cepts of Sclove [13] to this particular problem.
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2 � Background

Other researchers have considered to problem of the choice of number of princi-
pal components. For example, Bai et al. [6] examined the asymptotic consistency 
of the criteria AIC and BIC for determining the number of significant principal 
components in high-dimensional problems. The focus here is not necessarily on 
high-dimensional problems.

To begin the discussion here, we first give a short review of some general back-
ground on the relevant portions of multivariate statistical analysis, such as may be 
obtained from textbooks such as Anderson [5] or Johnson and Wichern [9].

2.1 � Sample Quantities

Suppose we have a multivariate sample �1, �2, … , �n of n p-dimensional random 
vectors,

The transpose ( ′ ) means that we are thinking of the vectors as column vectors. The 
sample mean vector  is

The p × p sample covariance matrix is

2.2 � Population Quantities and Principal Components

The sample covariance matrix � estimates the true covariance matrix � of the 
random variables

That is,

where

the covariance of Xu and Xv. In particular, C[Xv,Xv] = V[Xv], the variance of Xv.

�i = (x1i, x2i,… xpi)
�, i = 1, 2,… , n.

�̄ =

n∑

i=1

�i∕n.

S =

n∑

i=1

(�i − �̄)(�i − �̄)�∕(n − 1).

X1,X2,… ,Xp.

� = [�u,v]u,v=1,2,…,p,

�uv = C[Xu,Xv],
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The principal components of � are defined as uncorrelated linear combinations 
of maximal variance. A linear combination, say LC, of the p variables is �′�, that 
is

Here the vector � is a vector of scalars a1, a2,… , a
p
∶

These are the coefficients in the linear combination. Such linear combinations are 
called variates.

We have

This is estimated as �′��. This is to be maximized over �. The derivative is

is A constraint is required for meaningful maximization. A reasonable such con-
straint ��� = 1, which is equivalent to the length of �, the quantity 

√
�′�, being equal 

to 1.
The Lagrangian function incorporating the constraint is

The partial derivatives are

and

Setting these equal to zero gives the simultaneous linear equations

The first is the equation

the zero vector. This is the homogeneous equation

For nontrivial solutions, we must have det(� − ��) = 0. This is a polynomial equa-
tion of degree p in � ; denote the roots by �1 ≥ �2 ≥ ⋯ �p. These are the eigenval-
ues. Their sum is the trace of �; their product is the determinant of �.

LC = ��� = a1�1 + a2�2 +… + ap�p.

�� = (a1 a2 … ap).

V[LC] = V[���] = ����.

�����∕�� = ��.

L(�, a;�) = ���� + �(1 − ���).

�L∕�� = 2�� − 2��

�L∕�� = ��(1 − ��a)∕�� = 1 − ���.

�� = ��, ��� = 1.

�� − �� = �,

(� − ��)� = �.
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The corresponding eigenequations are

The j-th PC (principal component), Cj, is the linear combination of the form

where ��
j
= (a1j, a2j,… , apj). That is to say, for j = 1, 2,… , p, the value of the j-th 

PC for Individual i is ��
j
�i, i = 1, 2,… , n.

The equations for the PCs in terms of the Xs are PC j = ��
j
�, j = 1, 2,… , p. Let � 

be the p-vector of PCs. Then � = ���, where � = [�� �� … ��] is the matrix 
whose columns are the eigenvectors. The inverse relation is

where

where � is the matrix of loadings of the Xv on the PCs Cj. Actually, � is an ortho-
normal matrix (its columns are of length one and are pairwise orthogonal),    so 
�−1 = ��. Thus � = �. So

Letting �(v)� be the v-th row of the matrix �, that is

we have

In terms of the first k PCs, this is

where the error �v is

The covariance matrix can be represented as

��j = �j�j, j = 1, 2,… , p.

Cj = ��
j
� = a1jx1 + a2jx2 +⋯ + apjxp,

� = ��−1 � = ��,

� = ��−1,

� = ��−1 � = ��.

�(v)
�

= (av1, av2,… , avp),

Xv = av1C1 + av2C2 +⋯ + avpCp.

Xv = av1C1 + av2C2 +⋯ + avkCk + �v, (∗)

�v = av k+1Ck+1 + av k+2Ck+2 +⋯ + avpCp.

� =

p∑

j=1

�j�j�
�
j
.
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Correspondingly, the best rank k approximation to � is

Recall that for a symmetric matrix such as a covariance matrix, the eigenvalues are 
non-negative.

2.3 � Ad Hoc Procedures for Determining an Appropriate Number of PCs

2.3.1 � Procedure Based on the Average Eigenvalue

The average eigenvalue is

One rule for the number of PCs to retain is the retain those for which the eigenvalues 
are greater than 𝜆̄. When � is taken to be the sample correlation matrix, the trace is p 
and the average eigenvalue 𝜆̄ is 1.

2.3.2 � Procedure Based on Retaining a Prescribed Portion of the Total Variance

Another procedure is to retain a number of PCs sufficient to account for, say, 90% of 
the total variance, trace � =

∑p

j=1
�j. Of course the figure ninety percent is somewhat 

arbitrary and it might be nice to have some somewhat more objective criteria.

2.3.3 � Procedure Based on the Dropoff of the Eigenvalues

Another procedure is to plot �1, �2,… , �p against 1, 2,… , p. One then looks for an 
elbow in the curve and retains a number of PCs corresponding to the point before the 
leveling off of the curve, if it does indeed take an elbow shape. Such a plot is called a 
scree plot, “scree” being the debris at the foot of a glacier.

3 � AIC and BIC for the Number of PCs

Let us see what a Gaussian model would imply. The maximum log likelihood for the 
model (*) approximating the p variables in terms of k PCs is (2𝜋 ̂|�k|)−n∕2C(n, p, k), 
where C(n, p, k) is a constant depending upon n, p,  and k and |�k| denotes the determi-
nant of the residual covariance matrix �k.

The determinant of the covariance matrix is the product of the eigenvalues,

For a model based on the first k PCs, this is

�(k) =

k∑

j=1

�j�j�
�
j
.

𝜆̄ =

p∑

j=1

𝜆j∕p.

|�| = Π
p

j=1
�j.
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The determinant of the residual covariance is Πp

j=k+1
�j. The model-selection crite-

rion AIC—Akaike’s information criterion [2–4]—is based on an estimate of the log 
cross-entropy of K proposed models with a null model.

The Bayesian information criterion BIC [12] is based on a large-sample estimate 
of the posterior probability ppk of Model k, k = 1, 2,… ,K.

More precisely, BICk is an approximation to −2 ln ppk. These model-selection cri-
teria (MSCs) are thus smaller-is-better criteria and take the form

where Lk is the likelihood for Model k, a(n) = ln n for BICk, a(n) = 2 (not depend-
ing upon n) for AICk and mk is the number of independent parameters in Model k. 
Relative to BIC, AIC tends to favor models with a smaller number of parameters. 
Note that

where C is a constant. Thus BIC values can be converted to a scale of 0 to 1. This 
is done by exponentiating   -BICk∕2, summing the values, and dividing by the sum.

For the PC model,

The criteria can be written as

where Deviancek = n lnmaxLk is a measure of lack of fit and Penaltyk = a(N)mk. 
Inclusion of an additional PC is justified if the criterion value decreases, that is if 
MSCk+1 < MSCk. For PCs, this is

This is

or

or

or

Πk
j=1

�j.

MSCk = −2 ln max Lk + a(n)mk, k = 1, 2,… ,K,

ppk ≈ C exp(− BICk∕2),

−2 ln max Lk = n ln Π
p

j=k+1
�k = n

p∑

j=k+1

ln �k.

MSCk = Deviancek + Penaltyk,

n

p∑

j=k+2

ln 𝜆j + (k + 1)a(n) < n

p∑

j=k+1

ln 𝜆j + k a(n).

a(n) < n ln 𝜆k+1 = ln(𝜆n
k+1

),

exp[a(n)] < 𝜆
n
k+1

,

𝜆k+1 > exp [a(n)∕n]
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Thus for AIC, inclusion of the additional PCk+1 is justified if �k+1 is greater than 
exp(−2∕n).

For BIC, inclusion of an additional PCk+1 is justified if 𝜆
k+1 > exp(lnN∕N)

= [exp(ln n)]1∕n = n
1∕n, which tends to 1 for large n. So this is in approximate 

agreement with the average eigenvalue rule for correlation matrices, stating that 
one should retain dimensions with eigenvalues larger than 1.

4 � Example

Here we consider a sample from the LA Heart Study. See, e.g., [8]. The sam-
ple is n = 100 men. The variables include Age, Systolic blood pressure, Diastolic 
blood pressure, weight, height and Coronary Incident, a binary variable indicat-
ing whether or not the individual had a coronary incident during the course of the 
study. (Data on the same variables for another 100 men are also given in Dixon 
and Massey’s book. Results can be compared and contrasted between the two 
samples.) Here we focus on the first five variables. Minitab statistical software 
was used for the analysis.

𝜆k+1 > exp[−a(n)∕n].

Table 1   Correlation matrix of 5 variables–LA heart data

Table 2   PCs of heart data
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Table 1 is the lower-triangular portion of the correlation matrix for the five vari-
ables (Table 2).

4.1 � Principal Component Analysis in the Example

Note that an eigenvector can be multiplied by −1, changing the signs of all its 
elements. Below, this is done with PC1 so that SYS and DIAS have positive load-
ings. Interpretations, BPtotal, SIZE, AGE, OVERWT, BPdiff, are given below the 
eigenvectors. The interpretations are based on which loadings are large and which 
are small. Taking .6 as a cut-off point, in PC1, SYS and DIAS have loadings 
above this, while the other variables have loadings less than this (in fact, less than 
.4), so PC1 can be interpreted asan index of total BP. In PC2, WT and HT have 
large loadings with the same sign, so PC2 can be interpreted as SIZE (Table 3).

As above, denote the eigensystem by

Then the eigensystem equations are

Here � is taken to be the correlation matrix. Let ��
v
= (0 0⋯ 1⋯ 0⋯ ), the vector 

with 1 in the v-th position and zeroes elsewhere. The covariance between a vari-
able Xv and a PC Cu is C[Xv, Cu ] = C[��

v
X, a�

u
X] = ��Σ au = ��

v
�u au = �uauv, 

where auv is the v-th element of the vector au. The correlation is 
C o r r [Xv, Cu ] = C[Xv, Cu ]∕SD[Xv]SD[Cu ] = �u auv ∕ �v

√
�u =

√
�u auv ∕ �v. 

When the correlation matrix is used, �v = 1, and this correlation is 
√
�u auv. A cor-

relation of size greater than .6 corresponds to 36% of variance explained. The vari-
able Xv has a correlation higher than .6 with the component Cu if its loading in Cu, 
the value auv, is greater than .6 / 

√
�u. These values are appended to the table below. 

Loadings larger than this cut point are in boldface.   (The cut-off of .6 is somewhat 
arbitrary; one might use, for example, a cut-off of .5.)

One can also focus on the pattern of loadings within the different PCs for inter-
pretation of the PCs. To reiterate: 

(�v, av), v = 1, 2,… , p.

� av = �v av, v = 1, 2,… , p.

Table 3   PC1 is multiplied by −1
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PC1:	 SYS and DIAS have large loadings with the same sign; we interpret PC1 as 
BPinex or BPtotal.

PC2:	 WT and HT have large loadings of the same sign; we interpret PC2 as the 
man’s SIZE.

PC3:	 Only AGE has a large loading; we interpret PC3 as AGE.
PC4:	 WT and HT have large loadings with opposite signs; we interpret PC4 as 

OVERWEIGHT.
PC5:	 SYS and DIAS have large loadings with opposite signs; we interpret PC5 as 

BPdrop.

I continue to marvel at how readily interpretable the PCs are. And, this is even with-
out using a factor analysis model and using rotation (Table 4).

4.2 � Employing the Criteria in the Example

Table  5 shows the eigenvalues and the results according to the various criteria. 
According to the rule based on the average eigenvalue, the dimension is retained 
it its eigenvalue is greater than 1 (for a correlation matrix). For BIC, the k-th PC 
is retained if n ln 𝜆k > −a(n), where a(n) = ln n. Here, n = 100 and ln n = ln 100, 

Table 4   Loadings 
corresponding to correlations 
> .6 are boldface

Variable PC1 PC2 PC3 PC4 PC5

AGE 0.394 − 0.365 0.800 − 0.269 0.005
SYS 0.615 0.050 − 0.342 − 0.174 0.687
DIAS 0.624 0.063 − 0.291 − 0.049 − 0.721
WT 0.252 0.616 0.373 0.642 0.078
HT − 0.117 0.694 0.141 − 0.695 − 0.051
Eigenvalue, � 2.1894 1.5382 0.6617 0.4485 0.1621

Square root, 
√
� 1.48 1.24 0.81 0.67 0.40

.6 ∕
√
� 0.40 0 .48 0.74 0.90 1.50

Interpretations BPtotal SIZE AGE OVERWT​ BPdiff

Table 5   Estimating the number of PCs by various methods

No. of PCs, k �
k

𝜆
k
> 1? ln �

k
N ln �

k
For BIC: 
N ln 𝜆

k
> −4.61?

For AIC: 
N ln 𝜆

k
> −2?

1 2.19 Yes 0.78 78.36 Yes Yes
2 1.54 Yes 0.43 43.06 Yes Yes
3 0.66 No − 0.41 − 41.29 No No
4 0.45 No − 0.80 − 80.18 No No
5 0.16 No − 1.82 − 181.95 No No
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approx. 4.61. For AIC, the k-th PC is retained if n ln 𝜆k > −2. In this example, the 
methods agree on retaining k = 2 PCs.

I feel that I should remark that, though this is the case, the fourth and fifth PCs do 
have simple and interesting interpretations. It is just that they do not improve the fit 
very much.

5 � Discussion

The focus here has been on determining the number of dimensions needed to repre-
sent a complex of variables adequately.

5.1 � Regression on Principal Components

Given a response variable Y and explanatory variables X1,X2,… ,Xp, one may trans-
form the Xs to their principal components, as this may aid in the interpretation of 
the results of the regression. In such regression on principal components (see, e.g., 
[10]), however, one should not necessarily eliminate the principal components with 
small eigenvalues, as they may still be strongly related to the response variable. The 
Bayesian information criterion is

for alternative models indexed by k = 1, 2,… ,K, where LLk is the maximum log 
likelihood for Model k and mk is the number of independent parameters in Model 
k. For linear regression models with Gaussian-distributed errors BIC takes the form

where MSEk is the MLE (maximum likelihood estimate) of the MSE (mean squared 
error) of Model k, with divisor n,   of the error variance. With p explanatory vari-
ables, there are 2p alternative models (including the model where no explanatory 
variables are used and the fitted value of Y is simply ȳ). It would usually seem to be 
wise to evaluate all 2p models using BICk rather than reducing the number of princi-
pal components by just looking at the explanatory variables.

5.2 � Some Related Recent Literature

Some various applications involving choosing the number of principal components 
from recent literature include the following. The method presented here could possi-
bly be applied in these applications. For example, a good book on the topic of model 
selection and testing covering all aspects is Bhatti et al. [7]. In recent years econo-
metricians have examined the problems of diagnostic testing, specification testing, 
semiparametric estimation and model selection. In addition, researchers have con-
sidered whether to use model testing and model selection procedures to decide upon 

BICk = −2LLk + mk ln n,

BICk = n lnMSEk + mk ln n
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the models that best fit a particular dataset. This book explores both issues with 
application to various regression models, including arbitrage pricing theory models. 
Along the lines of model-selection criteria, the book references, e.g., Schwarz [12], 
the foundational paper for BIC.

Next we mention some recent papers which show applications of model selection 
in various research areas.

One such paper is Xu et al. [14] an application of principal components analysis 
and other methods to water quality assessment in a lake basin in China,

Another is Omuya et al. [11], on feature selection for classification  using princi-
pal component analysis.

As mentioned, a particularly interesting application of principal components 
analysis is in regression and logistic regression. We have mentioned the paper by 
Massy [10] on using principal components analysis in regression. Another is Aguil-
era et al. [1] on using principal components in logistic regression.

6 � Conclusions

The information criteria AIC and BIC have been applied here to the choice of the 
number of principal components to represent a dataset. The results have been com-
pared and contrasted with criteria such as retaining those principal components 
which explain more than an average amount of the total variance.
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