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Abstract
In this paper, we look at the method of separation of variables of a PDE from its 
symmetry transformation point of view. Specifically, we discuss the relation between 
the existence of additively and multiplicatively separated variables of a PDE, and 
the form of its symmetry operators. We show that solutions in the form of sepa-
rated variables are in fact, invariant solutions, i.e. solutions invariant under some 
subalgebra of the symmetry operators of the equation. For the case of two independ-
ent variables, we obtain the form of Lie point symmetry operators corresponding to 
additively and multiplicatively separated solutions, and generalize our results for the 
case when separated variables are any functions of independent variables. We also 
discuss the role of contact symmetry transformations and differential invariants for 
the existence of separated solutions, and outline the role of variational symmetries, 
as well as conditional (non-classical) symmetry operators. We demonstrate that the 
symmetry approach is a valuable tool for obtaining information regarding existence 
of solutions with separated variables.

Keywords PDE · Separation of variables · Lie symmetry · Exact solutions

Mathematics Subject Classification 35Qxx · 35C05 · 17B81 · 35B06 · 22E70

V. Rosenhaus, Ravi Shankar and Cody Squellati contributed equally to this work.

 * Ravi Shankar 
 rs1838@princeton.edu

 V. Rosenhaus 
 vrosenhaus@csuchico.edu

 Cody Squellati 
 csquellati@hotmail.com

1 Department of Mathematics and Statistics, California State University Chico, 400 W. First St., 
Chico, CA 95929, USA

2 Department of Mathematics, Princeton University, Washington Rd., Princeton, NJ 08544, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s44198-024-00218-9&domain=pdf


 Journal of Nonlinear Mathematical Physics           (2024) 31:55    55  Page 2 of 54

1 Introduction

The method of separation of variables plays a central role in many topics con-
cerning differential equations, and there is a large number of works related to 
various aspects of this method. But, in spite of being studied for a very long time, 
the problem of separation of variables for partial differential equations in general 
has not been completely solved, even for integrable systems, see, e.g. [26].

Different aspects of the relationship between separation of variables and sym-
metry properties of a differential system received a lot of attention in the litera-
ture; here, we give only some such references: [6, 11, 16, 17, 25, 28, 30] (new 
coordinate systems, nonlinear separation) [4, 5, 18, 21–23, 29] (functional or 
generalized separation). The monographs [11, 16, 22], as well as [19], have a lot 
of relevant information and numerous references.

However, despite many extensive studies, a direct relation between symmetry 
operators of a general differential system and its solutions in the form of sepa-
rated variables has not been discussed in the literature so far, and except for some 
special cases (e.g., Hamilton-Jacobi or Helmholtz equations), such relation did 
not appear to be well understood [19].

In this paper, we study this relation, and discuss the form of (a subalgebra of) 
symmetry operators whose invariant solutions are in the form of separated vari-
ables. More precisely, given a symmetry of a certain type to be discussed, we 
show that one can predict the existence of a solution with separated variables. We 
will mainly be interested in the role of classical point symmetries for generation 
of invariant solutions in separated variables, but we will also make some observa-
tions regarding the role of contact symmetries, differential invariants, as well as 
variational and conditional symmetries in generation of separated solutions.

In our discussion we show that solutions of many differential equations in the 
form of separated variables are in fact, invariant solutions, i.e. solutions invariant 
under some symmetry group operators, and we demonstrate that many important 
solutions of known equations can be recovered from a symmetry approach.

Let us note the essential differences between our discussion and a well-known 
Miller–Kalnins approach [11, 16]. Even though both approaches are based on 
introduction of new coordinates, Miller–Kalnins approach requires the eigenfunc-
tions of the symmetry operators to be in the form of separated variables in new 
coordinates. Our consideration is free from such a requirement. Miller–Kalnins 
approach is applicable to linear homogeneous differential equations only. Our 
approach is more general, is applicable to both linear and nonlinear differential 
equations, and our main interest is in nonlinear PDE’s.

Let us also note that the study of a direct relation between symmetry operators 
of a differential system and its separated solutions is an important step in under-
standing of the nature of the method of separation of variables and its solutions.

The paper is organized as follows: In Sect.  2 we review some basic facts 
regarding classical Lie point symmetries and contact symmetries, as well as 
separation conditions. In Sect.  3, we derive conditions for separation of varia-
bles. We start with the discussion of separation conditions in original variables, 
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(Sect.  3.1), consider separation in an alternate coordinate system (Sect.  3.2), 
and then derive separation conditions in general “point" coordinates �(x, t) , and 
�(x, t) , (Sect.  3.3). We give several characteristic examples for each case. In 
Sects. 3.4, and 3.5 we generalize our results for equations with several depend-
ent variables, and demonstrate applications for Einstein equation, Ricci flow, and 
Navier-Stokes equations. We discuss the role of contact symmetries, and differen-
tial invariants for existence of solutions in separated variables in Sects. 3.6, and 
3.7, respectively. In Sect. 4 we consider the situation when an appropriate sym-
metry of a differential equation together with the existence of a constant solution 
leads to a separated solution. Section 5 deals with variational problems where its 
variational symmetries lead to solutions in separated variables. In Sect. 6 we dis-
cuss generation of separated solutions using conditional (non-classical) symmetry 
operators.

2  Overview

2.1  Point Symmetries of Differential Equations

We review some necessary facts about symmetries of a system of differential equations. 
For a comprehensive review, see e.g., [20] or [19].

Let Δ[u] = 0 be a kth order system of differential equations determining m unknown 
functions u = {u1,… , um} of n independent variables x = {x1,… , xn} . Consider the 
infinitesimal point transformations given by:

for f i, ga ∈ C∞ and sufficiently small � , that leaves Δ invariant. Each f i and ga are 
the flows of the symmetry

where

(2.1)
xi → f i(x, u;�) ≃ xi + �i(x, u)� + O(�2),

ua → ga(x, u;�) ≃ ua + �a(x, u)� + O(�2),

(2.2)X = �i �i + �a �a + �a
j1…j�

(x, u, �u,… , �ku) �a,j1…j�
,

(2.3)�i =
�

�xi
, �a =

�

�ua
, �a,ji…jk

=
�

�ua
j1…jk

,

(2.4)ua
j1…j�

=
��ua

�xj� … �xj1
, ��u = {ua

j1…j�
∶ ∀a, jb},

(2.5)�a
j
= Dj(�

a) − ua
i
Dj(�

i),

(2.6)�a
j1j2

= Dj1
(�a

j2
) − ua

ij2
Dj1

(�i),
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for any fixed 1 ≤ � ≤ k , and,

Operator X (2.2) is called a point symmetry of the system of differential equations 
Δ[u] = 0 if and only if

2.2  Contact Symmetries

Denote

A contact vector field X� with infinitesimal � = �(x, t, u, p, q)

is called a contact symmetry of the system Δ[u] = 0 if and only if its prolongation 
pr X[�] (definition omitted, as explained below) satisfies

Contact vector fields are closed under commutation:

As a consequence, if A =< X[𝛼i] >a
i=1

 is a contact Lie algebra, there exist structure 
constants Ck

ji
= −Ck

ij
 such that the following differential equations hold:

The structure constants must satisfy the Jacobi identity:

In the special case that X[�] is an infinitesimal point transformation, or 
� = � − p� − q� , where �, �, and � are functions of (x, t, u), it takes the form

(2.7)
⋮

�a
j1…jk

= Dj1
(�a

j2…jk
) − ua

ij2…jk
Dj1

(�i),

(2.8)Di = �i + ua
i
�a + ua

ji
�a,j +⋯ + ua

j1…j𝓁 i
�a,j1…j𝓁

+⋯ .

(2.9)X(Δ)|Δ=0 = 0.

(2.10)
p = ux,

q = ut.

(2.11)
X[�] = −�p �x − �q �t + (� − p�p − q�q) �u + (�x + p�u) �p + (�t + q�u) �q

(2.12)pr X[�]Δ||Δ=0= 0.

(2.13)

[
X[�] , X[�]

]
= X

[
Φ(�, �) − Φ(�, �)

]
,

Φ(�, �) = �p�x + �q�t + ��u + (p�p + q�q)�u.

(2.14)Φ(�i, �j) − Φ(�j, �i) =

a∑
k=1

Ck
ij
�k, i, j = 1,… , a.

(2.15)
a∑

k=1

[
Ck
ij
Cm
k�

+ Ck
�i
Cm
kj
+ Ck

j�
Cm
ki

]
= 0, i, j,�,m = 1,… , a.
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In this case, we identify X[�] with its first three terms:

We will also have occasion to use a vertical or evolutionary formulation of contact 
vector fields. For each prolonged X[�] , we define

such that

When prolonging contact vector fields, using X� is usually more convenient than 
using X[�] . Moreover, as shown in [19],

so the two vector fields satisfy the same symmetry condition. Thus, a vertical field 
X� , such that

is also called contact symmetry.
The following obvious lemma is useful.

Lemma 1 If F(x, t, T(t), T �(t)) = 0 for any smooth function T(t), then F(x, t, u, q) = 0 
for each (x, t, u, q) ∈ ℝ

4.

Proof If there exists (x0, t0, u0, q0) ∈ ℝ
4 such that F(x0, t0, u0, q0) ≠ 0 , then choose 

T(t) = q0(t − t0) + u0 to arrive at a contradiction.   ◻

2.3  Separation Conditions

We will primarily consider the case of a scalar differential equation Δ[u] = 0 for 
function u = u(x, t).

By separation of variables in the original coordinates (x,  t, u), we will mean 
either additive separation:

or multiplicative separation

(2.16)
X[�] = � �x + � �t + � �u + (Dx� − pDx� − qDx�) �p + (Dt� − pDt� − qDt�) �q.

(2.17)X = �(x, t, u) �x + �(x, t, u) �t + �(x, t, u) �u.

(2.18)

X� = pr X[�] + �ux Dx + �ut Dt,

Dx = �x + ux �u + uxx �ux + uxt �ut +… ,

Dt = �t + ut �u + uxt �ux + utt �ut +… ,

(2.19)X� = � �u + Dx� �ux + Dt� �ut +…

(2.20)pr X[�]Δ||Δ=0= 0 if and only if X�Δ
||Δ=0= 0,

(2.21)X�Δ
||Δ=0= 0

(2.22)u(x, t) = Φ(x) + Ψ(t),
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We will call solutions derived from these conditions Separation Solutions.
If u(x, t) is an additive separated solution (2.22) then

is a multiplicative separated solution for any smooth functions Φ(x) and Ψ(t).
Let us consider the additive separation (2.22). In this case we have:

Applying the transformation

we can find the multiplicative separation condition similar to (2.25):

Imposing the (additive) separation condition for the scalar equation Δ(x, t, u) = 0 
results in the overdetermined system:

We may consider solutions separated with respect to more general variables 
p = p(x, t) and q = q(x, t).

3  Invariant Solutions and Separated Variables

Can symmetry tell us if solutions with separated variables exist for a given differ-
ential equation? We will start with classical Lie point symmetry groups and see if 
invariant solutions lead to solutions with separated variables.

We will mainly consider additive separation, u = X(x) + T(t) or uxt = 0 . Note that 
the case of multiplicative separation u(x, t) = X(x)T(t) can be reduced to additive sep-
aration by a simple change of variables, u = ln |v| : ln |v(x, t)| = ln |X(x)| + ln |T(t)| 
(for some nonzero functions X(x) and T(t)), such that (ln |v|)xt = 0 . Note that the 
operator X = �u in the additive framework would correspond to X = v �v in the mul-
tiplicative one.

3.1  Separation in (x,t) Coordinates

Consider the vector field

For each function g(x), the separated function

(2.23)u(x, t) = Φ(x)Ψ(t).

(2.24)v = eu = eΦ(x)+Ψ(t) = eΦ(x)eΨ(t) = Φ̃(x)Ψ̃(t),

(2.25)uxt = 0.

(2.26)u → ln(u),

(2.27)uuxt − uxut = 0.

(2.28)
Δ(x, t, u) = 0,

uxt = 0.

(3.1)X = �t + �u.
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is invariant under the action of X . Indeed,

Conversely, if u = f (x, t) is an invariant of the operator X , then

This implies that

with any function g(x). Therefore, all invariants of the operator X (3.1) are of the 
separated form (3.2).

Since solutions invariant under classical Lie point symmetries are known to 
exist in the great majority of regular cases, solutions in separated variables in 
most situations would also exist.

Let us consider a more general symmetry vector field of the form

where A and T are some functions, and A ≠ 0 . The form of solutions invariant under 
operator X can be found by solving an invariant surface condition:

Explicitly,

Since A ≠ 0 , we find that

Therefore, F(x, t) must be of the form

where X(x) is an unknown function, assumed arbitrary before substitution into 
original differential equation. Conversely, operator X leaves our solution u = F(x, t) 
invariant.

Note that in (3.10) and (3.12) function T(t) is determined by the form of the 
symmetry operator X (3.6), and unknown function X(x) can be found by substitu-
tion of this solution into original differential equation, and solving correspond-
ing reduced system. Different symmetry operators will lead to different separated 
solutions.

Note also that the condition for the existence of additively separated invariant 
solutions (3.6) can be given another form

(3.2)u = g(x) + t,

(3.3)X(u − X(x) − t)||u=X(x)+t= 1 − 1 = 0.

(3.4)X(u − f (x, t))||u=f= 1 − ft(x, t) = 0.

(3.5)f (x, t) = g(x) + t,

(3.6)X = A(x, t, u)
[
�t + T �(t) �u

]
,

(3.7)X
(
u − F(x, t)

)||u=F= 0.

(3.8)
[
A(x, t, u) T �(t) − A(x, t, u)Ft(x, t)

]||u=F= A(x, t,F)
[
T �(t) − Ft(x, t)

]
= 0.

(3.9)Ft(x, t) = T �(t).

(3.10)F(x, t) = T(t) + X(x),
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with some nonzero functions A(x, t, u) and X(x).
Thus, the functions invariant under operators X (3.6) or (3.11) are all addi-

tively separated.

We can show that the reverse statement is also true, namely that the requirement that 
all invariants of a symmetry operator X be additively separated leads to the operator 
(3.6) or (3.11).

Let us consider a general vector field

with coefficients that do not vanish simultaneously. We assume that operator X leads 
to a set of additively separated solutions u − F(x, t) = 0 , where F(x, t) = X(x) + T(t) , 
and function X(x) is unknown (assumed arbitrary a priori). Then

Since function X(x) is arbitrary, then

and

We conclude that (see Lemma 1)

Therefore, our symmetry (3.13) must be of the form (3.6).

and all its invariants are additively separated.
To generate multiplicatively separated solutions, we consider a symmetry 

operator similar to (3.6)

with some nonzero functions A(x, t, u) and T(t). From the invariance condition

(3.11)X = A(x, t, u)
[
�x + X�(x) �u

]
,

(3.12)u(x, t) = T(t) + X(x).

(3.13)X = �(x, t, u) �x + �(x, t, u) �t + �(x, t, u) �u,

(3.14)

X(u − X − T)||u=X+T = �(x, t,X + T) − �(x, t,X + T)X�(x) − �(x, t,X + T)T �(t)

= 0.

(3.15)�(x, t,X(x) + T(t)) = 0,

(3.16)�(x, t,X(x) + T(t)) = T �(t) �(x, t,X(x) + T(t)), � ≠ 0.

(3.17)
�(x, t, u) ≡ 0,

�(x, t, u) ≡ T �(t) �(x, t, u).

(3.18)X = �(x, t, u)
[
�t + T �(t) �u

]
,

(3.19)X = A(x, t, u)

[
�t +

T �(t)

T(t)
u �u

]
,
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where A ≠ 0 , we have the following equation for F:

Thus,

We see that invariants of X are multiplicatively separated. As in additive separation 
case the function T(t) is determined by the symmetry operator X (3.19), while the 
function X(x) will be determined by solution of the reduced system after substitution 
of solution (3.22) into original differential equation.

The condition for the existence of multiplicative separated invariant solutions 
(3.19) can be given another form

with some nonzero functions A(x, t, u) and X(x).
Note that the conditions for existence of additively separated solutions (3.6) or 

(3.11), and multiplicatively separated solutions (3.19) or (3.23) are sufficient condi-
tions; if a non-degenerate PDE has such symmetry, some solution with separated 
variables will exist. However, even if the equation does not have such symmetry it 
might still have separated solutions.

Let us show some examples.

Example 1 Suppose a differential equation has a symmetry subalgebra generated by:

Then X = X1 + aX2 with a ∈ ℂ is a symmetry operator in the form of (3.19), where 
T �(t)∕T(t) = a , and therefore, T(t) = eat . To find solution invariant with respect to X, 
we write:

Solving the characteristic system

we find the following invariants:

The invariant manifold is described by the relation �(x, ue−at) = 0 , and solving for u, 
we obtain the form of invariant solution in multiplicative separated form (3.22)

(3.20)X(u − F(x, t))||u=F= A(x, t,F)

[
T �(t)

T(t)
F(x, t) − Ft(x, t)

]
= 0,

(3.21)T �(t)F(x, t) − T(t)Ft(x, t) = 0.

(3.22)F(x, t) = X(x)T(t).

(3.23)X = A(x, t, u)

[
�x +

X�(x)

X(x)
u �u

]
,

(3.24)X1 = �t, X2 = u �u.

(3.25)X�(x, t, u) = �t + au�u = 0.

(3.26)
dt

1
=

dx

0
=

du

au
,

(3.27)I1 = x, I2 = ue−at.
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where the function T(t) = eat is determined by the symmetry operator (3.25), and an 
unknown (and a priori arbitrary) function X(x) will be determined by substituting 
(3.28) into original differential equation.

There are many second order PDE’s �[u] = 0 , that admit symmetries (3.24):

where Xi is a correspondingly prolonged vector field Xi . The first equation states that 
� does not explicitly depend on t. The second, has invariants of the forms ui∕u and 
uij∕u . Thus, the class of equations yielding these symmetries are:

Example 2 Suppose a differential equation admits a dilatation of the form:

for some non-zero a ∈ ℂ . Note that this symmetry operator is of the form (3.23)

where X�∕X = a∕x , and therefore, X(x) = xa.
We have

and the invariants of the transformation with operator X are

The invariant manifold is described by �(t, ux−a) = 0 , and the invariant solution will 
have multiplicatively separated form:

Example 3 Consider PDE admitting the symmetry of the form

This operator is a special case of (3.6) with T(t) = at2 + bt . The class of equations 
that admit such symmetry:

In addition to known linear equations, e.g.,

(3.28)u = eatX(x),

(3.29)X1�[u] = 0,

(3.30)X2�[u] = 0,

(3.31)�
(
x,
ux

u
,
ut

u
,
uxx

u
,
uxt

u
,
utt

u

)
= 0.

(3.32)X = x �x + au �u,

(3.33)X = x

[
�x +

X�(x)

X(x)
u �u

]
,

(3.34)X�(x, t, u) = x�x + au�u = 0,

(3.35)I1 = t, I2 = ux−a.

(3.36)u = xaT(t).

(3.37)X = �t + (2at + b) �u.

(3.38)utt − Γ(x, ux, uxx, uxt) = 0.
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class (3.38) includes fully nonlinear Hessian equations

as well as a nonhomogeneous Monge-Ampère equation

Correspondingly, all equations of this class will have solutions in the form of addi-
tively separated variables u(x, t) = X(x) + T(t).

Example 4 The equation

admits the following symmetry operator (e.g. [7])

where �(x) , �(x) , a(x),  and b(x) are arbitrary functions. Here we have two symmetry 
operators of the form (3.6):

and

with arbitrary functions A(x), and B(t). According to (3.10) the invariant solution 
under each symmetry operator is

with arbitrary functions F(x), and G(t).

Example 5 The homogeneous Monge-Ampère equation

has both additively and multiplicatively separated solutions. Let us show how addi-
tive and multiplicative separated solutions are determined by the classical symme-
tries of the equation.

The Lie symmetry group of the Eq. (3.47) is formed by the following 15 
operators:

(3.39)ux = kutt, utt = k2uxx + f (x), utt + uxx = 0, k = const,

(3.40)utt = f (uxt, uxx),

(3.41)uttuxx − u2
xt
= f (x),

(3.42)uxt = 0

(3.43)X = �(x) �x + �(t) �t + (a(x) + b(t)) �u,

(3.44)X = �(x)( �x + A(x) �u)

(3.45)X = �(t)( �t + B(t) �u),

(3.46)X = F(x) + G(t),

(3.47)uxxuyy − u2
xy
= 0
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Consider the following operator

Since this operator has a form of (3.11) then the corresponding invariant solution is 
in additively separated form with X�(x) = a:

where the function �(y) is a priori arbitrary. Substitution into original Eq. (3.47) 
shows that (3.50) with arbitrary �(y) is indeed, a (additively separated) solution of 
the Monge-Ampère equation.

We could also consider another operator

in the form (3.6). Then the Xad-invariant solution will also be in additively separated 
form with Y �(y) = b , and

Substituting this form into Eq. (3.47) we see that (3.52) (with arbitrary function 
�(x) ) is another additively separated solution of the Monge-Ampère equation.

Consider now the operator

Since this operator has a form of (3.19) then the corresponding invariant solution 
is in multiplicatively separated form with Y �(y)∕Y(y) = c , or Y(y) = Kecy . Thus, we 
will get a multiplicatively separated solution in the form

where the function K(x) is (a priori) arbitrary.
We could get a similar form by considering the solution invariant under the 

operator

Indeed, Xmul-invariant solution gives an alternative form of multiplicatively sepa-
rated solution:

Thus, the (Xm,Xl)-invariant solution has the multiplicatively separated form

(3.48)

X1 = �x, X2 = �y, X3 = �u, X4 = x �x, X5 = y �y,

X6 = u �u, X7 = y �x, X8 = x �y, X9 = u �x, X10 = u �y,

X11 = x �u, X12 = y �u, X13 = xD, X14 = tD, X15 = uD,

D = X4 + X5 + X6.

(3.49)Xadd = X1 + aX3 = �x + a �u, a = const.

(3.50)u(x, y) = X(x) + �(y) = ax + �(y),

(3.51)Xad = X2 + bX3 = �y + b �u, b = const,

(3.52)u(x, y) = by + �(x).

(3.53)Xm = X2 + cX6 = �y + cu �u, c = const.

(3.54)u(x, y) = K(x)ecy,

(3.55)Xl = X1 + rX6 = �x + ru �u, r = const.

(3.56)u(x, y) = L(y)erx.



Journal of Nonlinear Mathematical Physics           (2024) 31:55  Page 13 of 54    55 

where r, c, k are constants. Substitution of this form into original Eq. (3.47) shows 
that (3.57) is solution of the Monge–Ampère equation for any constants r, c, k.

Another multiplicatively separated solution of the Monge–Ampère equation can 
be obtained as the solution invariant under the operator:

This operator has a form of (3.19) with X�(x)∕X(x) =
a

x
 , or X(x) = xa . Thus, the Xn

-invariant solution leads to the form:

Similarly, we can look for the solution invariant under the operator:

This operator has a form of (3.19) with Y �(y)∕Y(y) =
b

y
 , or Y(y) = yb , or

The (Xn,Xp)-invariant solution then will have a multiplicatively separated form

Substitution into original Eq. (3.47) leads to the following restriction: b = a − 1 , and 
the solution

Let us show an example of Eq. which has additively separated solutions, but 
conditions (3.6) or (3.11) are not satisfied.

Example 6 The Minimal surface equation:

has additively separated solutions. Indeed, the additive separation condition (2.22) 
u(x, t) = Φ(x) + Ψ(t) leads to the following constraint:

Each term in the L.H.S. must be a constant, and we will get two additive separated 
solutions:

(3.57)u(x, y) = kerx+cy,

(3.58)Xn = X4 + aX6 = x �x + au �u = x[ �x +
a

x
u �u], a = const.

(3.59)u(x, y) = kxaY(y).

(3.60)Xp = X5 + bX6 = y �y + bu �u = y

[
�y +

b

y
u �u

]
a = const.

(3.61)u(x, y) = lybX(x).

(3.62)u(x, y) = kxayb.

(3.63)u(x, y) = kxaya−1, a = const.

(3.64)(1 + u2
y
)uxx − 2uxuyuxy + (1 + u2

x
)uyy = 0,

(3.65)
Φ��(x)

1 + Φ�(x)2
+

Ψ��(y)

1 + Ψ�(y)2
= 0.
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and

where c, k, l, u0, k1, k2, k3 are constants. However, the classical symmetry group of 
the Eq. (3.64) with generators:

has no combination of its operators that would give rise to the (sufficient) condition 
of existence of additively separated solutions, either (3.6) or (3.11).

We will show below (see section Contact Symmetries and Separation of Vari-
ables) that additively separated solutions of the minimal surface equation are related 
to its contact symmetries.

We conclude this section with a discussion of the converse: whether every PDE with 
separated solutions has a symmetry of the form (3.6) or (3.11) (or (3.19) or (3.23)). In 
general, this is false; see (6.1). However, such operators are symmetries of the stronger 
system

In other words, they are symmetries on the submanifold of separated solutions. To 
confirm this statement, consider the symmetry operator (3.11):

where A ≠ 0 . Let us evaluate this operator on the set of additively separated solu-
tions (3.6)

We will have

where Dx is a total derivative operator. Clearly, the operator ADx is a symmetry of 
any differential equation whose terms do not explicitly depend on x. Therefore the 
operator X1 restricted to the submanifold (3.71) will be a symmetry of any differen-
tial equation �(x, y, u,…) = 0 that allows additive separation of original variables.

(3.66)u(x, y) =
1

c

[
ln | cos(cy − k)| − ln | cos(cx − l)|

]
+ u0, c ≠ 0,

(3.67)u(x, y) = k1x + k2y + k3, c = 0,

(3.68)
X1 = �x, X2 = �y, X3 = �u, X4 = x �y − y �x,

X5 = u �x − x �u, X6 = u �y − y �u, X7 = x �x + y �y + u �u,

(3.69)
�(x, y, u, ux, uy,…) = 0,

uxy = 0.

(3.70)X1 = A(x, t, u)
[
�x + X�(x) �u

]
,

(3.71)u(x, y) = X(x) + Y(y).

(3.72)X1 = A
[
𝜕x + X�(x) 𝜕u

]
=̊A

[
𝜕x + ux 𝜕u

]
=̊ADx,
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3.2  Separation in Alternate Coordinate Systems

Separated solutions can be discovered by using alternate coordinate systems. 
Consider a differential equation Δ[u] = Δ(x, u, �u,…) = 0 (where x = (x1,… , xn) 
are independent variables and u = (u1,… , um) are functions) whose symmetry 
algebra includes an operator of the form

It is known [20, 12, Theorem 17.13] that in this case we can find new local coor-
dinates (y1,… , yn) such that X = �y1 . Then an X invariant solution is separated in 
these alternative coordinates, u = u(y2,… , yn) ; see [2, 11].

We could also consider operators of the form

The Xd invariant solution is still separated: ua(y) = e−ky
1

va(y2,… , yn).

Example 7 Consider a differential system Δ[u] that admits a rotation symmetry

The characteristic system

has the following invariants:

Then in new coordinates

the symmetry operator (3.75) will transform into translation X = �� , and the corre-
sponding X-invariant solution will be separated, and depend only on r, see also [17]:

Example 8 Consider the stationary nonlinear Schrödinger equation for complex-val-
ued �(x, y) , a function of two variables:

This equation is scaling invariant under the symmetry generator

(3.73)X = Ai(x) �xi .

(3.74)Xd = Ai(x) �xi + kua �ua = �y1 + kua �ua .

(3.75)X = −y �x + x �y.

(3.76)
dx

−y
=

dy

x
=

du1

0
=

du2

0
= ⋯ =

dum

0

(3.77)x2 + y2, u1,… , um.

(3.78)
r =

√
x2 + y2,

� = arctan(y∕x),

va = ua, a = 1,… ,m

(3.79)va = va(r), a = 1,… ,m.

(3.80)�xx + �yy + |�|2� = 0.
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where �  is the complex conjugate. The characteristic system

has the following invariant involving independent variables: y/x. In new (polar) 
coordinates

the symmetry operator (3.81) will transform into

The characteristic system in new coordinates

has the following invariants

The corresponding X-invariant solution is thus multiplicatively separated:

In fact, substitution into (3.80) yields an ordinary differential equation for f (�):

3.3  Separation in General Variables '(x, t) , and Ã(x, t)

So far we discussed the case of existence of invariant solutions in the form 
of additively separated original variables (x,  t). Consider now a more general 
case of solutions in the form of additively separated variables (�,�) , where 
� = �(x, t), � = �(x, t).

Theorem 1 Consider a differential equation

which we assume to be nondegenerate: locally solvable at every point, and of maxi-
mal rank [19]. If the Eq. (3.89) admits a symmetry operator in the form

(3.81)X = x �x + y �y − � �� − � �� ,

(3.82)
dx

x
=

dy

y
=

d�

−�
=

d�

−�

(3.83)
r =

√
x2 + y2,

� = arctan(y∕x),

(3.84)X = r �r − � �� − � �� .

(3.85)
dr

r
=

d�

0
=

d�

−�
=

d�

−�
.

(3.86)I1 = r� , I2 = r� , I3 = �.

(3.87)�(r, �) =
1

r
f (�), �(r, �) =

1

r
f (�).

(3.88)f ��(�) + (|f (�)|2 + 1)f (�) = 0.

(3.89)Δ[u] = 0,
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where B(x, t, u) can be any function,

and �(x, t),�(x, t), T(�) are some continuous functions with respect to all their vari-
ables, then the equation (3.89) has a solution in the form of additively separated 
variables �(x, t) and �(x, t)):

Note: if the function T �(�) in (3.90) is arbitrary, then the function T(�) in 
(3.92) is also arbitrary. Function f can be determined from the equation obtained 
by substitution of expression (3.92) into the original differential equation.

Proof:
Let

According to (3.18) if the Eq. (3.89) admits a symmetry operator

then it will have a solution in additively separated form

with some functions f and T. Therefore, in order to prove the Theorem 1 we need to 
show that the operator (3.90) can be given the form (3.94). We will prove instead a 
similar statement: by a change of variables the operator (3.94) can be transformed to 
(3.90). (Note: J ≠ 0 , (3.91)).

Consider the transformation

which is inverse to

Using (3.96) we can rewrite the expression for symmetry operator (3.94)

Let us express derivatives �s and �s in terms of x, t. Using (3.96), and finding deriva-
tives of the equations

with respect to x and t, we will obtain

(3.90)X = B(x, t, u)
[−�t

J
�x +

�x

J
�t + T �(�)�u

]
,

(3.91)J = �x�t − �t�x ≠ 0,

(3.92)u(x, t) = f (�(x, t)) + T(�(x, t)).

(3.93)r = �, s = � .

(3.94)X = B(r, s, u)[ �s + T �(s) �u],

(3.95)u = f (r) + T(s),

(3.96)r → x = �(r, s), s → t = �(r, s),

(3.97)x → r = �(x, t), t → s = �(x, t).

(3.98)X = B∗(r(x, t), s(x, t), u)[�s �x + �s �t + T �(s) �u].

(3.99)
x = �(�(x, t),�(x, t)),

t = �(�(x, t),�(x, t)),
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where

Substituting these expressions into (3.98) we will get the statement (3.90)

Similarly we can prove the following theorem:

Theorem 2 If a nondegenerate differential equation

admits a symmetry operator in the form

where

and �(x, t),�(x, t), T(�) are some continuous functions with respect to all their vari-
ables, then the Eq. (3.103) has a solution in the form of multiplicatively separated 
variables

Note: if the function T �(�)∕T(� ) in (3.104) is arbitrary, then obviously, the func-
tion T(�) in (3.106) is also arbitrary. As in case of Theorem 1 the form of function f is 
determined from the equation for f obtained by substitution of expression (3.106) into 
the original differential equation.

Note also that finding the new variables �(x, t) , and �(x, t) (or rather function 
T(�(x, t)) ) is the first step in application of Theorems 1 and 2.

Suppose our equation admits a symmetry operator

where a = a(x, t, u), b = b(x, t, u), c = c(x, t, u) . From (3.90) we conclude that

Therefore, the variable �(x, t) is determined from the condition

(3.100)�s =
−�t

J
, �s =

�x

J
,

(3.101)J = �x�t − �t�x.

(3.102)X = B(x, t, u)
(−�t

J
�x +

�x

J
�t + T �(�)�u

)
.

(3.103)Δ[u] = 0,

(3.104)X = B(x, t, u)

[
−�t

J
�x +

�x

J
�t +

T �(�)

T(�)
u�u

]
,

(3.105)J = �x�t − �t�x ≠ 0,

(3.106)u = f (�(x, t))T(�(x, t)).

(3.107)X = a�x + b�t + c�u,

(3.108)
b

a
= −

�x

�t

.

(3.109)a�x + b�t = 0.
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Using (3.108), we find

We have

Therefore,

Thus, we will get the following equation for the variable �(x, t) and the function 
T(�)

Practically, the Eq. (3.113) can allow us to find T(�) in terms of invariants of the 
characteristic system

In search of multiplicatively separated solutions using Theorem  2 the only differ-
ence with additively separated solutions will be in T(�) part: T �(�) → T �(�)∕T(�).

We will demonstrate the application of Theorems 1, and 2 on several examples.

Example 9 The wave equation

admits the following symmetry operator (e.g. [9])

where �(x + t) , �(x − t) , �(x + t), and �(x − t) are arbitrary functions of their 
arguments.

According to Theorem 1, the wave equation has additively separated solution. In 
order to find �(x, t) we have to solve the Eq. (3.108)

For a = �(x + t) we have

(3.110)J = �x�t − �t�x =
�x

b

(
a�x + b�t

)
.

(3.111)
−

�t

J
=

a

�x + b�t

,

�x

J
=

b

a�x + b�t

.

(3.112)B = a�x + b�t =
c

T �(�)
.

(3.113)a�x + b�t =
c

T �(�)
.

(3.114)
dx

a
=

dt

b
=

1

c
T �(�)d� .

(3.115)uxx − utt = 0

(3.116)
X = (�(x + t) + �(x − t)) �x + (�(x + t) − �(x − t)) �t + (�(x + t) + �(x − t)) �u,

(3.117)a�x + b�t = 0.

(3.118)�(x + t)(�x + �t) = 0,
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or

and for � , we select

The Eq. (3.113) here is

We can choose

and arbitrary function T(�) . Note that choosing function �(x − t) would result in 
switching of � and �

Thus we obtain well known result:

with arbitrary functions F(x − t) , and G(x + t).

Example 10 Nonlinear wave equation of the type

with some function F ≠ 0 . It is possible to show that equation (3.125) is invariant 
under the following operator

In order to find �(x, t) we have to solve the Eq. (3.108):

or

Looking for invariants of

we choose

(3.119)�x + �t = 0,

(3.120)� = x − t.

(3.121)�(x + t)(�x + �t) =
�(x + t)

T �(�)
.

(3.122)� = x + t,

(3.123)� = x + t, � = x − t.

(3.124)u(x, t) = F(x − t) + G(x + t),

(3.125)

uxx − utt + F
(
J1, J2

)
= 0,

J1 = (ux + ut)(x + t) − (x + t)4∕4,

J2 = (ux − ut)(t − x) + (t − x)4∕4,

(3.126)X = t �x + x �t + xt(x2 + t2) �u.

(3.127)a�x + b�t = 0,

(3.128)t�x + x�t = 0.

(3.129)
dx

t
=

dt

x
,
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The condition (3.113) for T(�) here

A corresponding characteristic equation

We obtain

and after integration we will get a special solution

Thus, according to Theorem  1 our equation (with symmetry operator (3.126)) 
should have additively separated solution in the form

where function f will be determined from the reduced system obtained by substitu-
tion of this solution into the original Eq. (3.125).

Example 11 The potential Burgers equation

admits the symmetry operator [10]

We will apply Theorem 1, and first find �(x, t):

or

We select

The condition for T(�) is (3.113)

(3.130)� = x2 − t2.

(3.131)t�x + x�t =
xt(x2 + t2)

T �(�)
.

(3.132)
dx

t
=

dt

x
=

T �(�)d�

xt(x2 + t2)
.

(3.133)dT = xdx(x2 + t2),

(3.134)T(�) =
x2t2

2
.

(3.135)u(x, t) = f (x2 − t2) + T(�) =
x2t2

2
+ f (x2 − t2),

(3.136)ut = uxx + ux
2

(3.137)X = 4xt �x + 4t2 �t − (x2 + 2t) �u.

(3.138)4xt�x + 4t2�t = 0,

(3.139)x�x + t�t = 0.

(3.140)� = x∕t.
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A corresponding characteristic equation

We obtain a special solution

Therefore, according to Theorem 1 the Eq. (3.136) (with symmetry operator (3.137)) 
has additively separated solution in the form

Substituting this form into (3.136) we obtain

Notice that the two parts of the solution (3.144) with separated variables are not 
quite independent, and one of them affects the equation for the other. If 𝜉 > 0 , the 
general solution to (3.145) is

where C1 and C2 ≥ 0 are constants. The case 𝜉 < 0 is similar.

Example 12 A linear heat equation

admits the symmetry operator [13]

We will apply Theorem 2:

or

and choose

(3.141)4xt�x + 4t2�t = −
(x2 + 2t)

T �(�)
.

(3.142)dx

4xt
=

dt

4t2
= −

T �(�)d�

x2 + 2t
.

(3.143)T(�) = −
x2

4t
−

ln|x|
2

.

(3.144)u = f
(
x

t

)
−

(
x2

4t
+

ln|x|
2

)
.

(3.145)f �� + f �
2
−

f �

�
+

3

4�2
= 0, � =

x

t
.

(3.146)f (�) = C1 + log(C2 + �) +
1

2
log(�),

(3.147)ut = kuxx

(3.148)X = 4xt �x + 4t2 �t −

(
x2

k
+ 2t

)
u �u.

(3.149)4xt�x + 4t2�t = 0,

(3.150)x�x + t�t = 0,
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The condition for T(�) is (3.113)

A corresponding characteristic equation

We obtain

Thus,

and

Therefore, according to Theorem 2 the heat Eq. (3.147) has multiplicatively sepa-
rated solution in the form

Note that the case f (�) = 1∕(4�k)1∕2 , ( � =
x

t
 ) corresponds to the fundamental solu-

tion of heat equation (3.147).

Let us note a short generalization of our approach to additive and multiplica-
tive separation, to certain functional separation. For a diffeomorphism f on some 
open subsets of ℝ , we say that u is f-separated if f(u) is additively separated, or 
f (u) = X(x) + T(t) . The generalization of Theorem 1 and Theorem 2 follows from 
the changes u → f (u) , T → f (T) and �u → �u∕f

�(u) . Namely, if our PDE has a sym-
metry operator of the form

then the PDE has an f-separated solution of the form u = f −1(X(�) + T(�)) . The fol-
lowing example is functionally separated.

(3.151)� = x∕t.

(3.152)4xt�x + 4t2�t = −
(x2∕k + 2t)

T �(�)∕T(�)
.

(3.153)
dx

4xt
=

dt

4t2
= −

T �(�)d�

T(�)(x2∕k + 2t)
.

(3.154)I =
x

t
,

dT

T
=

(
I2

4k
+

1

2t

)
dt.

(3.155)lnT = lnR −

(
x2

4kt
−

ln|t|
2

)
,

(3.156)T(�) = R
e−x

2∕4kt

t1∕2
.

(3.157)u = f
(
x

t

)
e−x

2∕4kt

t1∕2
.

(3.158)X = B(x, t, u)

[
−
�t

J
�x +

�x

J
�t +

f �(T(�))

f �(u)
T �(�) �u

]
,
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Example 13 Given a graph M = (x, u(x)) ∈ ℝ
n+1 , its mean curvature H is a function 

on M. We say that H is rotationally invariant in ℝn+1 if there is a smooth rotationally 
invariant function f = f (

√
|x|2 + x2

n+1
) on ℝn+1 such that H = f  on M, or

Here, we denote |x|2 = x2
1
+⋯ + x2

n
 , and |Du|2 = u2

1
+⋯ u2

n
 , with uij = �2u∕�xi�xj 

the Hessian, and summation over repeated indices is assumed.
The mean curvature, a coordinate free object, is rotationally symmetric: if H 

is the mean curvature for (x, u(x)), it is also the mean curvature for rotated graph 
(x̄, ū(x̄)) , or H(x,u(x)) = H(x̄,ū(x̄)) , where for fixed 1 ≤ i ≤ n and � ∈ ℝ,

Because f (
√�x�2 + u2) = f (

√�x̄�2 + ū2) is rotationally invariant, it follows that 
rotation is a point transformation which maps solutions to solutions. Therefore, the 
infinitesimal generators

along with the spatial rotations Yij = xi �j − xj �i , generate a subalgebra of the sym-
metry algebra of (3.159). In terms of w ∶= u2 , these are vector fields of the additive 
form in Theorem 1.

We find additively separated solutions invariant under all Xi . The invariant sur-
face conditions are

which integrate to |x|2 + u(x)2 = c2 , or

which confirms additive separation of u2 . A direct calculation shows that if such 
u solves (3.159) for c > 0 , then f (c) = n∕c . Provided c solves this algebraic equa-
tion, we obtain invariant solutions of (3.159). Such solutions correspond to spheres 
|(x, xn+1)|2 = c2 in ℝn+1.

3.4  Separated Solutions of Systems

We now extend our approach to systems of differential equations for n functions 
ui(x, t) . We again seek symmetry algebras whose invariant solutions are in the form 
of additively separated variables

(3.159)H ∶= −
1√

1 + �Du�2
�
�ij −

uiuj

1 + �Du�2
�
uij = f (

√�x�2 + u(x)2).

(3.160)

x̄i = cos 𝜃 xi + sin 𝜃 u(x),

ū(x̄) = − sin 𝜃 xi + cos 𝜃 u(x),

x̄j = xj, j ≠ i.

(3.161)Xi = u�i − xi�u,

(3.162)uui + xi = 0, i = 1,… , n,

u(x)2 = c2 − (x2
1
+⋯ + x2

n
),
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with some functions Xi(x) , and Ti(t) . In analogy with (3.18) consider symmetry vec-
tor fields of the form

where A ≠ 0 . Indeed, if ui = Fi(x, t) is an invariant surface: X(Fi − ui)|u=F = 0 , then

Since A ≠ 0 , we conclude that Fi(x, t) = Xi(x) + Ti(t) with arbitrary functions Xi(x) , 
which shows that invariant solutions are additively separated.

In the multiplicative framework, we correspondingly consider symmetry vector 
fields of the form

(with some functions Xi(x) , and Ti(t) ) leading to multiplicatively separated invariant 
solutions

Example 14 Consider the nonlinear-Schrödinger-type system

where Ψ = Ψ∗ (the complex conjugate), and V(x, |Ψ|2) is a real-valued potential 
function. This system admits the two symmetries

Consider a linear combination of X1 and X2:

Comparing with (3.166), we have

Thus,

(3.163)ui = Xi(x) + Ti(t), i = 1,… , n.

(3.164)X = A(x, t, ui)

[
�t +

n∑
i=1

Ti
t
(t) �ui

]
,

(3.165)0 = X(Fi(x, t) − ui)||uj≡Fj= A[Fi
t
− Ti

t
]||uj≡Fj .

(3.166)X = A(x, t, ui)

[
�t +

n∑
i=1

Ti
t
(t)

Ti(t)
ui �ui

]

(3.167)ui = Xi(x)Ti(t), ∀i = 1,… , n.

(3.168)
iΨt + Ψxx − V(x,ΨΨ)Ψ = 0,

− iΨt + Ψxx − V(x,ΨΨ)Ψ = 0,

(3.169)X1 = �t, X2 = i(Ψ �Ψ − Ψ �
Ψ
).

(3.170)X = X1 − EX2 = �t − iEΨ �Ψ + iEΨ �
Ψ
.

(3.171)

T1�

T1
= −iE.

T2�

T2
= iE.
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and we will obtain the well known form of multiplicatively separated solution for 
equations of the NLS-type:

After substituting this solution into original equation (3.168), we find that �∗ = �.

Example 15 We consider a Riemannian or Lorentzian manifold (M,  g), where the 
metric g solves the vacuum Einstein equation

In local coordinates, the point symmetries of (3.174) are given by Stephani [27, 
equation (10.11)], and found first by Marchildon [15]:

where �i(x) are arbitrary functions, a is a constant, and we sum over i ≥ j in this 
example. There, Stephani indicates the symmetry invariant solutions, and presents 
many examples. In fact, they are of separated form. To recall, we write the symme-
try invariance condition

in terms of the Lie derivative with respect to vector field V = �i �i:

That is, V is a conformal Killing vector. Let c solve the transport equation 
LVc = 2ac . Then we find the multiplicative separation

for arbitrary h(x) solving LVh = 0 . In local coordinates such that V = �1 , then for 
x = (x1, x�) and x� = (x2,… , xn) , we have the separated variables

Many important exact solutions of the Einstein equations take this form, including 
the Kerr metric, and the Schwarzschild metric

(3.172)T1(t) = Ke−iEt, T2(t) = Le−iEt,

(3.173)
Ψ(x, t) = e−iEt�(x),

Ψ(x, t) = eiEt�(x).

(3.174)Ric(g) = 0.

(3.175)X = �i
�

�xi
−
(
�k
,j
gik + �k

,i
gkj − 2agij

)
�

�gij
,

(3.176)�kgij,k + �k
,j
gik + �k

,i
gkj − 2agij = 0

(3.177)LVgij = 2agij.

(3.178)gij(x) = c(x)hij(x),

(3.179)gij(x
1, x�) = e2ax

1

hij(x
�).

(3.180)g = −
(
1 −

b

r

)
c2dt2 +

(
1 −

b

r

)−1

dr2 + r2dgS2(�,�),
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where gS2 = d�2 + sin2 �d�2 is the metric on the sphere, and b, c are constants. In 
this case, V = �t is a Killing vector (isometry), with a = 0.

Let us also note that many more separated solutions can be constructed 
from (3.179) by using the diffeomorphism (gauge) invariance of the PDEs: 
�∗g(y) = e2ax

1(y)�∗h(x�(y)) is also a solution for any diffeomorphism 
x = �(y) ∶ M → M . The most general such construction is (3.178), which is defined 
only using geometric objects, hence form invariant under the gauge group.

Example 16 We consider a family of Riemannian manifolds (M, g(t))t≥0 such that 
metric g(t) solves the Ricci flow

Recently, Lopez et al. [14] found the point symmetry generators of (3.181):

where we sum over i ≥ j in this example, and �(x) is an arbitrary function. We sup-
pose that the solution is invariant under the symmetry X3 + aX2 . The invariance 
condition simplifies to

where LV is the Lie derivative with respect to vector field �i �i . Choosing coordi-
nates for which V = �1 , we let

Then hij(t, x) solves the transport equation

The solution form is therefore

Substituting this into (3.181) and using that Ric is homogeneous degree zero in ver-
tical scalings of g (cf. X2 ), we find that G solves the Einstein-type equation

(3.181)
�g

�t
= −2Ric(g(t)).

(3.182)

X1 =
�

�t
,

X2 = t
�

�t
+ gij

�

�gij
,

X3 = �k
�

�xk
− (�k

,j
gij + �k

,i
gkj)

�

�gij
,

(3.183)LVgij = agij − at
�gij

�t
,

(3.184)gij(t, x) = thij(t, x).

(3.185)
�hij

�x1
= −at

�hij

�t
.

(3.186)gij(t, x
1, x�) = t Gij(x

1 − a ln t, x�).

(3.187)(1 − a)LVG = −2Ric(G).
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This is known as the Ricci soliton corresponding to time evolution by a 
diffeomorphism.

3.5  Separation in General Variables for Systems

Two statements similar to Theorems 1, and 2 can be proven for systems of 
equations:

Theorem 3 Consider a differential system for n functions ui(x, t)

which we assume to be nondegenerate: locally solvable at every point, and of maxi-
mal rank [19]. If the system (3.188) admits a symmetry operator

where B(x, t, u) ≡ B(x, t, u1, u2,… , un) , �(x, t),�(x, t), Ti(�) are continuous func-
tions with respect to all their variables, and

then the system (3.188) has a solution in the form of additively separated variables 
�(x, t) and �(x, t)):

Note: Similar to the case of a single equation if our system admits a symmetry 
operator

where coefficients a, b, ci, (i = 1,… , n) are functions of (x, t, u), (u ≡ u1, u2,… , un) , 
then the variable �(x, t) is determined from the condition (3.108)

and the variable �(x, t) and the functions Ti(�) can be found from the conditions 
similar to (3.113)

Theorem 4 If a nondegenerate differential system (3.188) admits a symmetry opera-
tor in the form

(3.188)Δi[u] = 0, i = 1,… , n,

(3.189)X = B(x, t, u)

[
−�t

J
�x +

�x

J
�t +

n∑
i=1

Ti�(�)�ui

]
,

(3.190)J = �x�t − �t�x ≠ 0,

(3.191)ui(x, t) = f i(�(x, t)) + Ti(�(x, t)), i = 1, 2,… , n.

(3.192)X = a�x + b�t + ci�ui ,

(3.193)a�x + b�t = 0,

(3.194)a�x + b�t =
c1

T1�(�)
=

c2

T2�(�)
= ⋯ =

cn

Tn�(�)
.
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where J is determined by (3.190) and �(x, t),�(x, t), Ti(�) are continuous functions 
with respect to all their variables, then the system (3.188) has a solution in the form 
of multiplicatively separated variables

Note: Similar to the case of Theorem 3, if the system admits a symmetry operator 
(3.192) then the variable � is determined from the condition (3.193) and the variable 
�(x, t) and the functions Ti(�) can be found from the conditions

Example 17 Consider Navier–Stokes equations for an incompressible fluid of viscos-
ity � and pressure p

where u = (u1, u2, u3) is the velocity vector, and ui = ui(x, y, z, t) . The symmetry 
algebra of Navier–Stokes equations includes the following operators [3, 8]:

where f(t), g(t), h(t) are arbitrary functions.
Consider first the symmetry operator

This operator has a form of (3.192) and we can look for additively separated solu-
tion to the Navier–Stokes equations (3.198) according to Theorem 3. We first need 
to find variables �,� . Applying (3.193) we will get

We find

(3.195)X = B(x, t, u)

[
−�t

J
�x +

�x

J
�t +

n∑
i=1

Ti�(�)

Ti(�)
ui�ui

]
,

(3.196)ui(x, t) = f i(�(x, t))Ti(�(x, t)), i = 1, 2,… , n.

(3.197)a�x + b�t =
c1T1(�)

T1�(�)
=

c2T2(�)

T2�(�)
= ⋯ =

cnTn(�)

Tn�(�)
.

(3.198)
u
j

t − �u
j

ii
+ uiu

j

i
+ pj = 0,

ui
i
= 0, i, j = 1, 2, 3,

(3.199)

Xt =
�

�t
,

Xf = f
�

�x
+ f �

�

�u1
− xf ��

�

�p
,

Xg = g
�

�y
+ g�

�

�u2
− yg��

�

�p
,

Xh = h
�

�z
+ h�

�

�u3
− zh��

�

�p
,

(3.200)X1 = Xf + kXt = f
�

�x
+ k

�

�t
+ f �

�

�u1
− xf ��

�

�p
, k = const.

(3.201)f (t)�x + k�t = 0.
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and choose

The variable � can be determined from the Eq. (3.194):

The characteristic system

We find

and therefore,

For T2(�) we have

and

Thus, according to Theorem  3 the Navier–Stokes equation (3.198) has additively 
separated solutions in the form

Introducing function r(t) ∶ f (t) = r�(t) from (3.203) we will get

Thus, our X1-invariant additively separated solution has a form

(3.202)� = �(I), I = kx − ∫ f (t)dt,

(3.203)� = I = kx − ∫ f (t)dt.

(3.204)f (t)�x + k�t =
f �(t)

T1�(�)
.

(3.205)dx

f (t)
=

dt

k
=

T1�(�)d�

f �(t)
= −

T2�(�)d�

xf ��(t)
.

(3.206)dT1 =
f �(t)dt

k
,

(3.207)T1(�) =
f (t)

k
.

(3.208)dT2 =
−xf ��(t)dt

k
,

(3.209)T2(�) = −
xf �(t)

k
.

(3.210)
u1(x, t) = F(�) + T1(�),

p(x, t) = R(�) + T2(�).

(3.211)� = I = kx − r(t).
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where functions F(kx − r(t)),R(kx − r(t)), r(t) are arbitrary, and k = const.

Some solutions related to the class (3.212), and their properties were studied in 
[?].

We can also consider another symmetry operator

Similarly to the case of X1 operator we can obtain the X2-invariant additively sepa-
rated solution in the form

where functions G(ly − s(t)), S(ly − s(t)), s(t) are arbitrary, and l = const.

For the operator X3 we will get

and the X3-invariant additively separated solution will have a form

where functions H(mz − q(t)),Q(mz − q(t)), q(t) are arbitrary, and m = const.

Combining operators X1,X2,X3 and considering Xs = Xf + Xg + Xh + aXt we 
can generate the Xs-invariant additively separated solution of the Navier–Stokes 
equations

(3.212)
u1(x, t) = F(kx − r(t)) +

r�(t)

k
,

p(x, t) = R(kx − r(t)) −
xr�(t)

k
,

(3.213)

X2 = Xg + lXt = g(t)
�

�y
+ l

�

�t
+ g�(t)

�

�u2
− yg��(t)

�

�p
, l = const.

(3.214)
u2(y, t) = G(ly − s(t)) +

s�(t)

l
,

p(y, t) = S(ly − s(t)) −
ys�(t)

l
,

(3.215)

X3 = Xh + mXt = h(t)
�

�z
+ m

�

�t
+ h�(t)

�

�u3
− zh��(t)

�

�p
, m = const,

(3.216)
u3(z, t) = H(mz − q(t)) +

q�(t)

m
,

p(x, t) = Q(mz − q(t)) −
zq�(t)

m
,

(3.217)

u1(x, t) = F(kx − r(t)) +
r�(t)

k
,

u2(y, t) = G(ly − s(t)) +
s�(t)

l
,

u3(z, t) = H(mz − q(t)) +
q�(t)

m
,

p(x, t) = R(kx − r(t)) + S(ly − s(t)) + Q(mz − q(t)) −

(
xr��(t)

k
+

ys��(t)

l
+

zq��(t)

m

)
,
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where functions F(kx − r(t)),G(ly − s(t)),H(mz − q(t)), r(t), s(t), q(t) are arbitrary, 
k + l + m = a, and k, l,m = const. Substituting (3.217) into the Eq. (3.198) we will 
get:

where

In these variables our additively separated solution of the Navier–Stokes equation 
(3.198) has the form

with arbitrary functions F(�),G(�),H(�), r(t), s(t), q(t), and k, l,m = const.

3.6  Contact Symmetries and Separation of Variables

We can generalize the previous observations to contact symmetries. We will con-
sider nontrivial contact symmetries which cannot be obtained from point symme-
tries by simple prolongation. Correspondingly, separated solutions obtained from 
nontrivial contact symmetries do not arise from point symmetries. In addition, some 
equations, such as the general class in Example 18, have contact symmetries but no 
point symmetries.

Consider a contact vector field X[�] with infinitesimal of the form

where

(3.218)

R(�) = k�F�(�) − F2(�)∕2,

S(�) = l�G�(�) − G2(�)∕2,

Q(�) = m�H�(�) − H2(�)∕2,

(3.219)
� = kx − r(t),

� = ky − s(t),

� = kz − q(t).

(3.220)

u1(x, t) = F(�) +
r�(t)

k
,

u2(y, t) = G(�) +
s�(t)

l
,

u3(z, t) = H(�) +
q�(t)

m
,

p(x, t) = �
(
kF�(�) + lG�(�) + mH�(�)

)
−

1

2

(
F2(�) + G2(�) + H2(�)

)

(3.221)−

(
xr��(t)

k
+

ys��(t)

l
+

zq��(t)

m

)
,

(3.222)�(x, t, u, p, q) = �(x, t, u, p, q)�(x, t, q),
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and for each function Q(x, t)

for some fixed function T(t). To find the invariant forms u = F(x, t) of X[�] , we 
compute

Since � ≠ 0 , we see that

From condition (3.224), we deduce that Ft = T �(t) . Hence, there exists some func-
tion X(x) such that

In other words, the symmetry (3.222) leads to additively separated invariant solu-
tion. Conversely, any F(x,  t) of an additively separated form (3.227) is invariant 
under the contact symmetry X[�] , (3.222) (where X is an arbitrary function (and T is 
fixed via (3.224)).

Infinitesimal (3.222) corresponds to the following vector field:

where

In the multiplicative framework, the corresponding infinitesimal in multiplicative 
variables takes the general form

This recovers the point symmetry case. Indeed, if � is linear in derivatives, or

then X[�] takes the form (3.6). In general, the dependence on T �(t) can be more com-
plicated. Admissible examples which satisfy (3.224) include

where A is any nonzero function of (x, t, u, p, q), and n = 1, 2, 3,…

Example 18 Consider PDEs of the form

(3.223)�(x, t, u, p, q) ≠ 0,

(3.224)�(x, t,Q(x, t)) = 0 if and only if Q(x, t) = T �(t),

(3.225)
0 = X[�](u − F(x, t))||u=F =

(
� − p�p − q�q + pFx + qFt

)||u=F
= �(x, t,F(x, t),Fx(x, t),Ft(x, t))

= �(x, t,F,Fx,Ft)�(x, t,Ft).

(3.226)�(x, t,Ft(x, t)) = 0.

(3.227)F(x, t) = X(x) + T(t).

(3.228)X[�] = �X[�] + �X[�] − �� �u,

(3.229)X[�] = −�q �t + (� − q�q) �u + �x �p + �t �q.

(3.230)�(x, t, u, p, q) = u �(x, t, u, p, q) �(x, t, q∕u), � ≠ 0.

(3.231)�(x, t, u, p, q) = A(x, t, u)[T �(t) − q],

�(x, t, q) = A[T �(t) − q]n,A[T �(t)2n−1 − q2n−1],A(eT
�(t)−q − 1),
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where � is a constant and Φ is some function.
The Eq. (3.232) does not have any point symmetries. However, this equation 

admits the following contact symmetry:

Corresponding invariant solutions

are of the separated form

Example 19 Consider PDEs of the form

where �(ut) and �(x, ux) are some functions. It is possible to show that the Eqs. 
(3.235) admit contact symmetries with the following infinitesimal:

where �(ut) is an arbitrary function. The form of corresponding invariant solution is 
determined by

Using the inverse function theorem we will get

where T ��(t) ≠ 0 , and otherwise T(t) is a priori arbitrary function. Thus,

However, we can see that the Eqs. (3.235) do not have invariant solutions of the 
form (3.239). Instead, these equations have solutions of the form

where X(x) and a = const are arbitrary. Thus, contact symmetries of the Eqs. (3.235) 
do not yield their invariant separated solutions. We can see that the invariant sep-
arated solutions (3.240) are related to the following point symmetry of the Eqs. 
(3.235)

(3.232)utt +
ut − �

(ut − �)Φ
(
x, ux, ut, u − �t(ut − �)∕2

)
− t

= 0,

(3.233)�(ut) = (ut − �)2.

ut − � = 0

(3.234)u(x, t) = X(x) + �t.

(3.235)utt − uxt �(ut) �(x, ux) = 0,

(3.236)�(t, ut) = �(ut)[t + �(ut)],

(3.237)�(ut) + t = 0.

(3.238)ut = T �(t),

(3.239)u(x, t) = X(x) + T(t), T ��(t) ≠ 0.

(3.240)u(x, t) = X(x) + at,

(3.241)X = �x + a �u, a = const.
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Example 20 We will consider the minimal surface Eq. (3.64) and the connection 
between its contact symmetry operators and additive separation solutions.

In case of additive separation we rewrite (3.64) as

where ux = p and uy = q , and u is no longer treated as part of the system. We look 
for contact symmetries of the system (3.242) in the form:

We obtain

The pair of symmetry combinations

lead to the invariants

We can construct the manifold

and find invariants. Integrating each equation on ux = p , uy = q leads to the follow-
ing additively separated solutions

3.7  Differential Invariant Solutions

As we saw in the examples above, solutions obtained from point and contact sym-
metries do not recover all possible separated solutions. In this section, we identify 

(3.242)
(1 + q2)px + (1 + p2)qy = 0,

py = qx = 0,

(3.243)X = f (x) �x + g(y) �y + �1(x, y, p, q) �p + �2(x, y, p, q) �q.

(3.244)

X1 = �x, X2 = �y, X3 = x(1 + p2) �p − y(1 + q2) �q,

X4 = (1 + p2) arctan(p) �p + (1 + q2) arctan(q) �q,

X5 = (1 + p2) �p, X6 = (1 + q2) �q.

(3.245)Xa = X1 + cX5,

(3.246)Xb = X2 − cX6,

(3.247)I1 = arctan(p) − cx,

(3.248)I2 = arctan(q) + cy.

(3.249)�1(arctan(p) − cx, arctan(q) + cy) = 0,

(3.250)�2(arctan(p) − cx, arctan(q) + cy) = 0,

(3.251)u =
1

c

[
ln

(
cos(c(y − y0))

cos(c(x − x0))

)]
.
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conditions when all separated solutions are determined by the equation’s symmetry 
properties. For both point and contact symmetries, we relax the symmetry invari-
ance condition to include differential invariants. Examples 21 and 22 illustrate our 
approach.

The Lie algebra

has differential invariants x and ux . Consequently, if A has an invariant surface 
defined by

then F(x, t, u, ut) = G(x) for some G. Therefore, ux = G(x) , which integrates to

for some T(t) and X�(x) = G(x) . We see that differential invariant solutions of alge-
bra A lead to additively separated solution forms.

Conversely, if a PDE admits symmetry algebra A and possesses an additively 
separated solution u(x, t) = X(x) + T(t) for some X and T, then this solution forms 
a differential invariant under algebra A. Indeed, the surface defined by

is clearly invariant under A. In this case, we see that all separated solutions of a PDE 
are invariant solutions, in contrast to the previous approach, in which one of the 
functions T(t) or X(x) would be fixed by the imposed symmetry X.

We seek conditions on a (finite) contact Lie algebra A =< X[𝛼i] >a
i=1

 such that 
all its differential invariant solutions are additively separated, (3.254) as in the 
example above. We claim this happens if

and

Of course, this last condition requires a ≥ 3.
To verify that such algebras leave separated solutions invariant, let X[�] ∈ A . 

Then for each X(x),

where p = ux, q = ut , by (3.256). Therefore, separated solutions to PDEs admitting 
such algebras A are differential invariant solutions.

(3.252)A =< 𝜕u, 𝜕t, t 𝜕t >

(3.253)X
(
ux − F(x, t, u, ut)

)||ux=F= 0, X ∈ A,

(3.254)u(x, t) = X(x) + T(t),

(3.255)ux − X�(x) = 0,

(3.256)�i = �i(t, q), i = 1,… , a

(3.257)rank

⎛⎜⎜⎜⎝

X[�1]t X[�1]u X[�1]q

X[�2]t X[�2]u X[�2]q

⋮ ⋮ ⋮

X[�a]t X[�a]u X[�a]q

⎞⎟⎟⎟⎠
= rank

⎛
⎜⎜⎜⎜⎝

�1
q
�1 �1

t

�2
q
�2 �2

t

⋮ ⋮ ⋮

�a
q
�a �a

t

⎞
⎟⎟⎟⎟⎠
= 3.

(3.258)X[�](X�(x) − ux)
||ux=X�=

(
−�x − �up − �puxx − �quxt

)|ux=X� = 0,
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We now prove that all differential invariant solutions of Lie algebra A are sepa-
rated. Suppose for some F and each i that X[�i](F(x, t, u, q) − p)|p=F = 0 , or that

By (3.257), we deduce that there exists G such that

Clearly, if u solves ux = F , it solves ux = G(x) , to which u(x, t) = X(x) + T(t) is a 
solution for arbitrary T, where X�(x) = G(x) . Then according to (3.260)

Since function T(t) is arbitrary, we conclude that F(x, t, u, q) = G(x) for each 
(x, t, u, q) ∈ ℝ

4 , or F(x, t, u, ut) ≡ G(x) ; cf. Lemma 1. We see then that algebra A 
leads only to additively separated differential invariant solutions.

Remark 1 Contact vector fields (2.11) in this algebra take the form

with commutators (2.13) reducing to

The Lie algebraic conditions (2.14) reduce to

If a = 3 (three-dimensional Lie algebra), rank condition (3.257) becomes equivalent 
to the nonvanishing of the determinant. The minors of this matrix may be computed 
using commutator relations (3.264), which ultimately yields:

In particular, not all Ck
ij
 ’s can be zero, so commuting Lie algebras are not 

admissible.

Remark 2 In the case of point symmetry algebras

system (3.264) becomes a set of nonlinear ODEs:

(3.259)
X[�i](F(x, t, u, q) − p)||p=F=

(
Ft X[�

i]t + Fu X[�
i]u + Fq X[�

i]q
)||p=F= 0.

(3.260)F(x, t, u, ut) = G(x), if u solves ux = F(x, t, u, ut).

(3.261)F
(
x, t,X(x) + T(t), T �(t)

)
= G(x), T(t) arbitrary.

(3.262)X[�i] = −�i
q
�t + (�i − q�i

q
) �u + �i

t
�q, i = 1,… , a,

(3.263)
[
X[�i] , X[�j]

]
= X

[
�i
q
�
j

t − �i
t
�j
q

]
, i, j = 1,… , a.

(3.264)�i
q
�
j

t − �i
t
�j
q
=

a∑
k=1

Ck
ij
�k, i, j = 1,… , a.

(3.265)
3∑

k=1

(
�1Ck

23
�k + �2Ck

31
�k + �3Ck

12
�k
) ≠ 0.

�i(t, q) = �i(t) − q� i(t), i = 1,… , a,



 Journal of Nonlinear Mathematical Physics           (2024) 31:55    55  Page 38 of 54

Note that not all � ’s can be zero; ( � i = −�i
q
 ), see (3.257).

If a = 3 , rank condition (3.265) stipulates that at least one of the following must 
hold:

each of which corresponds to a coefficient of qn in (3.265).

3.7.1  Examples

We first consider three-dimensional point symmetry algebras ( a = 3 ) which solve 
system (3.266) and satisfy one of conditions (3.267).

Example 21 Many equations admit translations in both t and u, or X = �t, �u . Sup-
pose that

Then system (3.266) reduces to

If C1
12

= 0 , then �1 = C3
12
t, �1 = C2

12
t up to linear independence in the algebra. We 

conclude that the point symmetry algebra

leaves invariant the separation condition (3.255), for any a, b such that a2 + b2 > 0 , 
i.e. the differential consequence of separation is symmetry invariant. Second order 
equations which admit this symmetry algebra are of the form

(3.266)

� j�i
t
− � i�

j

t =

a∑
k=1

Ck
ij
�i, i, j = 1,… , a,

� j� i
t
− � i�

j

t =

a∑
k=1

Ck
ij
� i, i, j = 1,… , a.

(3.267)

3∑
k=1

(
�1Ck

23
�k + �2Ck

31
�k + �3Ck

12
�k
) ≠ 0,

3∑
k=1

(
(�1�k + �k�1)Ck

23
+ (�2�k + �k�2)Ck

31
+ (�3�k + �k�3)Ck

12

) ≠ 0,

3∑
k=1

(
�1Ck

23
�k + �2Ck

31
�k + �3Ck

12
�k
) ≠ 0,

�2 = 0, �2 = −1, �3 = 1, �3 = 0, Ck
23
, Ck

31
≡ 0.

(3.268)
�1
t
= C1

12
�1 + C3

12
,

�1
t
= −C1

12
�1 + C2

12
.

(3.269)A =< 𝜕t, 𝜕u, at 𝜕t + bt 𝜕u >,
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For instance, if b = 1, a = 0 , we see that the wave, Laplace, and heat equations

have this symmetry algebra. As another example, the Monge-Ampère equation

contains A as a subalgebra in its (large) point group, for any a, b. We conclude that 
all additively separated solutions of Monge-Ampère are also (differential) invariant 
solutions of this three-dimensional subalgebra of its point group (and, of course, the 
invariant solutions of this subalgebra are separated solutions). Note that Rosenhaus 
showed that the Monge–Ampère equation is uniquely determined by its point sym-
metry group, and all its solutions can be obtained from its symmetry algebra and 
some of its subalgebras [24].

Obviously, analogous statements hold for multiplicative separation with the 
algebra

For example, the Monge–Ampère equation also admits the symmetries with 
a = 1, b = 0 , so its multiplicatively separated solutions are invariant under this 
three-dimensional subalgebra.

We next consider a three-dimensional contact symmetry algebra that solves 
(3.264) and satisfies (3.265).

Example 22 Suppose that

Then contact system (3.264) reduces to

If C1
23

= C3
23

= 0 , we find that �3 = f (q) + C2
23
tq∕2 is a solution, where f is an arbi-

trary function. If we set f (q) = 0 and C2
23

= −2 , we have �3 = −tq . Therefore, the 
contact Lie algebra

leaves invariant the separation condition (3.255). For example, along with the 
Monge-Ampère equation, the quasilinear equation

�

(
x, ux, uxx,

uxt

b − aut
,

utt

(b − aut)
2

)
= 0.

utt = c2(x)uxx, utt + uxx = 0, ux = kutt,

uxxutt − u2
xt
= 0,

A =< 𝜕t, u 𝜕u, at 𝜕t + btu 𝜕u > .

�1 = 1, �2 = −q2, Ck
12
,Ck

31
≡ 0.

2q�3
t
= −C1

23
+ C2

23
q2 − C3

23
�3.

A =< 𝜕u, t 𝜕t − ut 𝜕ut , 2ut 𝜕t + u2
t
𝜕u >,

t utt − ut − g(x, ux)uxt = 0,



 Journal of Nonlinear Mathematical Physics           (2024) 31:55    55  Page 40 of 54

admits this symmetry algebra A. Therefore, all separated solutions of this equation 
are generated by differential invariants of algebra A.

3.8  Further Remarks

The natural converse problem to that considered in this section is whether all sep-
arated solutions of a PDE are invariant under a symmetry. This is true for many 
equations from mathematical physics. In the case of the heat equation, each addi-
tively separated solution u(x, t) = X(x) + T(t) is invariant under a corresponding 
point symmetry of the equation. In the case of the wave, Laplace, heat, and Monge-
Ampère equations, all additively separated solutions are invariant solutions under a 
three-dimensional point symmetry algebra. However, in a later section, an exotic Eq. 
(6.1) will be exhibited which has no point symmetries but does possess separated 
solutions.

For certain linear PDEs, Miller [16] earlier considered the problem of finding 
separated solutions from symmetries; further studies of linear PDEs are in Kaln-
ins–Kress–Miller [11]. It was shown there that given a symmetry of the form 
X = Ai(x) �i , the eigenfunctions of X will be separated solutions of the linear PDE. 
Indeed, in new coordinates, X = �y1 , so the eigenfunctions Xu = ku have the sepa-
rated form u = eky

1

f (y2,… , yn).
The results of this section generalize this idea. Indeed, since u �u is a scaling sym-

metry valid for linear PDEs, we see that eigenfunctions of X are invariant under the 
combination symmetry X2 = X − ku �u , which is of the multiplicative form (3.195) 
and hence within the scope of our Theorem 4.

Our theorem is valid for nonlinear PDEs. The symmetry invariance need not cor-
respond to eigenfunctions of a translation operator, and a priori linear structure on 
the PDE is not required for the symmetry to yield a separated solution. Our discus-
sion includes additive, multiplicative, and functional separation, such as Example 
13.

4  Separated Solutions Generated by Mapping of Constant Solutions

We start with a motivating example. The heat equation

admits the symmetry operator [1]

If u = f (x, t) is a solution to (4.1), then for each � , so is

In particular, if f (x, t) = U is constant, then

(4.1)ut = uxx,

(4.2)X� = (xu + 2tux) �u, (X = −2t �x + xu �u).

(4.3)u�(x, t) = e�X� f (x, t) = e−�x+�
2tf (x − 2�t, t).
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is a solution to (4.1) for each � . We see that symmetry transformation e�X� maps a 
constant solution to a nontrivial multiplicatively separated solution that depends on 
all independent variables. Notice that we did not need to solve the original Eq. (4.1) 
to deduce the existence of separated solutions; we needed (i) a constant solution to 
exist, and (ii) an appropriate symmetry ((4.2)).

Let us consider a more general differential equation

for function u(x1,… , xp) . Suppose that it admits constant solutions; i.e. for all con-
stants U (e.g. in ℝ or ℂ),

For example,

where the A’s are smooth functions of (x, u, u(1),… , u(�)) , admits u = U as a solu-
tion for all U, since the derivatives uI vanish when u = U . As a special case, if a 
Lagrangian

does not depend on x or u, then its Euler–Lagrange equation

admits constant solutions, since each term has a u derivative. The prototypical exam-
ples would be L = u2

t
± |∇u|2.

For a given vector field X� (for now, not necessarily a symmetry), we ask when 
U� ∶= e�X�U is a nontrivial separated solution of Δ . In other words, we are looking for 
conditions when our U�:

(a) solves the equation

(b) is additively separated

and
(c) depends nontrivially on all independent variables for � ≠ 0:

(4.4)u�(x, t) = U e−�x+�
2t,

(4.5)Δ[u] ∶= Δ(x, u, u(1),… , u(�)) = 0,

(4.6)Δ[U] = Δ(x,U, 0,… , 0) = 0.

(4.7)0 = Δ[u] =
∑
|I|≥1

AIuI = Aiui +
∑
i≤j

Aijuij +… ,

(4.8)L = L(u(1),… , u(k)),

(4.9)(−D)I
�L

�uI
= −Di

�L

�ui
+
∑
i≤j

DiDj

�L

�uij
+⋯ = 0,

(4.10)Δ[U�] = 0,

(4.11)U�
ij
= 0, ∀i ≠ j,

(4.12)U�
1
U�

2
⋯ U�

p
≠ 0.
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This question may be rephrased in terms of infinitesimal � by expanding U� in pow-
ers of � . We arrive at the system

Our objective is to find such infinitesimals � that this infinite-dimensional system is 
satisfied for some equation Δ = 0 . Consider the following cases:

4.1  Xα is a Symmetry of Each Equation Separately

We suppose that X� is a symmetry of the equation itself

as well as of the separation conditions

Since U is a solution of Δ[u] = 0 and uij = 0 , imposing these two symmetry condi-
tions satisfies (4.13) and (4.14). Indeed, assuming Δ is of maximal rank, (4.15) is 
equivalent to the existence of some smooth B’s such that

which obviously vanishes on solutions of Δ . If we apply X� to both sides of the last 
equation we get:

The RHS clearly vanishes on solutions (in particular, when u = U ). In similar ways, 
we see that both (4.13) and (4.14) are satisfied for all n ≥ 1.

More generally, suppose that

Since U is a solution of the joint system Δ[u] = uij = 0 , we see that imposing this 
joint symmetry condition satisfies (4.13) and (4.14).

For a contact infinitesimal � = �(x, u, u(1)) the solution to symmetry conditions 
(4.16) is

(4.13)X
n
�
Δ[u]||u=U = 0 n = 1, 2,… ,

(4.14)X
n
�
(uij)

||u=U = 0, n = 1, 2,… , ∀i ≠ j.

(4.15)X�Δ[u]
||Δ[u]=0= 0,

(4.16)X�(uij)
||uk�=0,∀k≠�= 0, ∀i ≠ j.

(4.17)X�Δ[u] = BIDIΔ[u],

(4.18)
X

2
�
Δ[u] = (X�B

I)DIΔ[u] + BIDI(X�Δ[u])

= (X�B
I)DIΔ[u] + BIDI(B

JDJΔ[u]),

(4.19)
X�Δ[u]

||Δ[u]=uk�=0= 0,

X�(uij)
||Δ[u]=uk�=0= 0, ∀i ≠ j.

(4.20)� = �u +

p∑
i=1

f i(xi, ui),
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where � is a constant, and the f’s are some functions. In other words, on additively 
separated solutions u, the infinitesimal itself should be additively separated.

If � = �(x, u) − ui �
i(x, u) is a point infinitesimal, then the associated point vector 

field is of the form

where the � ’s and � ’s are functions of independent variables.
In the multiplicative case (i.e. u → v = eu ), the required symmetry is instead of the 

form

Example 23 Let f (x) =
∑p

i=1
f i(xi) . If an equation Δ has a symmetry of the form

for some function f(x), then for each solution u, the function

is also a solution. If Δ admits constant U as a solution, then it also admits the multi-
plicatively separated function

as a solution for each � . Such equations include those of the form

For example, the degenerate equation for u = u(x, t)

has symmetry (4.23) for f = x − ct , and admits u = U as a solution if U ≠ 0 . From 
(4.23), we conclude that u(x, t) = U ex−ct is a solution.

4.2  Xα is a Symmetry of Only Δ

The previous class does not recover (4.2). In this case, X� is a symmetry of only Δ , and 
not uij = 0:

(4.21)X =

p∑
i=1

�i(xi) �i +

[
�u +

p∑
i=1

�i(xi)

]
�u,

(4.22)X =

p∑
i=1

�i(xi) �i + [�u ln u + u

p∑
i=1

�i(xi)] �u.

(4.23)X = u f (x) �u

(4.24)u�(x) = [e�X�u](x) = e� f (x)u(x)

(4.25)U�(x) = U e� f
1(x1) ⋯ e� f

p(xp)

(4.26)
Δ(x, fi ln u − fui∕u

||pi=1, fiiui∕u − fi(uii∕u − u2
i
∕u2)||pi=1, uij∕u − uiuj∕u

2||i≠j) = 0.

(4.27)Δ[u] = utt + 2cuxt + c2uxx − (ut + cux)Φ(x, t, (ut + cux)∕u) = 0.

(4.28)X�Δ[u]
||Δ[u]=0= 0.
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Since U is a solution to Δ , this condition implies (4.13). It remains to solve (4.14). 
Let us rewrite it as follows:

This is an infinite dimensional overdetermined nonlinear system, but it simplifies 
considerably in the case of polynomial �.

For example, using (4.2) as a model, let us seek a solution of the form

i.e. a point symmetry with affine coefficients. It can be verified that this actually 
solves (4.29) for any such constants, since Dij|u=U = �ij . The corresponding point 
symmetry vector field is

To see when nontriviality condition (4.12) is satisfied, we consider the first two 
orders of �:

Therefore, if Δ admits X as a symmetry, and if 
∑

i,j c
ijaiΠk≠jak (or a1 ⋯ ap ) is 

nonzero, then e�X�U is a nontrivial separated solution of Δ . [If cij = �ij�j , then ∑
i,j c

ijaiΠk≠jak = pΠia
i , and the previous class applies.]

Let us consider the special case of p = 2 and u = u(x, t) and find equations with the 
symmetry

which reduces to (4.2) for a = −2, b = 0, c = 1 . We have 
a1 = c, a2 = 0, c11 = c22 = 0, c12 = a, c21 = b . Since a1a2 = 0 , we require that 
0 ≠ c12(a1)2 + c21(a2)2 = ac2 in order for our equation to possess nontrivial (mul-
tiplicatively) separated solutions. Let us set a = 1 and b = 0 . We have the symmetry

for some c ≠ 0 . The seven differential invariants of the second order extended space 
(x, t, u, ux, ut, uxx, uxt, utt) are

(4.29)Dij(X
n
�
u)||u=U= 0, n ≥ 1, ∀i ≠ j.

(4.30)� = aixi + b + (cijxj + di)ui,

(4.31)X = −(cijxj + di) �i + (aixi + b) �u.

(4.32)

0 ≠ D1

(
�� +

1

2
�2X�� + O(�3)

)
⋯Dp

(
�� +

1

2
�2X�� + O(�3)

)|||u=U
= �p

(
a1 +

1

2
� ci1ai + O(�2)

)
⋯

(
ap +

1

2
� cipai + O(�2)

)

= �p

(
a1 ⋯ ap +

�

2

∑
i,j

cijaiΠk≠jak + O(�2)

)
.

(4.33)X = at �x + bx �t + cxu �u,

(4.34)X = t �x + cxu �u,
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The last four invariants vanish when u = U . Therefore, any differential equation of 
the form

where Ak(I) = Ak(I1,… , I7) are smooth functions, admits u = U as a solution. Since

we conclude that any equation of the form (4.36) admits separated function (4.37) as 
a solution. The heat equation (4.1) arises from the sub-case Δ[u] = I5 + 2cI4.

5  Lagrangians with Separation

5.1  Variational Symmetries

A generalized vector field given by (2.2) has a corresponding evolutionary vector field:

where �a is the characteristic of the symmetry group. The prolongation of X� in 
(5.1) is

The operator X� is a symmetry if and only if

is a symmetry.
Consider a variational problem given by the functional L ∶ Ck|Ω → ℝ defined by 

the formula

where L = L(x, u, �u,… , �k) is the Lagrangian of L  . The vector field (5.1) is a var-
iational symmetry of L if and only if

for some functions Mi[u] ≠ 0 , or

(4.35)

t, ln u − cx2∕2t, ux∕u − cx∕t, ut∕u + u2
x
∕(2cu2),

uxx∕u − u2
x
∕u2, uxt∕u − uxut∕u

2 + uxuxx∕cu
2 − u3

x
∕cu3,

utt∕u
2 − u2

t
∕u2 + 2uxuxt∕cu

2 − 2u2
x
ut∕cu

3 + u2
x
uxx∕c

2u3 − u4
x
∕c2u4.

(4.36)Δ[u] = A4(I)I4 + A5(I)I5 + A6(I)I6 + A7(I)I7 = 0,

(4.37)e�X�U = e
� c x−

1

2
�2 c t

U,

(5.1)X� = �a[u] �a; �a = �a[u] − ua
i
�i[u],

(5.2)X� = Dj1
…Dj�

�a[u] �a,j1…j�
.

(5.3)X = X� + �iDi

(5.4)L[u] = ∫Ω

L(x, u, �u,… , �ku)dx,

(5.5)X�(L) = DiM
i[u],
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If X�(L) = 0 the corresponding vector field is a Noether symmetry
A variational symmetry is also a symmetry of the corresponding Euler–Lagrange 

equations E�(L) = 0 , where the Euler operator is defined by:

However, symmetries of the Euler–Lagrange equations are not necessarily vari-
ational symmetries of the Lagrangian.

5.2  Vector Fields That Scale the Lagrangian

Let X be a vector field and consider the Lagrangian to some variational problem 
(5.4). Suppose that under X we have

for some real number k ≠ 0 . We refer to all X that have this effect as semi-symme-
tries. We will use the identity

where D⋆
𝛼
 is the adjoint of the Frechet-derivative with �

Then

Thus,

and all vector fields that scale Lagrangian L are symmetries of its Euler–Lagrange 
equations.

Many semi-symmetries are dilations.

Example 24 For the linear wave equation

there is a well defined variation problem

(5.6)X(L) + LDi(�
i) + LDi(�

i) = Di(M
i + �iL).

(5.7)Ea = (−1)�Dj1
…Dj�

�a,j1…j�
; ∀� = 1,… , k.

(5.8)X(L) + LDi�
i = X�(L) + Di(L�

i) = kL,

(5.9)E(X𝛼L) = X𝛼E(L) +D
⋆
𝛼
(E(L)),

(5.10)D� =
��

�ua
j1…jk

Dj1
…Djk

.

(5.11)X𝛼E(L) +D
⋆
𝛼
(E(L)) = E(X𝛼L + Di(L𝜉

i)) = E(kL) = kE(L).

(5.12)X�E(L)
||E(L)=0= 0,

(5.13)utt − uxx − uyy = 0,

(5.14)L[u] = ∫Ω

[u2
t
− u2

x
− u2

y
]dxdt.
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The dilation X1 = u �u is a semi-symmetry vector since

where X̃1 = X1 + ux �ux + ut �ut is the prolonged operator X1 . It is known that X1 is 
also a symmetry of the wave equation.

The dilation X2 = x �x + y �y + t �t is known to be a symmetry of the wave equa-
tion, and it is also a semi-symmetry:

Example 25 The minimal surface Eq. (3.64) has Lagrangian function

and its symmetry operator

is also a semi-symmetry since

5.3  Separation Lagrangians

Consider the Lagrangian L = L(x, t, u, ux, ut) . For any variational symmetry X� 
from (5.5) we have

where Mi = Mi(x, t, u, �u, �2u, �3u).
Now we will use symmetries from the classes (3.6) or (3.11), and (3.19) or 

(3.23) (3.23) to generate Lagrangians admitting those symmetries that would lead 
to additively or multiplicatively separated solution, respectively.

Example 26 Consider a special case of (3.23), and assume that the following opera-
tors are Noether symmetries of the variational problem with Lagrangian L, (and we 
will look for such Lagrangians)

for some constant a ∈ ℂ . Their first prolongations are:

(5.15)X̃1L + LDi(�
i) = X̃1(u

2
t
− u2

x
− u2

y
) = 2(u2

t
− u2

x
− u2

y
) = 2,

(5.16)
X̃2(L) + LDi�

i = X̃2(u
2
t
− u2

x
− u2

y
) + 3(u2

t
− u2

x
− u2

y
) = (−2 + 3)(u2

t
− u2

x
− u2

y
) = L.

(5.17)L =
√

1 + u2
x
+ u2

y
,

(5.18)X = x �x + y �y + u �u

(5.19)

X̃(L) + LDi�
i = X

(√
1 + u2

x
+ u2

y

)
+ 2

√
1 + u2

x
+ u2

y
= 2

√
1 + u2

x
+ u2

y
= 2L.

(5.20)X�(L) = Dx(M
1) + Dt(M

2),

(5.21)
X1 = x �x + au �u,

X2 = �x, X3 = �t,
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Applying (5.22) and (5.6) with Mi = 0 , we find:

Thus, L = L(u, ux, ut) . From the invariants of the first condition

we find:

where functions � are arbitrary.
Thus, the equations with any Lagrangians (5.25) have multiplicatively separated 

solutions of the form (see (3.23))

Example 27 Consider variational problems with the following Noether symmetries:

These operators are each their own prolongations. Thus, the Lagrangians:

Thus, the equations with Lagrangians (5.28) have additively separated solutions, 
including u(x, t) = X(x) + at , and u(x, t) = bx + T(t).

Example 28 The requirement that the operator

is a variational symmetry leads to the following Lagrangians:

with an arbitrary function �.
However, the requirement that the same operator (5.29) is a semi-symmetry 

would give rise to the Lagrangians

(5.22)
X̃1 = X1 + (a − 1)ux 𝜕ux + aut 𝜕ut ,

X̃2 = X2, X̃3 = X3.

(5.23)
(a − 1)uxLux + autLut + auLu + xLx + L = 0,

Lx = Lt = 0.

(5.24)Lu1∕a,
ux

u1−1∕a
,
ut

u
, a ≠ 1.

(5.25)
L = u−1∕a�

( ux

u1−1∕a
,
ut

u

)
a ≠ 1,

L = u−1�
(
ux,

ut

u

)
, a = 1,

(5.26)u(x, t) = xaT(t).

(5.27)X1 = �x, X2 = �t, X3 = �u.

(5.28)L = L(ux, ut).

(5.29)X = u �u

(5.30)L = �

(
x, t,

ux

ut
,
ux

u

)
,
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with arbitrary function � , and constant k. All equations with Lagrangians (5.29), or 
(5.31) will have solutions with multiplicatively separated variables.

6  Separation with Conditional Symmetry Operators

There are equations which have no symmetries but possess separated solutions. Indeed, 
the minimal surface-type equation

has no classical Lie point or contact symmetries, but has several additively separated 
solutions of the form u(x, t) = X(x) + T(t) . If we rewrite this equation in the form

it is clear that imposing separation condition uxt = 0 removes the main problematic 
term. On the other hand, the minimal surface equation itself

has a large symmetry group, but the additively separated solution

is not invariant with respect to any of its point symmetries. For these types of equa-
tions, operators of conditional symmetry (with respect to the side condition uxt = 0 ) 
play a more important role than symmetry vector fields in determining the existence 
of separated solutions.

Motivated by form (6.1), we consider equations for u = u(x1,… , xp) of the form

where uij� = �i �j ��u , the A’s and R’s are smooth functions, and � is a constant. [For 
multiplicative separation, replace u by ln u throughout]. Such equations can be sepa-
rated. Indeed, seeking a separated solution of the form u =

∑p

i=1
f i(xi) yields

(5.31)L = uk�
(
x, t,

ux

u
,
ut

u

)
,

(1 + u2
t
)uxx − (x + u2t + ux + ut)u

3
xx
uxt + (1 + u2

x
)utt = 0,

(6.1)
uxx

1 + u2
x

+
utt

1 + u2t
− uxt

(x + u2t + ux + ut)u
3
xx

(1 + u2
x
)(1 + u2t )

= 0,

(1 + u2
t
)uxx − 2uxutuxt + (1 + u2

x
)utt = 0

u(x, t) = ln
||||
cos x

cos t

||||

(6.2)
Δ[u] = 𝜆u +

p∑
i=1

Ri(xi, ui
i
, (ui

i
)(1),…) +

∑
i < j,

|𝛽| ≥ 0

Aij𝛽(x, u, u(1),…)uij𝛽 ,

(6.3)0 = Δ
[∑

f i
]
=

p∑
i=1

[
�f i(xi) + Ri(xi, f i

i
(xi), f i

ii
(xi)�ij,…)

]
.
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Taking partial derivatives of this expression shows that each summand is constant, 
or

where constants � i satisfy 
∑p

i=1
� i = 0 . This is a set of p decoupled, ordinary dif-

ferential equations for the f i(xi)’s, and, provided Ri is nonsingular with respect to 
the highest f i(xi) derivative (e.g. quasilinear), it admits local solutions. Therefore, 
sufficiently nondegenerate equations of the class (6.2) possess separated solutions.

Many well known equations of mathematical physics are of form (6.2), and 
this is common for those solved with separation of variables. The nonlinear heat 
equation and beam equation

are of this form for additive separation. The Schrödinger equation and the 
Klein–Gordon equation

are of this form for multiplicative separation (i.e. v = eu ). Geometric equations such 
as Aronsson’s equation and the equation for exponentially harmonic maps

are additive examples with Aij� ≠ 0 . The Monge-Ampére equation

is one such multiplicative (and additive) example. Indeed, letting v = eu and rear-
ranging gives

provided u ≠ ln[ax + b(y)] or c(x), where a is constant, and b and c are functions.
Let us derive (6.2) by supposing that equation Δ[u] = 0 is conditionally invari-

ant with respect to the operators

and the matching side conditions uij = 0, i ≠ j . That is, we suppose that

[Note: this is an alternative definition of conditional invariance. The typical approach 
uses just vector fields, not other differential operators. Also, the other definition 

(6.4)�f i(xi) + Ri(xi, f i
i
(xi), f i

ii
(xi)�ij,…) = � i, i = 1,… , p,

(6.5)ut = �x(k(x, ux)ux), utt = − �2
x
(E(x)uxx) + f (x)

(6.6)ivt = −vxx + V(x)v, vtt − c(x)2vxx + m(x)2v = 0

(6.7)
u2
x
uxx + 2uxuyuxy + u2

y
uyy = 0, (1 + u2

x
)uxx + 2uxuyuxy + (1 + u2

y
)uyy = 0

(6.8)vxxvyy − v2
xy
= 0

(6.9)
uxx

uxx + u2
x

+
uyy

u2
y

−
uxy(uxy + 2uxuy)

u2
y
(uxx + u2

x
)

= 0,

(6.10)Dij = DiDj, i ≠ j

(6.11)DijΔ[u]
||uk�=0= 0, i ≠ j, k ≠ �.
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allows further constraining u to solve Δ[u] = 0 , but in that case, DijΔ[u]|uk�=Δ=0 = 0 
would be trivially satisfied.] Let R[u] = Δ[u]|uk�=0 . Since

where the sum is over � ∶ |�| ≥ 0 , conditional invariance requirement (6.11) 
becomes

where ua⋅i = �a
i
u , and sums are taken over a, b ≥ 0 . If � is the highest order of 

derivative R depends on, then R does not depend on the � + 1 order derivatives, so 
coefficients of these terms must vanish, such as Ru�⋅iub⋅j

 for all b ≥ 0 . If we continue 
this process downward on the derivative order, we obtain that

where S(x, u) solves

So each term is zero, and S(x, u) = �u +
∑

S
i(xi) , the latter terms of which can be 

absorbed into Ri.
Now, let Ri[u] = Ri(xi, ui, (ui)(1),…) be an extension of Ri[u] away from uk� = 0 . 

Then

The Proposition 2.10 in [19] implies that

for some smooth coefficients Aij� , which shows that (6.2) arises precisely from con-
ditional symmetry operator invariance. [Note that the extensions Ri are well defined 
up to terms of the form Bij�(xi, ui, (ui)(1),…)uij�.]

Using this same classification procedure but with fewer conditional symmetry oper-
ators Dij , one can derive equations that have slightly weaker separability properties. For 
a multiplicative example, the multi-dimensional wave equation and the Schrödinger 
equation

can be partially separated as u = T(t)X(x1,… , xp) , but they do not always admit 
completely separated solutions of the form u(x, t) = T(t)X1(x1)⋯Xp(xp).

(6.12)DijΔ = Δij + ui�Δju�
+ uj�Δiu�

+ ui�uj�Δu�u�
+ uij�Δu�

,

(6.13)
0 = DijΔ[u]

||uk𝓁=0= Rij + u(a+1)⋅iRjua⋅i
+ u(a+1)⋅jRiua⋅j

+ u(a+1)⋅iu(b+1)⋅jRua⋅iub⋅j
,

(6.14)R[u] =

p∑
i=1

R
i(xi, ui, uii,…) + S(x, u),

(6.15)Sij + uiSju + ujSiu + uiujSuu = 0, i ≠ j.

(6.16)

(
Δ[u] − �u −

p∑
i=1

Ri[u]

)
|||uk�=0 = 0.

(6.17)Δ[u] = �u +

p∑
i=1

Ri[u] +
∑
|�|≥0

Aij�[u]uij� ,

(6.18)utt − c(x)2(u11 +⋯ + upp) = 0, iut = −Δu + V(x)u
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Further studies are needed to understand the role of conditional (non-classical) 
symmetry in relation to the existence of solutions in separated variables. It would 
be important to study the inverse problem: if the existence of solutions in separated 
variables imply some type of conditional or non-classical symmetry of the original 
system. Indeed, the Laplace-Beltrami equation (Δg(x) + Δh(y))u = 0 induced by the 
product metric gij(x)dxidxj + hij(y)dy

idyj with arbitrary smooth functions g(x) and 
h(y) is known to have both additive and multiplicative separated solutions but does 
not have required classical symmetries of the form (3.189) or (3.195).

7  Conclusions

We discussed the role of symmetry operators of a differential system in order to 
determine the existence of solutions in separated variables. We have shown that, 
under basic non-degeneracy assumptions, certain types of symmetry operators of 
a differential system not only provide an indication to whether or not the system 
has a solution in separated variables, but also partially determine the form of such 
solution.

For differential systems with two independent variables, we obtained the form 
of Lie point symmetry operators corresponding to separated solutions for the case 
when separated variables are any functions of independent variables (Theorems 
1–4).

We have also shown that, for many PDE’s of mathematical physics, all separated 
solutions are also invariant solutions of some symmetry subalgebras of the original 
system.

It would be important to study the inverse problem: if the existence of solutions 
in separated variables imply some type of symmetry of the original system.
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