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Abstract
Let Y be a random variable such that the moment generating function of Y exists 
in a neighborhood of the origin. The aim of this paper is to study probabilistic ver‑
sions of the degenerate Fubini polynomials and the degenerate Fubini polynomials 
of order r, namely the probabilisitc degenerate Fubini polynomials associated with Y 
and the probabilistic degenerate Fubini polynomials of order r associated with Y. We 
derive some properties, explicit expressions, certain identities and recurrence rela‑
tions for those polynomials. As special cases of Y, we treat the gamma random vari‑
able with parameters 𝛼, 𝛽 > 0 , the Poisson random variable with parameter 𝛼 > 0 , 
and the Bernoulli random variable with probability of success p.

Keywords  Probabilistic degenerate Fubini polynomials · Probabilistic degenerate 
Fubini polynomials of order r · Probabilistic degenerate Stirling numbers of the 
second kind

Mathematics Subject Classification  11B73 · 11B83

 *	 Taekyun Kim 
	 tkkim@kw.ac.kr

 *	 Dae San Kim 
	 dskim@sogang.ac.kr

 *	 Yuankui Ma 
	 mayuankui@xatu.edu.cn

	 Rongrong Xu 
	 xurongrong0716@163.com

1	 School of Science, Xi’an Technological University, Xi’an 710021, Shaanxi, China
2	 Department of Mathematics, Kwangwoon University, Seoul 01897, Republic of Korea
3	 Department of Mathematics, Sogang University, Seoul 121‑742, Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s44198-024-00210-3&domain=pdf


	 Journal of Nonlinear Mathematical Physics           (2024) 31:47 

1 3

   47   Page 2 of 18

1  Introduction

In recent years, degenerate versions, �-analogues and probabilistic versions of 
many special polynomials and numbers have been investigated by employing vari‑
ous methods such as generating functions, combinatorial methods, umbral cal‑
culus, p-adic analysis, differential equations, probability, special functions, ana‑
lytic number theory and operator theory (see [11–16, 18–21] and the references 
therein).

Let Y be a random variable satisfying the moment condition (see 20). The 
aim of this paper is to study probabilistic versions of the degenerate Fubini pol‑
ynomials and the degenerate Fubini polynomials of order r, namely the proba‑
bilisitc degenerate Fubini polynomials associated with Y and the probabilistic 
degenerate Fubini polynomials of order r associated with Y. We derive some 
properties, explicit expressions, certain identities and recurrence relations for 
those polynomials and numbers. In addition, we consider the special cases that 
Y is the gamma random variable with parameters 𝛼, 𝛽 > 0 , the Poisson random 
variable with parameter 𝛼(> 0) , and the Bernoulli random variable with prob‑
ability of success p.

The outline of this paper is as follows. In Sect.  1, we recall the degenerate 

exponentials, the degenerate Stirling numbers of the second kind 
{

n

k

}

�

 , the 

degenerate Bell polynomials, the degenerate Fubini polynomials and the degener‑
ate Fubini polynomials of order r. We remind the reader of Lah numbers and the 
partial Bell polynomials. Assume that Y is a random variable such that the 
moment generating function of Y,     E[etY ] =

∑∞

n=0

tn

n!
E[Yn], (�t� < r) , exists for 

some r > 0 . Let (Yj)j≥1 be a sequence of mutually independent copies of the ran‑
dom variable Y, and let Sk = Y1 + Y2 +⋯ + Yk, (k ≥ 1),   with   S0 = 0 . Then we 
recall the probabilistic degenerate Stirling numbers of the second kind associated 
with Y and the probabilistic degenerate Bell polynomials associated with Y, 
�Y
n,�
(x) . Also, we remind the reader of the gamma random variable with parame‑

ters 𝛼, 𝛽 > 0 . Section 2 is the main result of this paper. Let (Yj)j≥1, Sk, (k = 0, 1,…) 
be as in the above. Then we first define the probabilistic degenerate Fubini poly‑
nomials associated with the random variable Y, FY

n,�
(x) . We derive for FY

n,�
(x) an 

explicit expression in Theorem 1 and an expression as an infinite sum involving 
E[(Sk)n,�] in Theorem 2. In Theorem 3, when Y ∼ Γ(1, 1) , we find an expression 
for FY

n,�
(x) in terms of Lah numbers and Stirling numbers of the first kind. We 

obtain a representation of FY
n,�
(x) as an integral over (0,∞) of the integrand 

involving �Y
n,�
(x) in Theorem  4 and its generalization in Theorem  14. In Theo‑

rem 5, we express the probabilistic degenerate Fubini numbers associated with Y, 
FY
n,�

= FY
n,�
(1) , as a finite sum involving the partial Bell polynomials. Then we 

introduce the probabilistic degenerate Fubini polynomials of order r associated 
with Y and deduce an explicit expression for them in Theorem  6. We obtain a 
recurrence relation for FY

n,�
(x) in Theorem  7, and another one in Theorem  8 

together with its generalization in Theorem 15. In Theorem 9, the rth derivative 
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of FY
n,�
(x) is expressed in terms of F

(r+1,Y)

i,�
(x) . We get the identity 

1

1−x
FY
n,�

�

x

1−x

�

=
∑∞

i=0
E[(Si)n,�]x

i in Theorem  10 and its generalization in Theo‑
rem 13. In Theorem 11, when Y is the Poisson random variable with parameter � , 

we express FY
n,�
(x) in terms of the Fubini polynomials Fi(x) and 

{

n

i

}

�

 . In Theo‑

rem  12, when Y is the Poisson random variable with parameter � , we show 
1

1−x
FY
n,�

�

x

1−x

�

=
∑∞

k=0
�n,�(k�)x

k . Finally, we show in Theorem  16 that 
FY
n,�
(x) = Fn,�(xp) if Y is the Bernoulli random variable with probability of success 

p. For the rest of this section, we recall the facts that are needed throughout this 
paper.

For any � ∈ ℝ , the degenerate exponentials are defined by (see [6–21])

where

Note that

The Stirling numbers of the first kind are defined by (see [1–3, 5, 24])

where

Alternatively, they are given by (see [5–24])

The Lah numbers are defined by

where

(1)ex
�
(t) = (1 + �t)

x

� =

∞
∑

k=0

(x)k,�
tk

k!
, e�(t) = e1

�
(t),

(2)(x)0,� = 1, (x)n,.� = x(x − �)⋯
(

x − (n − 1)�
)

, (n ≥ 1).

lim
�→0

ex
�
(t) = ext.

(3)(x)n =

n
∑

k=0

S1(n, k)x
k, (n ≥ 0),

(x)0 = 1, (x)n = x(x − 1)⋯ (x − n + 1), (n ≥ 1).

(4)
1

k!

(

log(1 + t)
)k

=

∞
∑

n=k

S1(n, k)
tn

n!
.

(5)⟨x⟩n =

n
�

k=0

L(n, k)(x)k, (n ≥ 0),

⟨x⟩0 = 1, ⟨x⟩n = x(x + 1)⋯ (x + n − 1), (n ≥ 1).
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By (5), we easily get (see [5–24])

From (6), the generating function of the Lah numbers is given by

In [13], the degenerate Stirling numbers of the second kind are defined by

Alternatively, they are given by

It is well known that the degenerate Bell polynomials are defined by (see [12–14])

Thus, by (8) and (10), we get (see [12, 17, 21])

The degenerate Fubini polynomials are defined by (see [17–19, 27])

Thus, by (12), we get (see [4, 19, 21, 27])

From (13), we note that (see [18])

(6)L(n, k) =
n!

k!

(

n − 1

k − 1

)

, (n ≥ k ≥ 0).

(7)
1

k!

(

t

1 − t

)k

=

∞
∑

n=k

L(n, k)
tn

n!
.

(8)(x)n,� =

n
∑

k=0

{

n

k

}

�

(x)k, (n ≥ 0).

(9)
1

k!

(

e�(t) − 1
)k

=

∞
∑

n=k

{

n

k

}

�

tn

n!
.

(10)ex(e�(t)−1) =

∞
∑

n=0

�n,�(x)
tn

n!
.

(11)�n,�(x) =

n
∑

k=0

{

n

k

}

�

xk, (n ≥ 0).

(12)Fn,�(x) =

n
∑

k=0

{

n

k

}

�

k!xk, (n ≥ 0).

(13)
1

1 − x(e�(t) − 1)
=

∞
∑

n=0

Fn,�(x)
tn

n!
.

(14)
1

1 − x
Fn,�

(

x

1 − x

)

=

(

x
d

dx

)

n,�

1

1 − x
=

∞
∑

k=0

(k)n,�x
k.
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For r ∈ ℕ , the degenerate Fubini polynomials of order (see [8, 9, 16]) r are defined 
by

Thus, by (15), we get (see [8, 18, 19, 22, 23])

From (15), we have

where n, r are nonnegative integers.
For any integer k ≥ 0 , the partial Bell polynomials are given by (see [5])

where

Let Y be a random variable such that the moment generating function of Y

Assume that (Yj)j≥1 is a sequence of mutually independent copies of Y and 
Sk = Y1 + Y2 +⋯ + Yk, (k ≥ 1) with S0 = 0.

The probabilistic degenerate Stirling numbers of the second kind associated with 
random variable Y are defined by (see [15, 22])

By binomial inversion, the Eq. (21) is equivalent to (see [15])

(15)
(

1

1 − y(e�(t) − 1)

)r

=

∞
∑

n=0

F
(r)

n,�
(y)

tn

n!
.

(16)F
(r)

n,�
(y) =

n
∑

k=0

(

k + r − 1

k

)

yk
{

n

k

}

�

k!.

(17)

(

1

1 − x

)r+1

F
(r+1)

n,�

(

x

1 − x

)

=

(

x
d

dx

)

n,�

(

1

1 − x

)r+1

=

∞
∑

k=0

(

k + r

r

)

(k)n,�x
k,

(18)1

k!

( ∞
∑

i=1

xi
ti

i!

)k

=

∞
∑

n=k

Bn,k(x1, x2,… , xn−k+1)
tn

n!
,

(19)

B
n,k(x1, x2,… , x

n−k+1)

=
∑

l1 + l2 +⋯ + l
n−k+1 = k

l1 + 2l2 +⋯ + (n − k + 1)l
n−k+1 = n

n!

l1l2!⋯ l
n−k+1!

(

x1

1!

)l1
(

x2

2!

)l2

⋯

(

x
n−k+1

(n − k + 1)!

)l
n−k+1

.

(20)E[etY ] =

∞
∑

n=0

E[Yn]
tn

n!
, (|t| < r) exists for some r>0.

(21)
{

n

k

}

Y ,�

=
1

k!

k
∑

j=0

(

k

j

)

(−1)k−jE[(Sj)n,�], (n ≥ k ≥ 0).
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From (21), we note that (see [15])

In view of (11), the probabilistic degenerate Bell polynomials associated with Y are 
defined by (see [15, 20])

When Y = 1 , we have �Y
n,�
(x) = �n,�(x).

By (24), we get (see [15])

We recall that Y is the gamma random variable with parameter 𝛼, 𝛽 > 0 if probabil‑
ity density function of Y is given by (see [3, 25–28])

which is denoted by Y ∼ Γ(�, �).
Finally, if Y is the Poisson random variable with parameter 𝛼(> 0) , then the 

moment generating function is given by:

2 � Probabilistic Degenerate Fubini Polynomials Associated 
with Random Variables

Let (Yk)k≥1 be a sequence of mutually independent copies of random variable Y, 
and let

(22)E[(Sk)n,�] =

k
∑

j=0

(

k

j

)

j!

{

n

jk

}

Y ,�

.

(23)
1

k!
(E[eY

�
(t)] − 1)k =

∞
∑

n=k

{

n

k

}

Y ,�

tn

n!
, (k ≥ 0).

(24)�Y
n,�
(x) =

n
∑

k=0

{

n

k

}

Y ,�

xk, (n ≥ 0).

(25)ex(E[e
Y
�
(t)]−1 =

∞
∑

n=0

�Y
n,�
(x)

tn

n!
.

f (x) =

{

𝛽

Γ(𝛼)
e−𝛽x(𝛽x)𝛼−1, if x ≥ 0,

0, ifx < 0,

E[etY ] =

∞
∑

n=0

etn
�ne−�

n!
= e�(e

t−1).

S0 = 0, Sk = Y1 + Y2 +⋯ + Yk, (k ∈ ℕ).
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Now, we consider the probabilistic degenerate Fubini polynomials associated with 
random variable Y which are given by

For Y = 1 , E[Y] = 1 and we have FY
n,�
(x) = Fn,�(x), (n ≥ 0) . When x = 1 , 

FY
n,�

= FY
n,�
(1) are called the probabilistic degenerate Fubini numbers associated 

with random variable Y.
From (26) and (23), we note that

Therefore, by comparing the coefficients on both sides of (27), we obtain the follow‑
ing theorem.

Theorem 1  For n ≥ 0 , we have

By (26), we get

Therefore, by (28), we obtain the following theorem.

Theorem 2  For n ≥ 0 , we have

(26)
1

1 − x
(

E[eY
�
(t)] − 1

) =

∞
∑

n=0

FY
n,�
(x)

tn

n!
.

(27)

∞
∑

n=0

FY
n,�
(x)

tn

n!
=

∞
∑

k=0

xk(E[eY
�
(t)] − 1)k =

∞
∑

k=0

xkk!
1

k!
(E[eY

�
(t)] − 1)k

=

∞
∑

k=0

xkk!

∞
∑

n=k

{

n

k

}

Y ,�

tn

n!
=

∞
∑

n=0

n
∑

k=0

xkk!

{

n

k

}

Y ,�

tn

n!
.

FY
n,�
(x) =

n
∑

k=0

{

n

k

}

Y ,�

k!xk.

(28)

∞
∑

n=0

FY
n,�
(x)

tn

n!
=

1

1 − x(E[eY
�
(t)] − 1)

=
1

1 + x − xE[eY
�
(t)]

=
1

1 + x

1

1 −
x

1+x
E[eY

�
(t)]

=
1

1 + x

∞
∑

k=0

(

x

1 + x

)k
(

E[eY
�
(t)]

)k

=

∞
∑

n=0

1

1 + x

∞
∑

k=0

(

x

1 + x

)k

E
[

(Y1 + Y2 +⋯ + Yk)n,�
] tn

n!

=

∞
∑

n=0

1

1 + x

∞
∑

k=0

(

x

1 + x

)k

E[(Sk)n,�]
tn

n!
.
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In particular, for Y = 1 , we have

Let Y ∼ Γ(1, 1) . Then, by using (1), (4) and (7), we have

where S1(n, l) are the Stirling numbers of the first kind. Here we should observe that, 
for all t with |t| small, we have

since | log(1+x)
x

| is bounded on (0,∞) . Therefore, by comparing the coefficients on 
both sides of (29), we obtain the following theorem.

Theorem 3  Let Y ∼ Γ(1, 1) . Then we have

Now, we observe from (24) and Theorem 1 that

FY
n,�
(x) =

1

1 + x

∞
∑

k=0

(

x

1 + x

)k

E[(Sk)n,�].

FY
n,�
(x) =

1

1 + x

∞
∑

k=0

(

x

1 + x

)k

(k)n,�.

(29)

∞
∑

n=0

FY
n,�
(x)

tn

n!
=

1

1 − x(E[eY
�
(t)] − 1)

=

∞
∑

k=0

xk
(

E[eY
�
(t)] − 1

)k

=

∞
∑

k=0

xk
(

∫
∞

0

e
y

�
(t)e−ydy − 1

)k

=

∞
∑

k=0

xk
(

∫
∞

0

e
y(

1

�
log(1+�t)−1)

dy − 1

)k

=

∞
∑

k=0

k!xk
1

k!

( 1

�
log(1 + �t)

1 −
1

�
log(1 + �t)

)k

=

∞
∑

k=0

k!xk
∞
∑

l=k

L(l, k)
1

l!

(

1

�
log(1 + �t)

)l

=

∞
∑

l=0

l
∑

k=0

k!xkL(l, k)

∞
∑

n=l

�n−lS1(n, l)
tn

n!

=

∞
∑

n=0

n
∑

l=0

l
∑

k=0

k!xkL(l, k)�n−lS1(n, l)
tn

n!
,

|

|

|

1

𝜆
log(1 + 𝜆t)

|

|

|

< 1,

FY
n,�
(x) =

n
∑

l=0

l
∑

k=0

k!�n−lL(l, k)S1(n, l)x
k, (n ≥ 0).
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Thus, from (30), we obtain the following theorem.

Theorem 4  For n ≥ 0 , we have

From (23) and (18), we note that

Thus, by (31), we get

Hence

By (30) and (33), we get

Therefore, by (34), we obtain the following theorem.

Theorem 5  For n ≥ 0 , we have

(30)

�
∞

0

�Y
n,�
(xy)e−ydy =

n
∑

k=0

{

n

k

}

Y ,�

xk �
∞

0

yke−ydy =

n
∑

k=0

{

n

k

}

Y ,�

xkΓ(k + 1)

=

n
∑

k=0

{

n

k

}

Y ,�

xkk! = FY
n,�
(x), (n ≥ 0).

∫
∞

0

�Y
n,�
(xy)e−ydy = FY

n,�
(x).

(31)

∞
∑

n=k

{

n

k

}

Y ,�

tn

n!
=
1

k!
(E[eY

�
(t)] − 1)k =

1

k!
(

∞
∑

i=1

E[(Y)i,�]
ti

i!
)k

=

∞
∑

n=k

Bn,k(E[(Y)1,�],E[(Y)2,�],⋯ ,E[(Y)n−k+1,�])
tn

n!
.

(32)
{

n

k

}

Y ,�

= Bn,k(E[(Y)1,�],E[(Y)2,�],⋯ ,E[(Y)n−k+1,�]), (n ≥ k ≥ 0).

(33)

�Y
n,�
(y) =

n
∑

k=0

{

n

k

}

Y ,�

yk =

n
∑

k=0

Bn,k(E[(Y)1,�],E[(Y)2,�],⋯ ,E[(Y)n−k+1,�])y
k
.

(34)

FY
n,�

=

n
∑

k=0

Bn,k

(

E[(Y)1,�],E[(Y)2,�],⋯ ,E[(Y)n−k+1,�]
)

�
∞

0

yke−ydy

=

n
∑

k=0

k!Bn,k

(

E[(Y)1,�],E[(Y)2,�],⋯ ,E[(Y)n−k+1,�]
)

, (n ≥ 0).
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For r ∈ ℕ , the probabilistic degenerate Fubini polynomials of order r associated 
with random variable Y are defined by

When Y = 1 , we have F(r,Y)

n,�
(x) = F

(r)

n,�
(x), (n ≥ 0) , (see (13)).

From (23) and (35), we note that

Therefore, by (35) and (36), we obtain the following theorem.

Theorem 6  For n ≥ 0 , we have

By (26) and using the Cauchy product of two power series, we get

Therefore, by comparing the coefficients on both sides of (37), we obtain the follow‑
ing theorem.

Theorem 7  For n ≥ 1 , we have

FY
n,�

=

n
∑

k=0

k!Bn,k

(

E[(Y)1,�],E[(Y)2,�],⋯ ,E[(Y)n−k+1,�]
)

.

(35)

(

1

1 − x(E[eY
�
(t)] − 1)

)r

=

∞
∑

n=0

F
(r,Y)

n,�
(x)

tn

n!
.

(36)

(

1

1 − x(E[eY
�
(t)] − 1)

)r

=

∞
∑

i=0

(

−r

i

)

(−1)ixi(E[eY
�
(t)] − 1)i =

∞
∑

i=0

(

r + i − 1

i

)

i!xi
1

i!
(E[eY

�
(t)] − 1)i

=

∞
∑

i=0

(

r + i − 1

i

)

i!xi
∞
∑

n=i

{

n

i

}

Y ,�

t
n

n!
=

∞
∑

n=0

n
∑

i=0

(

r + i − 1

i

)

i!xi

{

n

i

}

Y ,�

t
n

n!
.

F
(r,Y)

n,�
(x) =

n
∑

i=0

(

r + i − 1

i

)

i!

{

n

i

}

Y ,�

xi.

(37)

∞
∑

n=1

FY
n,�
(x)

tn

n!
=

1

1 − x(E[eY
�
(t)] − 1)

− 1 =
x(E[eY

�
(t)] − 1)

1 − x(E[eY
�
(t)] − 1)

=
xE[eY

�
(t)]

1 − x(E[eY
�
(t)] − 1)

−
x

1 − x(E[eY
�
(t)] − 1)

= x

∞
∑

k=0

E[(Y)k,�]
tk

k!

∞
∑

l=0

FY
l,�
(x)

tl

l!
− x
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Here and elsewhere, all differentiations of power series are done term by term. 
From (26), we note that

Therefore, by comparing the coefficients on both sides of (29), we obtain the follow‑
ing theorem.

Theorem 8  For n ≥ 0 , we have

Now, we observe from (35) that

Therefore, by (39), we obtain the following theorem.

Theorem 9  For r, n ≥ 0 , we have
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n,�
(x) = x

n
∑
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(

n

k

)
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Y
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∞
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�
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From (22) and (26), we note that

Therefore, by comparing the coefficients on both sides of (40), we obtain the follow‑
ing theorem.

Theorem 10  For n ≥ 0 , we have

Taking x = 1

2
 , we get

Let Y be the Poisson random variable with parameter 𝛼(> 0) . Then we have

From (41), (26) and (9), we have

dr

dxr
FY
n,�
(x) = r!

n
∑

i=0

F
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i,�
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(
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i
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.
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�
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∞
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(
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�
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=
1

1 − xE[eY
�
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=
1
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1
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x
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(
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�
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)

=
1

1 − x

∞
∑

n=0

FY
n,�

(

x
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)
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.

1
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x
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)
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(

1

2
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= 2FY
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, (n ≥ 0).
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�
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where Fi(x) are the Fubini polynomials given by 1

1−x(et−1)
=
∑∞

i=0
Fi(x)

ti

i!
 . Therefore, 

by (42), we obtain the following theorem.

Theorem 11  Let Y be the Poisson random variable with parameter 𝛼(> 0) . Then we 
have

Let Y be the Poisson random variable with parameter 𝛼 > 0 . Then, by (41) and 
(10), we have

and

Thus, by (43) and (44), we get

From Theorem 10 and (45), we have

Therefore, by (46), we obtain the following theorem.

Theorem  12  Let Y be the Poisson random variable with parameter 𝛼(> 0) . For 
n ≥ 0 , we have

By using Theorem 6 and (22), we note that

FY
n,�
(x) =

n
∑

i=0

Fi(x)

{

n

i

}

�

�i
, (n ≥ 0).

(43)
(

E[eY
�
(t)]

)k

= ek�(e�(t)−1) =

∞
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.
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�
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.

(45)E
[

(Sk)n,�
]
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]
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(

x

1 − x
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.

∞
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E
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]

xk =
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1 − x
FY
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(

x

1 − x

)
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Therefore, by (47), we obtain the following theorem.

Theorem 13  For n ≥ 0 , we have

When Y = 1 , we have

Now, we observe from (24), (16) and Theorem 6 that

Therefore, by (48), we obtain the following theorem.

Theorem 14  For n ≥ 0 and r ≥ 1 , we have

(47)
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From (35), (25) and Theorem 14, we have

By (49), we get

where r is a positive integer.
The proof of Theorem 15 is similar to that of Theorem 8. So we omit its proof.

Theorem 15  For n ≥ 0 , we have

Let Y be the Bernoulli random variable with probability of success p. Then we 
have

By (26), (50) and (13), we get

Therefore, by comparing the coefficients on both sides of (51), we obtain the follow‑
ing theorem.

Theorem 16  Let Y be the Bernoulli random variable with probability of success p. 
For n ≥ 0 , we have
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�
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∞
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=

1

1 − x(E[eY
�
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∞
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3 � Conclusion

In this paper, we studied by using generating functions the probabilistic degener‑
ate Fubini polynomials associated with Y and the probabilistic degenerate Fubini 
polynomials of order r associated with Y, as probabilistic versions of the degener‑
ate Fubini polynomials and the degenerate Fubini polynomials of order r, respec‑
tively. Here Y is a random variable such that the moment generating function of Y 
exists in a neighborhood of the origin. In more detail, we derived several explicit 
expressions of FY

n,�
(x) (see Theorems 1, 2, 4) and those of Fr,Y

n,�
(x) (see Theorems 6, 

14). We obtained a recurrence relations for FY
n,�
(x) (see Theorem 7), and another one 

(see Theorem 8) together with its generalization (see Theorem 15). We expressed 
the rth derivative of FY

n,�
(x) in terms of F(r+1,Y)

i,�
(x) (see Theorem 9). We showed the 

identity 1

1−x
FY
n,�

�

x

1−x

�

=
∑∞

i=0
E[(Si)n,�]x

i (see Theorem  10) and its generalization 
(see Theorem 13). We deduced an explicit expression for FY

n,�
(x) when Y ∼ Γ(1, 1) 

(see Theorem 3) and also that when Y is the Poisson random variable with param‑
eter � (see Theorem  11). We proved that 1

1−x
FY
n,�

�

x

1−x

�

=
∑∞

k=0
�n,�(k�)x

k when Y 
is the Poisson random variable with parameter � (see Theorem  12). We showed 
FY
n,�
(x) = Fn,�(xp) when Y be the Bernoulli random variable with probability of suc‑

cess p (see Theorem 16).
As one of our future projects, we would like to continue to study degenerate ver‑

sions, �-analogues and probabilistic versions of many special polynomials and num‑
bers and to find their applications to physics, science and engineering as well as to 
mathematics.
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