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Abstract
This paper is devoted to the stability and decay estimates of solutions to the two-
dimensional magneto-micropolar fluid equations with partial dissipation. Firstly, 
focus on the 2D magneto-micropolar equation with only velocity dissipation and 
partial magnetic diffusion, we obtain the global existence of solutions with small 
initial in Hs(ℝ2) (s > 1) , and by fully exploiting the special structure of the system 
and using the Fourier splitting methods, we establish the large time decay rates of 
solutions. Secondly, when the magnetic field has partial dissipation, we show the 
global existence of solutions with small initial data in Ḃ0

2,1
(ℝ2) . In addition, we 

explore the decay rates of these global solutions are correspondingly established in 
Ḃ
m

2,1
(ℝ2) with 0 ≤ m ≤ s , when the initial data belongs to the negative Sobolev space 

Ḣ
−l(ℝ2) (for each 0 ≤ l < 1).

Keywords 2D magneto-micropolar equations · Partial dissipation · Large time 
behavior

Mathematics Subject Classification 35Q35 · 35B40 · 76D03

1 Introduction

The magneto-micropolar equations were introduced in [1] to describe the motion 
of an incompressible, electrically conducting micropolar fluids in the presence 
of an arbitrary magnetic field. It belongs to a class of fluids with nonsymmet-
ric stress tensor and includes, as special cases, the classical fluids modeled by 
the Navier-Stokes equation (see, e.g., [5, 31, 39]), magnetohydrodynamic (MHD) 
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equations (see, e.g., [26]) and micropolar equations (see., e.g., [15, 16]). The 3D 
incompressible magneto-micropolar fluid equations can be written as:

where x = (x1, x2, x3) ∈ ℝ
3 and t ≥ 0 , u(x, t),�(x, t), b(x, t) and �(x, t) denote the 

velocity of the fluid, microrotational velocity, the magnetic field and the hydrostatic 
pressure, respectively, �,� and 1

�
 are, respectively, kinematic viscosity, vortex vis-

cosity and magnetic Reynolds number. � and � are angular viscosities, and this is an 
isotropic system. The 3D magneto-micropolar equations reduce to the 2D micropo-
lar equations when

More explicitly, the 2D incompressible magneto-micropolar fluid equations can be 
written as

where we have written u = (u1, u2) , b = (b1, b2) and � for �3 for notational brevity. It 
is worth noting that, in the 2D case,

is a scalar function representing the vorticity, and ∇ × � = (�2�,−�1�).
The magneto-micropolar equations play an important role in engineering and 

physics and have attracted considerable attention from the community of math-
ematical fluids (see, e.g., [20, 25, 28, 29]). When (2) has full dissipation (namely, 
� , � , � , 𝜈 > 0 ), the global existence and uniqueness of solutions could be obtained 
easily (see, e.g., [20, 28]). However, for the inviscid case (namely, (2) with 𝜇 > 0 , 
𝜒 > 0 , � = � = 0 and Δu replaced by u), the global regularity problem is still a 
challenging open problem. Therefore, it is natural to study the intermediate cases, 
namely (2) with partial dissipation.

This paper aims at a system of the 2D magneto-micropolar equations that is 
closely related to (2),

(1)

⎧
⎪⎪⎨⎪⎪⎩

�tu + u ⋅ ∇u = (� + �)Δu − ∇� + b ⋅ ∇b + 2�∇ × �,

�t� + u ⋅ ∇� − �∇∇ ⋅ � + 4�� = �Δ� + 2�∇ × u,

�tb + u ⋅ ∇b = �Δb + b ⋅ ∇u,

∇ ⋅ u = 0, ∇ ⋅ b = 0,

u(x, 0) = u0(x),�(x, 0) = �0(x), b(x, 0) = b0(x),

u = (u1(x1, x2, t), u2(x1, x2, t), 0), � = �(x1, x2, t),

b = (b1(x1, x2, t), b2(x1, x2, t), 0), � = (0, 0,�3(x1, x2, t)).

(2)

⎧⎪⎪⎨⎪⎪⎩

�tu + u ⋅ ∇u = (� + �)Δu − ∇� + b ⋅ ∇b + 2�∇ × �,

�t� + u ⋅ ∇� + 4�� = �Δ� + 2�∇ × u,

�tb + u ⋅ ∇b = �Δb + b ⋅ ∇u,

∇ ⋅ u = ∇ ⋅ b = 0,

u(x, 0) = u0(x),�(x, 0) = �0(x), b(x, 0) = b0(x),

Ω ≡ ∇ × u = �1u2 − �2u1
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Physically, the partial dissipation assumption is natural in the study of geophysical 
fluids. It turns out that, in certain regimes and under suitable scaling, certain dissipa-
tion can become small and be ignored. Anisotropic magnetic diffusion also arises in 
the modeling of reconnecting plasmas. When the resistivity of electrically conduct-
ing fluids such as certain plasmas and liquid metal is anisotropic and only in the 
mixed directions, the mixed magnetic diffusion may be relevant. In addition, math-
ematically, (3) allows us to explore the smoothing effect and the effect on large time 
behavior of the anisotropic magnetic diffusion. When the b with partial dissipation 
and zero angular viscosity, the global regularity problem for (3) can be quite dif-
ficult. However, many important progresses have recently been made on this direc-
tion (see, e.g., [6–14, 17, 23, 30, 36, 38, 42]). In [17, 23, 30], the global regularity 
of the 2D magneto-micropolar equations with various partial dissipation cases was 
obtained. Wang, Xu and Liu in [41] proved the uniqueness of global strong solu-
tion for the magneto-micropolar equations with zero angular viscosity in a smooth 
bounded domain. Yamazaki [43] obtained the global regularity of the Cauchy prob-
lem for the magneto-micropolar equations with zero angular viscosity

The magneto-micropolar equations share similarities with the Navier-Stokes equa-
tions, but they contain much richer structures than Navier–Stokes. It is well-known 
that the L2 decay problem of weak solutions to the 3D Navier–Stokes equations, i.e., 
(1) with � = 0 , b = 0 and � = 0 , was proposed by the celebrated work of Leray [19]. 
By introducing the elegant method of Fourier splitting, the algebraic decay rate for 
weak solutions was first obtained by Schonbek [33]. Later, the result in [33] is sharp-
ened and extended in [34], see also [35]. Recently, Niu and Shang [24] proved the L2
-decay estimates of weak solutions, and also proved the optimal decay rates of global 
solutions in Ḣs(ℝ3)(s > 3

2
 ) and in Ḃm

2,1
(ℝ3) with 0 ≤ m ≤

1

2
 . Shang and Gu [37] also 

proved the global existence of classical solutions for (3). Li [21] proved the L2-decay 
estimates for global solutions of (8) and their derivate with initial data in L1(ℝ2) . In 
addition, Li [21] also shown the global stability of these solutions in Hs(ℝ2)(s > 1) 
and the decay rates of global solutions and their higher derivates.

Motivated by the results of the magneto-micropolar equations [43] and the 
related fluid models [11, 18]. In this paper, the first theorem states that system (3) 
has a unique golbal solution when the initial data (u0,�0, b0) is sufficiently small in 
Hs(ℝ2) , and obtain the upper bounds of time decay rates of the global solution to (3) 
in L2(ℝ2) , as stated in the following theorem.

Theorem  1 Let 𝜇 > 0 , 𝜒 > 0 , 𝜈 > 0 and 𝜅 > 0 . Assume that (u0,�0, b0) ∈ Hs(ℝ2) 
with s > 0 and ∇ ⋅ u0 = ∇ ⋅ b0 = 0 . Then the following two statements hold:

(3)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�tu + u ⋅ ∇u = (� + �)Δu − ∇� + b ⋅ ∇b + 2�∇ × �,

�t� + u ⋅ ∇� + 4�� = 2�∇ × u,

�tb1 + u ⋅ ∇b1 = ��22b1 + b ⋅ ∇u1,

�tb2 + u ⋅ ∇b2 = ��11b2 + b ⋅ ∇u2,

∇ ⋅ u = ∇ ⋅ b = 0,

u(x, 0) = u0(x),�(x, 0) = �0(x), b(x, 0) = b0(x).
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(I) Let s > 1 , then there exists a positive constant �0 , such that for all 0 < 𝜖 < 𝜖0 , 
if

then system (3) has a unique global solution (u,�, b) satisfying, for any t > 0,

where C > 0 is a constant independent of t.

(II) suppose that (u0,�0, b0) ∈ L1(ℝ2) , then the global solution (u,�, b) has the 
following upper decay rates:

Moreover, when 𝜇 <

√
3𝜒 , then the global solution (u,�, b) of the system (3) has the 

following upper decay rates

Finally, we consider the 2D magneto-micropolar equations with partial dissipa-
tion for the magnetic field, which can be written as

Motivated by the [21, 24], we establish the global existence results to system (8) in 
Besov spaces Bs

2,1
(ℝ2) . Furthermore, we study the large time decay rates of these 

global solutions in the Besove spaces Bs
2,1
(ℝ2) , as stated in the following theorem.

Theorem 2 Let 𝜇 > 0 , 𝜒 > 0 , 𝜈 > 0 and 𝜅 > 0 . Assume that (u0,�0, b0) ∈ Bs
2,1
(ℝ2) 

with s > 0 and ∇ ⋅ u0 = ∇ ⋅ b0 = 0 . Then the following two statements hold:

(I) Let s ≥ 1 , then there exists a positive constant �0 , such that for all 0 < 𝜖 < 𝜖0 , 
if

then system (8) has a unique global solution (u,�, b) satisfying, for any t > 0,

(4)‖u0‖2Hs(ℝ2)
+ ‖𝜔0‖2Hs(ℝ2)

+ ‖b0‖2Hs(ℝ2)
< 𝜖,

(5)
‖u(t)‖2

Hs(ℝ2)
+ ‖�(t)‖2

Hs(ℝ2)
+ ‖b(t)‖2

Hs(ℝ2)

+
�

t

0

(‖∇u(�)‖2
Hs(ℝ2)

+ ‖�(�)‖2
Hs(ℝ2)

+ ‖∇b(�)‖2
Hs(ℝ2)

)d� ≤ C�,

(6)‖u(t)‖L2 + ‖�(t)‖L2 + ‖b(t)‖L2 ≤ C(1 + t)
−

1

2 .

(7)‖∇u(t)‖L2 + ‖�(t)‖L2 + ‖∇b(t)‖L2 ≤ C(1 + t)
−

1

2 .

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�tu + u ⋅ ∇u = (� + �)Δu − ∇� + b ⋅ ∇b + 2�∇ × �,

�t� + u ⋅ ∇� + 4�� = �Δ� + 2�∇ × u,

�tb1 + u ⋅ ∇b1 = ��22b1 + b ⋅ ∇u1,

�tb2 + u ⋅ ∇b2 = ��11b2 + b ⋅ ∇u2,

∇ ⋅ u = ∇ ⋅ b = 0,

u(x, 0) = u0(x),�(x, 0) = �0(x), b(x, 0) = b0(x).

(9)‖u0‖2Ḃ0
2,1
(ℝ2)

+ ‖𝜔0‖2Ḃ0
2,1
(ℝ2)

+ ‖b0‖2Ḃ0
2,1
(ℝ2)

< 𝜖,
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where C > 0 is a constant independent of t.

(II) Let s ≥ 1 , suppose that (u0,𝜔0, b0) ∈ Ḣ−l(ℝ2) with 0 ≤ l < 1 . Then for all real 
numbers m with 0 ≤ m ≤ s , the global solution (u,�, b) established in (I) satisfies 
the following decay estimates:

Remark 1 

 (i) S i n c e  Lp(ℝ2) ↪ Ḣ−l(ℝ2)  w h e n  l ∈ [0, 1)  a n d  p ∈ (1, 2] ,  a n d 
Lp(ℝ2) ↪ Ḃ−l

2,∞
(ℝ2) when l ∈ (0, 1] and p ∈ [1, 2) , thus Theorem 2 also hold 

for (u0,�0, b0) ∈ Lp(ℝ2) with p ∈ [1, 2].
 (ii) Because  of  the  divergence f ree  condi t ion ∇ ⋅ b = 0  ,  then 

‖∇b‖L2(ℝ2) = ‖∇ × b‖L2(ℝ2) , thus for the full dissipation 2D magneto-micropo-
lar equations, we also have the same results as Theorem 1 and Theorem 2.

Remark 2 

 (i) Compared to the classical magneto-micropolar equations (1), the full Lapla-
cian operator is replaced by partial magnetic diffusion in systems (3) and (8). 
Theorem 1 and Theorem 2 indicate that the mixed partial magnetic diffusion 
has the same effect as the full Laplacian in deriving the large time behavior, 
in the sense that the decay rates in Theorem 1 and Theorem 2 coincide with 
the solutions of system (1).

 (ii) In Theorem 2, by assuming the initial data small in the critical Besov space 
Ḃ0
2,1

 , we can establish the global well-posedness to (8). However, due to the 
lack of micro-rotational velocity dissipation and the complex structure of the 
magneto-micropolar equations, it appears difficult to show the global well-
posedness in critical Besov space to the solutions of (3).

To prove Theorem 2, we focus on the uniform bounds of ‖(u,�, b)‖Bs
2,1

 . As prepa-
ration, we firstly show the global existence of solutions with small data in Ḃ0

2,1
(ℝ2) , 

then used the ‖(u(t),𝜔(t), b(t))‖Ḃ0
2,1

≤ C𝜖 , to obtain (10). The rest of this paper is 
divided into four sections. Sections 2 and 3 state the proofs of Theorem 1 and Theo-
rem  2, respectively. An appendix containing the Littlewood-Paley decomposition, 
the definition of Besov spaces, and several useful calculus inequalities are also given 
for the convenience of the readers. To simplify the notation, we will write �1 for �x1 , 
�2 for �x2 , ∫ f  for ∫

ℝ2 fdx , ‖f‖Lp for ‖f‖Lp(ℝ2) , ‖f‖Ḣs and ‖f‖Hs for ‖f‖Ḣs(ℝ2) and ‖f‖Hs(ℝ2) 

(10)
‖u(t)‖Bs

2,1
(ℝ2) + ‖�(t)‖Bs

2,1
(ℝ2) + ‖b(t)‖Bs

2,1
(ℝ2) + ‖∇2u(�)‖L1t (Bs

2,1
(ℝ2))

+ ‖∇2
�(�)‖L1t (B1

2,1
(ℝ2)) + ‖∇2b(�)‖L1t (Bs

2,1
(ℝ2)) ≤ C,

(11)‖u(t)‖Ḃm
2,1
(ℝ2) + ‖𝜔(t)‖Ḃm

2,1
(ℝ2) + ‖b(t)‖Ḃm

2,1
(ℝ2) ≤ C(1 + t)

−
m

2
−

l

2 .
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respectively, ‖f‖Ḃs
p,r

 and ‖f‖Bs
p,r

 for ‖f‖Ḃs
p,r
(ℝ2) and ‖f‖Bs

p,r
(ℝ2) respectively, and Lqt (Ḃs

p,r
) 

and L̃qt (Ḃs
p,r
) for Lqt (Ḃs

p,r
(ℝ2)) and L̃qt (Ḃs

p,r
(ℝ2)) respectively.

2  The Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We first prove the global well-pos-
edness part (I) of Theorem 1. As preparation, we give the following global a priori 
estimates.

Proposition 3 Let (u0,�0, b0) ∈ L2 . Then for any t > 0 , the solution (u,�, b) of (3) 
satisfies

Proof Taking the L2-inner product to (3) with (u,�, b1, b2) we have

where we used the facts that,

By Hölder’s inequality and the Young inequality, we have

Inserting (15) into (14), we obtain

(12)

1

2

d

dt

�‖u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2

�
+

�

2
‖∇u‖2

L2
+ 4�

�
1 −

2�

2� + �

�
‖�‖2

L2

+ �(‖�yb1‖2L2 + ‖�xb2‖2L2) ≤ 0,

(13)

‖u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2
+ �

�

t

0

‖∇u(�)‖2
L2
d� +

4��

� + 2� �

t

0

‖�(�)‖2
L2
d�

+ �
�

t

0

‖∇b(�)‖2
L2
d� ≤ ‖u0‖2L2 + ‖�0‖2L2 + ‖b0‖2L2 .

(14)

1

2

d

dt

�‖u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2

�
+ (� + �)‖∇u‖2

L2
+ 4�‖�‖2

L2

+ �(‖�2b1‖2L2 + ‖�1b2‖2L2 ) = 4�
∫

∇ × u ⋅ �dx,

∫
(b ⋅ ∇u1 ⋅ b1 + b ⋅ ∇u2 ⋅ b2)dx =

∫
b ⋅ ∇u ⋅ bdx = −

∫
b ⋅ ∇b ⋅ udx,

∫
∇ × u ⋅ �dx =

∫
∇ × � ⋅ udx.

(15)

4�
�

∇ × u ⋅ �dx ≤ 4�‖∇u‖L2‖�‖L2

≤

�
�

2
+ �

�
‖∇u‖2

L2
+

4�2

�

2
+ �

‖�‖2
L2
.
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Because of the divergence free condition ∇ ⋅ b = 0 , we have 
‖∇b‖2

L2(ℝ2)
= ‖∇ × b‖2

L2(ℝ2)
≤ 2

�
‖�2b1‖2L2(ℝ2)

+ ‖�1b2‖2L2(ℝ2)

�
 . Integrating (16) in 

[0, t], we can get

This completes the proof of Proposition 3  ◻

Next, we want to establish the global a priori Hs estimates. Applying Δ̇j to (3), 
we have

where [Δ̇j, f ⋅ ∇]g = Δ̇j(f ⋅ ∇g) − f ⋅ Δ̇j(∇g) is commutator. Dotting (17) - (20) by 
Δ̇ju , Δ̇j𝜔 , Δ̇jb1 and Δ̇jb2 respectively, integrating the resulting equations in ℝ2 , and 
adding them together, we have

where we used the facts that

(16)

1

2

d

dt

�‖u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2

�
+

�

2
‖∇u‖2

L2
+ 4�

�
1 −

2�

2� + �

�
‖�‖2

L2

+ �(‖�2b1‖2L2 + ‖�1b2‖2L2 ) ≤ 0.

‖u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2
+ �

�

t

0

‖∇u(�)‖2
L2
d� +

4��

� + 2� �

t

0

‖�(�)‖2
L2
d�

+ �
�

t

0

‖∇b(�)‖2
L2
d� ≤ ‖u0‖2L2 + ‖�0‖2L2 + ‖b0‖2L2 .

(17)
𝜕tΔ̇ju + u ⋅ ∇Δ̇ju − (𝜇 + 𝜒)ΔΔ̇ju = −Δ̇j∇𝜋 − [Δ̇j, u ⋅ ∇]u

+ Δ̇j(b ⋅ ∇b) + 2𝜒Δ̇j∇ × 𝜔,

(18)𝜕tΔ̇j𝜔 + u ⋅ ∇Δ̇j𝜔 + 4𝜒Δ̇j𝜔 = −[Δ̇j, u ⋅ ∇]𝜔 + 2𝜒Δ̇j∇ × u,

(19)𝜕tΔ̇jb1 + u ⋅ ∇Δ̇jb1 − 𝜈𝜕22Δ̇jb1 = −[Δ̇j, u ⋅ ∇]b1 + Δ̇j(b ⋅ ∇u1),

(20)𝜕tΔ̇jb2 + u ⋅ ∇Δ̇jb2 − 𝜈𝜕11Δ̇jb2 = −[Δ̇j, u ⋅ ∇]b2 + Δ̇j(b ⋅ ∇u2),

1

2

d

dt
(‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb1‖2L2 + ‖Δ̇jb2‖2L2 ) + (𝜇 + 𝜒)‖Δ̇j∇u‖2L2

+ 4𝜒‖Δ̇j𝜔‖2L2 + 𝜈(‖Δ̇j𝜕2b1‖2L2 + ‖Δ̇j𝜕1b2‖2L2)
≤ −

�
[Δ̇j, u ⋅ ∇]u ⋅ Δ̇ju +

�
[Δ̇j, b ⋅ ∇]b ⋅ Δ̇ju −

�
[Δ̇j, u ⋅ ∇]𝜔 ⋅ Δ̇j𝜔

+ 4𝜒
�

Δ̇j∇ × u ⋅ Δ̇j𝜔 −
�

[Δ̇j, u ⋅ ∇]b1 ⋅ Δ̇jb1 −
�

[Δ̇j, u ⋅ ∇]b2 ⋅ Δ̇jb2

+
�

[Δ̇j, b ⋅ ∇]u1 ⋅ Δ̇jb1 +
�

[Δ̇j, b ⋅ ∇]u2 ⋅ Δ̇jb2,
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and

Due to the divergence free condition ∇ ⋅ b = 0 , we have

Then, we can derive from the above inequalities

Due to

then, we have

Multiplying (22) by 22sj , taking the l2
j
 over j ∈ ℤ , nothing that Ḃs

2,2
= Ḣs and using 

Hölder’s inequality, we yield

∫
b ⋅ ∇Δ̇ju1 ⋅ Δ̇jb1 +

∫
b ⋅ ∇Δ̇ju2 ⋅ Δ̇jb2 =

∫
b ⋅ ∇Δ̇ju ⋅ Δ̇jb = −

∫
b ⋅ ∇Δ̇jb ⋅ Δ̇ju,

∫
Δ̇j∇ × u ⋅ Δ̇j𝜔 =

∫
Δ̇j∇ × 𝜔 ⋅ Δ̇ju.

‖Δ̇j∇b‖2L2 = ‖Δ̇j∇ × b‖2
L2

≤ 2(‖Δ̇j𝜕1b2‖2L2 + ‖Δ̇j𝜕2b1‖2L2 ),
‖Δ̇jb‖2L2 = ‖Δ̇jb1‖2L2 + ‖Δ̇jb2‖2L2 .

(21)

1

2

d

dt
(‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2 ) + (𝜇 + 𝜒)‖Δ̇j∇u‖2L2

+ 4𝜒‖Δ̇j𝜔‖2L2 +
𝜈

2
‖Δ̇j∇b‖2L2

≤ −
�

[Δ̇j, u ⋅ ∇]u ⋅ Δ̇ju +
�

[Δ̇j, b ⋅ ∇]b ⋅ Δ̇ju −
�

[Δ̇j, u ⋅ ∇]𝜔 ⋅ Δ̇j𝜔

+ 4𝜒
�

Δ̇j∇ × u ⋅ Δ̇j𝜔 −
�

[Δ̇j, u ⋅ ∇]b ⋅ Δ̇jb +
�

[Δ̇j, b ⋅ ∇]u ⋅ Δ̇jb.

����4𝜒 �
Δ̇j∇ × u ⋅ Δ̇j𝜔

���� ≤
�
𝜇

2
+ 𝜒

�
‖∇u‖2

L2
+

8𝜒2

𝜇 + 2𝜒
‖𝜔‖2

L2
,

(22)

1

2

d

dt
(‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2 ) +

𝜇

2
‖Δ̇j∇u‖2L2

+
𝜈

2
‖Δ̇j∇b‖2L2 + (4𝜒 −

4𝜒2

𝜇

2
+ 𝜒

)‖Δ̇j𝜔‖2L2

≤ −
�

[Δ̇j, u ⋅ ∇]u ⋅ Δ̇ju +
�

[Δ̇j, b ⋅ ∇]b ⋅ Δ̇ju −
�

[Δ̇j, u ⋅ ∇]𝜔 ⋅ Δ̇j𝜔

−
�

[Δ̇j, u ⋅ ∇]b ⋅ Δ̇jb +
�

[Δ̇j, b ⋅ ∇]u ⋅ Δ̇jb.

1

2

d

dt
(‖u‖2

Ḣs
+ ‖𝜔‖2

Ḣs
+ ‖b‖2

Ḣs
) +

c0

2
(‖∇u‖2

Ḣs
+ ‖𝜔‖2

Ḣs
+ ‖∇b‖2

Ḣs
)

≤‖2sj‖[Δ̇j, u ⋅ ∇]u‖L2‖l2
j
‖u‖Ḣs + ‖2sj‖[Δ̇j, b ⋅ ∇]b‖L2‖l2

j
‖u‖Ḣs

+ ‖2sj‖[Δ̇j, u ⋅ ∇]𝜔‖L2‖l2
j
‖𝜔‖Ḣs + ‖2sj‖[Δ̇j, u ⋅ ∇]b‖L2‖l2

j
‖b‖Ḣs

+ ‖2sj‖[Δ̇j, b ⋅ ∇]u‖L2‖l2
j
‖b‖Ḣs ,
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where c0 = min

{
�, �,

8��

�+2�

}
 . Adding the resulting inequality and (12) together, we 

have

Using commutator estimate (A5), and nothing that for s > 1,

one obviously derives

Similarly, we have

and

Taking advantage of the commutator estimate (A6), we imply that

Combining the above estimates together, we get

Then the Young inequality leads to

(23)

d

dt
(‖u‖2

Hs + ‖𝜔‖2
Hs + ‖b‖2

Hs) + c0(‖∇u‖2Hs + ‖𝜔‖2
Hs + ‖∇b‖2

Hs)

≤2‖2sj‖[Δ̇j, u ⋅ ∇]u‖L2‖l2
j
‖u‖Hs + 2‖2sj‖[Δ̇j, b ⋅ ∇]b‖L2‖l2

j
‖u‖Hs

+ 2‖2sj‖[Δ̇j, u ⋅ ∇]𝜔‖L2‖l2
j
‖𝜔‖Hs + 2‖2sj‖[Δ̇j, u ⋅ ∇]b‖L2‖l2

j
‖b‖Hs

+ 2‖2sj‖[Δ̇j, b ⋅ ∇]u‖L2‖l2
j
‖b‖Hs .

‖f‖L∞ ≤ C‖f‖Hs , ‖f‖Ḃs−1
2,2

≤ C‖f‖Bs
2,2

= C‖f‖Hs ,

2‖2sj‖[Δ̇j, u ⋅ ∇]u‖L2‖l2
j
≤ C‖∇u‖L∞‖∇u‖Ḃs−1

2,2
≤ C‖∇u‖2

Hs .

‖2sj‖[Δ̇j, b ⋅ ∇]b‖L2‖l2
j
≤ C‖∇b‖2

Hs ,

‖2sj‖[Δ̇j, u ⋅ ∇]b‖L2‖l2
j
≤ C(‖∇u‖L∞‖∇b‖Ḃs−1

2,2
+ ‖∇b‖L∞‖∇u‖Ḃs−1

2,2
)

≤ C‖∇u‖Hs‖∇b‖Hs ,

‖2sj‖[Δ̇j, b ⋅ ∇]u‖L2‖l2
j
≤ C‖∇u‖Hs‖∇b‖Hs .

‖2sj‖[Δ̇j, u ⋅ ∇]𝜔‖L2‖l2
j
≤ C(‖∇u‖L∞‖𝜔‖Ḃs

2,2
+ ‖𝜔‖L∞‖∇u‖Ḃs

2,2
)

≤ C‖∇u‖Hs‖𝜔‖Hs .

d

dt
(‖u‖2

Hs + ‖�‖2
Hs + ‖b‖2

Hs) + c0(‖∇u‖2Hs + ‖�‖2
Hs + ‖∇b‖2

Hs)

≤C‖∇u‖2
Hs‖u‖Hs + C‖∇b‖2

Hs‖u‖Hs + ‖∇u‖Hs‖�‖2Hs

+ C‖∇u‖Hs‖∇b‖Hs‖b‖Hs .

(24)
d

dt
(‖u‖2

Hs + ‖�‖2
Hs + ‖b‖2

Hs) +
c0

2
(‖∇u‖2

Hs + ‖�‖2
Hs + ‖∇b‖2

Hs)

≤C(‖u‖2
Hs + ‖�‖2

Hs + ‖b‖2
Hs)

1

2 (‖�‖2
Hs + ‖∇u‖2

Hs + ‖∇b‖2
Hs).
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This inequality indicates that, if the initial data (u0,�0, b0) satisfy, for 

0 < 𝜖 < 𝜖0 =

(
c0

2C

)2

,

then the corresponding solution remains for all time. Namely,

In fact, if suppose (25) is not true and T0 is the first time such that (25) is violated, 
i.e.,

and (25) holds for any 0 ≤ t < T0 . We can deduce from (24) that for any 0 ≤ t ≤ T0,

Therefore,

This is a contradiction. Thus, we get the uniform bound of (25). In addition,

Therefore, the proof of (I) of Theorem 1 is completed.
Next, we start to prove (II) of Theorem 1.

Proposition 4 Let (u,�, b) be the global solutions of the system (3) with the ini-
tial data (u0,�0, b0) ∈ (L1(ℝ2) ∩ L2(ℝ2))3 . Then (u,�, b) satisfies the following 
inequality,

Proof of Proposition 4 Applying the Fourier transform to system (3), we obtain:

‖u0‖2Hs + ‖𝜔0‖2Hs + ‖b0‖2Hs < 𝜖,

(25)‖u(t)‖2
Hs + ‖𝜔(t)‖2

Hs + ‖b(t)‖2
Hs < 𝜖.

‖u(T0)‖2Hs + ‖�(T0)‖2Hs + ‖b(T0)‖2Hs = �,

(26)

d

dt
(‖u‖2

Hs + ‖�‖2
Hs + ‖b‖2

Hs)

+

�c0
2

− C
√
�)(‖∇u‖2

Hs + ‖�‖2
Hs + ‖∇b‖2

Hs

�
≤ 0.

(27)‖u(t)‖2
Hs + ‖𝜔(t)‖2

Hs + ‖b(t)‖2
Hs ≤ ‖u0‖2Hs + ‖𝜔0‖2Hs + ‖b0‖2Hs < 𝜖.

(28)
�

t

0

(‖∇u(�)‖2
Hs(ℝ2)

+ ‖�(�)‖2
Hs(ℝ2)

+ ‖∇b(�)‖2
Hs(ℝ2)

)d� ≤ C�.

(29)
�û(𝜉, t)� + ��̂�(𝜉, t)� + �b̂1(𝜉, t)� + �b̂2(𝜉, t)�
≤ C + C�𝜉�

�

t

0

�‖u(𝜏)‖2
L2
+ ‖𝜔(𝜏)‖2

L2
+ ‖b(𝜏)‖2

L2

�
d𝜏.

(30)

⎧⎪⎨⎪⎩

𝜕tû + (𝜇 + 𝜒)�𝜉�2û = −F(∇𝜋) + F(b ⋅ ∇b) + 2𝜒 i𝜉 × �̂� − F(u ⋅ ∇u),

𝜕t�̂� + 4𝜒�̂� = 2𝜒 i𝜉 × û − F(u ⋅ ∇𝜔),

𝜕tb̂1 + 𝜈�𝜉2�2b̂1 = F[b ⋅ ∇u1 − u ⋅ ∇b1],

𝜕tb̂2 + 𝜈�𝜉1�2b̂2 = F[b ⋅ ∇u2 − u ⋅ ∇b2].
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Multiplying the (30)1 , (30)2 , (30)3 and (30)4 by ̄̂u , ̄̂𝜔 , ̄̂b1 and ̄̂b2 respectively, and sum-
ming up, we have, noting that |û|2 = û ̄̂u

For K1 , taking divergence to the first equation of (3), one yields

And taking Fourier transformation obeys, nothing that |û| = | ̄̂u|

For K2,

Similarly, we obtain

Inserting K1 - K10 into (31), we derive that

which immediately yields

(31)

1

2

d

dt
(|û|2 + |�̂�|2 + |b̂1|2 + |b̂2|2) + (𝜇 + 𝜒)|𝜉|2|û|2 + 𝜈(|𝜉2|2|b̂1|2 + |𝜉1|2|b̂2|2) + 4𝜒|�̂�|2

= −F(∇𝜋) ̄̂u + F(b ⋅ ∇b) ̄̂u − F(u ⋅ ∇u) ̄̂u − F(u ⋅ ∇𝜔) ̄̂𝜔 + F(b ⋅ ∇u1)
̄̂
b1

− F(u ⋅ ∇b1)
̄̂
b1 + F(b ⋅ ∇u2)

̄̂
b2 − F(u ⋅ ∇b2)

̄̂
b2 + 2𝜒 i𝜉 × �̂� ̄̂u + 2𝜒 i𝜉 × û ̄̂𝜔

= K1 + K2 + ⋅ ⋅ ⋅ + K10.

𝜋 = (−Δ)−1(∇⊗ ∇)(b⊗ b − u⊗ u).

K1 ≤ �𝜉���̂��� ̄̂u�
≤ �𝜉�(‖b⊗ b‖L1 + ‖u⊗ u‖L1)� ̄̂u�
≤ �𝜉�(‖b‖2

L2
+ ‖u‖2

L2
)�û�.

K2 ≤ �𝜉���b⊗ b�� ̄̂u� ≤ �𝜉�‖b⊗ b‖L1 � ̄̂u� ≤ �𝜉�‖b‖2
L2
�û�.

�K3 + K4� ≤ 2�𝜉�(‖u‖2
L2
+ ‖𝜔‖2

L2
)(�û� + ��̂��),

�K5 + K6� ≤ �𝜉�(‖b‖2
L2
+ ‖u1‖2L2 + ‖b1‖2L2 + ‖u‖2

L2
)�b̂1�

≤ 2�𝜉�(‖u‖2
L2
+ ‖b‖2

L2
)�b̂1�,

�K7 + K8� ≤ 2�𝜉�(‖u‖2
L2
+ ‖b‖2

L2
)�b̂2�,

�K9 + K10� ≤ 4𝜒�𝜉���̂���û�
≤

�
𝜇

2
+ 𝜒

�
�𝜉�2�û�2 + 8𝜒2

𝜇 + 2𝜒
��̂��2.

d

dt
(�û�2 + ��̂��2 + �b̂1�2 + �b̂2�2) + 𝜇�𝜉�2�û�2

+ 2𝜈(�𝜉2�2�b̂1�2 + �𝜉1�2�b̂2�2) + 8𝜒𝜇

𝜇 + 2𝜒
��̂��2

≤C�𝜉�(‖u‖2
L2
+ ‖b‖2

L2
+ ‖𝜔‖2

L2
)(�û� + ��̂�� + �b̂1� + �b̂2�),
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Integrating (32) in [0, t], we obtain

Thus the proof of Proposition 4 is completed.   ◻

Next, we obtain the result of Theorem 1 by using Proposition 4 and the gener-
alized Fourier splitting method.

Let

where h(t) ∈ C∞[0,+∞) is a positive function with respect to t and satisfies

where c1 = min{�, �,
4��

u+2�
}.

Multiplying both side of (12) by h(t), we have

By using the Plancherel Theorem for (34), we get

Applying (33), we can obtain

(32)𝜕t

�
�û�2 + ��̂��2 + �b̂1�2 + �b̂2�2 ≤ C�𝜉�(‖u‖2

L2
+ ‖b‖2

L2
+ ‖𝜔‖2

L2
).

�
�û(t)�2 + ��̂�(t)�2 + �b̂1(t)�2 + �b̂2(t)�2

≤

�
�û(0)�2 + ��̂�(0)�2 + �b̂1(0)�2 + �b̂2(0)�2 + C�𝜉�

�

t

0

(‖u(𝜏)‖2
L2
+ ‖b(𝜏)‖2

L2
+ ‖𝜔(𝜏)‖2

L2
)d𝜏

≤ C + C�𝜉�
�

t

0

(‖u(𝜏)‖2
L2
+ ‖b(𝜏)‖2

L2
+ ‖𝜔(𝜏)‖2

L2
)d𝜏.

B(t) =

{
� ∈ ℝ

2 ∶ |�|2 ≤ h�(t)

c1h(t)

}
, Bc(t) = ℝ

2�B(t),

(33)h(0) = 1, h�(t) > 0, and
h�(t)

c1h(t)
≤ 1, ∀ t > t0 > 0,

(34)

d

dt

�
h(t)(‖u(t)‖2

L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2
)
�

+ c1h(t)(‖∇u(t)‖2L2 + ‖�(t)‖2
L2
+ ‖∇b(t)‖2

L2
)

≤h�(t)(‖u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2
).

(35)

d

dt

�
h(t)

�‖û(t)‖2
L2
+ ‖b̂(t)‖2

L2
+ ‖�̂�(t)‖2

L2

��

+ c1h(t)
�
ℝ2

��𝜉�2(�û(𝜉)�2 + �b̂(𝜉)�2) + ��̂�(𝜉)�2�d𝜉

≤h�(t)
�
ℝ2

��û(𝜉)�2 + ��̂�(𝜉)�2 + �b̂(𝜉)�2�d𝜉.
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Combining the result of (35) and (36), we get

Employing (29), we have

Substituting (38) to (37), we have

Next, taking h(t) = [ln(e + t)]3 , then we have

(36)

c1h(t)
�
ℝ2

(|𝜉|2|û(𝜉)|2 + |�̂�(𝜉)|2 + |𝜉|2|b̂(𝜉)|2)d𝜉

+ h�(t)
�B(t)

(|û(𝜉)|2 + |�̂�(𝜉)|2 + |b̂(𝜉)|2)d𝜉

≥c1h(t)
�Bc(t)

(|𝜉|2|û(𝜉)|2 + |�̂�(𝜉)|2 + |𝜉|2|b̂(𝜉)|2)d𝜉

+ h�(t)
�B(t)

(|û(𝜉)|2 + |�̂�(𝜉)|2 + |b̂(𝜉)|2)d𝜉

≥c1h(t)

(
h�(t)

c1h(t)

)
�Bc(t)

(|û(𝜉)|2 + |�̂�(𝜉)|2 + |b̂(𝜉)|2)d𝜉

+ h�(t)
�B(t)

(|û(𝜉)|2 + |�̂�(𝜉)|2 + |b̂(𝜉)|2)d𝜉

=h�(t)
�
ℝ2

(|û(𝜉)|2 + |�̂�(𝜉)|2 + |b̂(𝜉)|2)d𝜉.

(37)

d

dt

�
h(t)

�‖û(t)‖2
L2
+ ‖b̂(t)‖2

L2
+ ‖�̂�(t)‖2

L2

��

≤ h�(t)
�B(t)

��û(𝜉)�2 + ��̂�(𝜉)�2 + �b̂(𝜉)�2�d𝜉.

(38)

�B(t)

��û(𝜉)�2 + ��̂�(𝜉)�2 + �b̂(𝜉)�2�d𝜉

= C
�B(t)

�
�𝜉�2

�
�

t

0

(‖u(𝜏)‖2
L2
+ ‖𝜔(𝜏)‖2

L2
+ ‖b(𝜏)‖2

L2
)d𝜏

�2

+ 1

�
d𝜉

≤
Ch�(t)

h(t)
+

C(h�(t))2

h2(t)

�
�

t

0

�‖u(𝜏)‖2
L2
+ ‖𝜔(𝜏)‖2

L2
+ ‖b(𝜏)‖2

L2

�
d𝜏

�2
.

(39)

d

dt

�
h(t)

�‖û(t)‖2
L2
+ ‖b̂(t)‖2

L2
+ ‖�̂�(t)‖2

L2

��

≤
C[h�(t)]2

h(t)
+

C[h�(t)]3

h2(t)

�
�

t

0

�‖u(𝜏)‖2
L2
+ ‖𝜔(𝜏)‖2

L2
+ ‖b(𝜏)‖2

L2

�
d𝜏

�2
.
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and

Combining (39) - (41), we have

Now, taking h(t) = (1 + t)2 and inserting it into (39), together with (42) and Hölder’s 
inequality, we have

where

From (43), we have

(40)
�

t

0

[h�(�)]2

h(�)
d� =

�

t

0

32 ln4(e + �)

(e + �)2 ln3(e + �)
d� =

�

t

0

9 ln(e + �)

(e + �)2
d�

≤ C
�

t

0

1

e + �
d� ≤ C ln(e + t),

(41)

�

t

0

[h�(�)]3

h2(�)

�
�

�

0

�‖u(s)‖2
L2
+ ‖�(s)‖2

L2
+ ‖b(s)‖2

L2

�
ds

�2
d�

≤ C
�

t

0

�
2

(e + �)3
[‖u0‖2L2 + ‖�0‖2L2 + ‖b0‖2L2 ]2d�

≤ C
�

t

0

1

(e + �)
d� ≤ C ln(e + t).

(42)

‖u(t)‖2
L2
+ ‖b(t)‖2

L2
+ ‖�(t)‖2

L2

≤ C[ln(e + t)]−3 + C[ln(e + t)]−2

≤ C[ln(e + t)]−2.

(43)

(1 + t)2
�‖û(t)‖2

L2
+ ‖b̂(t)‖2

L2
+ ‖�̂�(t)‖2

L2

�

≤(‖u0‖2L2 + ‖𝜔0‖2L2 + ‖b0‖2L2) + C
�

t

0

[h�(𝜏)]2

h(𝜏)
d𝜏

+
�

t

0

[h�(𝜏)]3

h2(𝜏)

�
�

𝜏

0

�‖u(s)‖2
L2
+ ‖𝜔(s)‖2

L2
+ ‖b(s)‖2

L2

�
ds

�2
d𝜏,

C
�

t

0

[h�(�)]2

h(�)
d� ≤ C

�

t

0

[2(1 + �)]2

(1 + �)2
d� ≤ C(t + 1),

�

t

0

[h�(�)]3

h2(�)

�
�

�

0

�‖u(s)‖2
L2
+ ‖�(s)‖2

L2
+ ‖b(s)‖2

L2

�
ds

�2
d�

≤ C
�

t

0

�

(1 + �) �

�

0

�‖u(s)‖2
L2
+ ‖�(s)‖2

L2
+ ‖b(s)‖2

L2

�
ln−2(e + s)dsd�

≤ C(1 + t)
�

�

0

�‖u(s)‖2
L2
+ ‖�(s)‖2

L2
+ ‖b(s)‖2

L2

�
ln−2(e + s)ds.
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Taking N(t) = (1 + t)
�
‖u(t)‖2

L2
+ ‖�(t)‖2

L2
+ ‖b(t)‖2

L2

�
 , then we have

Applying Gronwall’s inequality, we obtain

which implies the following decay

Therefore, the proof of (6) is completed.
Next, we will prove (7). The vorticity Ω = ∇ × u , j = ∇ × b satisfies

where

Due to the lack of angular viscosity for the system (3), it is crucial to deal with 
−2�� in (45) by introducing a new function Z = Ω −

2�

�+�
� in [11]. Subtracting 

2�

�+�
× (3)2 from (45), we have

Taking the L2-inner products of (47), (3)2 and (46) with Z, � and j, respectively, we 
obtain

(44)

(1 + t)
�‖û(t)‖2

L2
+ ‖b̂(t)‖2

L2
+ ‖�̂�(t)‖2

L2

�

≤ C + C
�

t

0

(1 + s)−1(1 + s)
�‖u(s)‖2

L2
+ ‖𝜔(s)‖2

L2
+ ‖b(s)‖2

L2

�
ln−2(e + s)ds.

N(t) = C + C
∫

t

0

(1 + s)−1N(s) ln−2(e + s)ds.

N(t) ≤ C exp

{
�

∞

0

(1 + s)−1 ln−2(e + s)ds

}
< C,

‖u(t)‖L2 + ‖�(t)‖L2 + ‖b(t)‖L2 ≤ C(1 + t)
−

1

2 .

(45)�tΩ + u ⋅ ∇Ω − (� + �)ΔΩ = b ⋅ ∇j − 2�Δ�,

(46)�tj + u ⋅ ∇j − ��111b2 + ��222b1 = b ⋅ ∇Ω + T(∇u,∇b),

T(∇u,∇b) = 2�1b1(�1u2 + �2u1) − 2�1u1(�1b2 + �2b1).

(47)

�tZ − (� + �)ΔZ + (u ⋅ ∇)Z +
4�2

� + �
Z =

(
8�2

� + �
−

8�3

(� + �)2

)
� + b ⋅ ∇j.

(48)

1

2

d

dt
‖Z(t)‖2

L2
+ (� + �)‖∇Z‖2

L2
+

4�2

� + �
‖Z‖2

L2

≤

�
8�2

� + �
−

8�2

(� + �)2

�
‖Z‖L2‖�‖L2 +

�
(b ⋅ ∇j)(Ω −

2�

� + �
�)dx,
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where

due to the divergence free condition ∇ ⋅ b = �1b1 + �2b2 . By Hölder’s inequality

where we have used the fact that the Calderon-Zygmund operators are bounded on 
Lp(1 < p < +∞) . It is easy to verify that

Indeed,

Then it follows from the above bounds and (50) that

Combining (48), (49) and (51), we have

(49)1

2

d

dt
‖�(t)‖2

L2
+ 4�‖�‖2

L2
≤ 2�‖Z‖L2‖�‖L2 + 4�2

� + �
‖�‖2

L2
,

(50)
1

2

d

dt
‖j(t)‖2

L2
+ I =

∫
(b ⋅ ∇Ωj + Tj)dx,

I = �
�

(−�111b2 + �222b1)jdx

= �
�

(−�111b2 + �222b1)(�1b2 − �2b1)dx

= �
�

(�11b2)
2 + (�11b1)

2 + (�22b1)
2 + (�22b2)

2dx ≡ H(b, t),

�
Tjdx ≤ C‖∇u‖L2‖∇b‖L4‖j‖L4

≤ C‖Ω‖L2‖j‖L2‖∇j‖L2
≤ C‖Ω‖2

L2
‖j‖2

L2
+

�

8
‖∇j‖2

L2
,

�

4
‖∇j‖2

L2
≤ H(b, t).

�‖∇j‖2
L2

= �‖(�1j, �2j)‖2L2 = �‖((�11b2 − �12b1), (�12b2 − �22b1))‖2L2
= �‖((�11b2 + �22b2),−(�11b1 + �22b1))‖2L2 ≤ 4H(b, t).

(51)
1

2

d

dt
‖j‖2

L2
+

1

2
H(b, t) ≤

�
b ⋅ ∇Ωjdx + C‖Ω‖2

L2
‖j‖2

L2
.
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Next, we consider I1 - I6 , respectively. Applying the Young inequality

By using Hölder’s inequality, the Gagliardo-Nirenberg inequality, and the Young 
inequality,

and

Inserting I1 - I6 into (52), we have

(52)

1

2

d

dt
(‖Z(t)‖2

L2
+ ‖∇Z‖2

L2
+ ‖∇j‖2

L2
) + (� + �)‖∇Z‖2

L2
+

4�2

� + �
‖Z‖2

L2

+ 4�‖�‖2
L2
+

�

8
‖∇j‖2

L2

≤

�
8�2

� + �
−

8�3

(� + �)2

�
‖Z‖L2‖�‖L2 +

�
(b ⋅ ∇)j(Ω −

2�

� + �
�)dx

+
�

b ⋅ ∇Ωjdx + C‖Ω‖2
L2
‖j‖2

L2
+ 2�‖Z‖L2‖�‖L2 + 4�2

� + �
‖�‖2

L2

≜I1 + I2 + I3 + I4 + I5 + I6.

I1 =

�
8�2

� + �
−

8�3

(� + �)2

�
‖Z‖L2‖�‖L2

=
8�2

�

(� + �)2
‖Z‖L2‖�‖L2

≤
2�2

�

(� + �)2
‖Z‖2

L2
+

8��

(� + �)2
‖�‖2

L2
.

I2 + I3 =
�

(b ⋅ ∇)j(Ω −
2�

� + �
)�dx +

�
b ⋅ ∇Ωjdx

= −
�

b ⋅ ∇j(
2�

� + �
)�dx

≤ C‖b‖L∞‖∇j‖L2‖�‖L2
≤ C‖b‖

1

2

L2
‖∇j‖

3

2

L2
‖�‖L2

≤ C‖b0‖
1

2

L2
‖∇j‖

3

2

L2
‖�‖L2

≤
�

16
‖∇j‖2

L2
+ C‖�‖4

L2
,

I5 =2�‖Z‖L2‖�‖L2 ≤ �‖Z‖2
L2
+ �‖�‖2

L2
.
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Due to 𝜇 <

√
3𝜒 , then

Applying Gronwall’s inequality, we have

where we also used (13).
Multiplying (12) by (1 + t)n , by (6), we have

where c1 = min{�,
4��

�+2�
, �} . Integrating (55) in time, we have

Multiplying (53) by (1 + r)n and integrating with respect to r over ( t
2
, t) , we have

(53)

1

2

d

dt

�‖Z(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖j(t)‖2

L2

�
+ (� + �)‖∇Z‖2

L2

+

�
4�2

� + �
− � −

2�2
�

(� + �)2

�
‖Z‖2

L2
+

�

8
‖∇j‖2

L2
+ 4�‖�‖2

L2

≤C‖�‖4
L2
+ C‖Ω‖2

L2
‖j‖2

L2
+

�
� +

4�2

(� + �)
− 4�

�
‖�‖2

L2
+ C‖�‖2

L2

≤C‖�‖4
L2
+ C‖Ω‖2

L2
‖j‖2

L2
+ C‖�‖2

L2

≤C(‖Z‖2
L2
+ ‖Ω‖2

L2
+ ‖j‖2

L2
)(‖Ω‖2

L2
+ ‖�‖2

L2
) + C‖�‖2

L2
.

4𝜒2

(𝜇 + 𝜒)
− 𝜒 −

2𝜒2
𝜇

(𝜇 + 𝜒)2

=
3𝜒2

𝜇 + 3𝜒3 − 𝜇
2
𝜒 − 𝜇𝜒

2 − 2𝜒2
𝜇

(𝜇 + 𝜒)2
=

3𝜒3 − 𝜇
2
𝜒

(𝜇 + 𝜒)2
> 0.

(54)

‖Z(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖j(t)‖2

L2

≤ exp

�
C
�

t

r

(‖Ω(s)‖2
L2
+ ‖�(s)‖2

L2
)ds

�

×

�
‖Z(r)‖2

L2
+ ‖�(r)‖2

L2
+ ‖j(r)‖2

L2
+
�

t

r

‖�(s)‖2
L2
ds

�

≤C(‖Z(r)‖2
L2
+ ‖�(r)‖2

L2
+ ‖j(r)‖2

L2
+ ‖u(r)‖2

L2
+ ‖b(r)‖2

L2
),

(55)

d

dt

�
(1 + t)n(‖u(t)‖2

L2
+ ‖�(r)‖2

L2
+ ‖b(r)‖2

L2
)
�

+ c1(1 + t)n(‖∇u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖∇b(t)‖2

L2
)

≤n(1 + t)n−1(‖u(t)‖2
L2
+ ‖�(r)‖2

L2
+ ‖b(r)‖2

L2
)

≤n(1 + t)n−2,

(56)�

T

0

(1 + r)n(‖∇u(r)‖2
L2
+ ‖�(r)‖2

L2
+ ‖∇b(r)‖2

L2
)dr

≤ C(1 + t)n−1, for large n ≥ 6.
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Nothing that

Combining the results of (57) and (48), for t ≥ 1 , we get

then we have

Therefore, the proof of Theorem 1 is completed.

3  The Proof of Theorem 2

This section is devoted to the proof of Theorem  2. Firstly, we first prove the 
global stability part (I) of Theorem 2. As we know, the key step is to establish the 
global a priori Bs

2,1
(ℝ2) estimates of the solution.

Proof of (I) of Theorem 2 As preparation, in the following proposition, we state that 
system (8) has unique global solution when the initial data (u0,�0, b0) is sufficiently 
small in Ḃ0

2,1
(ℝ2).

Proposition 5 Assume (u0,�0, b0) satisfies the conditions in (I) of Theorem  2 and 
(9), then system (8) has a unique global solution (u,�, b) satisfying, for any t > 0,

Proof Now, we turn to establish the global a priori Bs
2,1

 estimates. Applying Δ̇j to 
(8), we have

(57)

t

2

�
1 +

t

2

�n�‖Z(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖j(t)‖2

L2

�

≤
�

t

t

2

(1 + r)n(‖Z(r)‖2
L2
+ ‖�(r)‖2

L2
+ ‖j(r)‖2

L2
+ ‖u(r)‖2

L2
+ ‖b(r)‖2

L2
)dr

≤ C(1 + t)n−1 +
�

t

t

2

(1 + r)n−1dr

≤ C(1 + t)n, for some given large n ≥ 6.

(58)

�
1

2
+

t

2

�n+1�‖Z(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖j(t)‖2

L2

�

≤
t

2

�
1 +

t

2

�n�‖Z(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖j(t)‖2

L2

�
.

‖Z(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖j(t)‖2

L2
≤ (1 + t)−1,

‖∇u(t)‖2
L2
+ ‖�(t)‖2

L2
+ ‖∇b(t)‖2

L2
≤ (1 + t)−1.

(59)
‖u(t)‖Ḃ0

2,1
+ ‖𝜔(t)‖Ḃ0

2,1
+ ‖b(t)‖Ḃ0

2,1

+ ‖∇2u(t)‖L1t (Ḃ0
2,1
) + ‖∇2

𝜔(t)‖L1t (Ḃ0
2,1
) + ‖∇2b(t)‖L1t (Ḃ0

2,1
) ≤ C𝜖.
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where [Δ̇j, f ⋅ ∇]g = Δ̇j(f ⋅ ∇g) − f ⋅ Δ̇j(∇g) is commutator. Dotting (60) - (63) by 
Δ̇ju , Δ̇j𝜔 , Δ̇jb1 and Δ̇jb2 respectively, integrating the resulting equations in ℝ2 , and 
adding them together, we have

where we used the facts that

and

Due to the divergence free condition ∇ ⋅ b = 0 , we have

Then, we can derive from the above inequalities

(60)
𝜕tΔ̇ju + u ⋅ ∇Δ̇ju − (𝜇 + 𝜒)ΔΔ̇ju = −Δ̇j∇𝜋 − [Δ̇j, u ⋅ ∇]u

+ Δ̇j(b ⋅ ∇b) + 2𝜒Δ̇j∇ × 𝜔,

(61)𝜕tΔ̇j𝜔 + u ⋅ ∇Δ̇j𝜔 − 𝜅ΔΔ̇j𝜔 + 4𝜒Δ̇j𝜔 = −[Δ̇j, u ⋅ ∇]𝜔 + 2𝜒Δ̇j∇ × u,

(62)𝜕tΔ̇jb1 + u ⋅ ∇Δ̇jb1 − 𝜈𝜕yyΔ̇jb1 = −[Δ̇j, u ⋅ ∇]b1 + Δ̇j(b ⋅ ∇u1),

(63)𝜕tΔ̇jb2 + u ⋅ ∇Δ̇jb2 − 𝜈𝜕xxΔ̇jb2 = −[Δ̇j, u ⋅ ∇]b2 + Δ̇j(b ⋅ ∇u2),

1

2

d

dt
(‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb1‖2L2 + ‖Δ̇jb2‖2L2 ) + (𝜇 + 𝜒)‖Δ̇j∇u‖2L2

+ 𝜅‖Δ̇j∇𝜔‖2L2 + 4𝜒‖Δ̇j𝜔‖2L2 + 𝜈(‖Δ̇j𝜕yb1‖2L2 + ‖Δ̇j𝜕xb2‖2L2 )
≤ −

�
[Δ̇j, u ⋅ ∇]u ⋅ Δ̇ju +

�
[Δ̇j, b ⋅ ∇]b ⋅ Δ̇ju −

�
[Δ̇j, u ⋅ ∇]𝜔 ⋅ Δ̇j𝜔

+ 4𝜒
�

Δ̇j∇ × u ⋅ Δ̇j𝜔 −
�

[Δ̇j, u ⋅ ∇]b1 ⋅ Δ̇jb1 −
�

[Δ̇j, u ⋅ ∇]b2 ⋅ Δ̇jb2

+
�

[Δ̇j, b ⋅ ∇]u1 ⋅ Δ̇jb1 +
�

[Δ̇j, b ⋅ ∇]u2 ⋅ Δ̇jb2,

∫
b ⋅ ∇Δ̇ju1 ⋅ Δ̇jb1 +

∫
b ⋅ ∇Δ̇ju2 ⋅ Δ̇jb2 =

∫
b ⋅ ∇Δ̇ju ⋅ Δ̇jb = −

∫
b ⋅ ∇Δ̇jb ⋅ Δ̇ju,

∫
Δ̇j∇ × u ⋅ Δ̇j𝜔 =

∫
Δ̇j∇ × 𝜔 ⋅ Δ̇ju.

‖Δ̇j∇b‖2L2 = ‖Δ̇j∇ × b‖2
L2

≤ 2(‖Δ̇j𝜕xb2‖2L2 + ‖Δ̇j𝜕yb1‖2L2),
‖Δ̇jb‖2L2 = ‖Δ̇jb1‖2L2 + ‖Δ̇jb2‖2L2 .
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Due to

then, we have

Applying Hölder’s inequality, the Young inequality, Bernstein’s inequality and the 
divergence free condition ∇ ⋅ u = ∇ ⋅ b = 0 to (65), we obtain

Then, (66) implies

(64)

1

2

d

dt
(‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2) + (𝜇 + 𝜒)‖Δ̇j∇u‖2L2 + 𝜅‖Δ̇j∇𝜔‖2L2

+ 4𝜒‖Δ̇j𝜔‖2L2 +
𝜈

2
‖Δ̇j∇b‖2L2

≤ −
�

[Δ̇j, u ⋅ ∇]u ⋅ Δ̇ju +
�

[Δ̇j, b ⋅ ∇]b ⋅ Δ̇ju −
�

[Δ̇j, u ⋅ ∇]𝜔 ⋅ Δ̇j𝜔

+ 4𝜒
�

Δ̇j∇ × u ⋅ Δ̇j𝜔 −
�

[Δ̇j, u ⋅ ∇]b ⋅ Δ̇jb +
�

[Δ̇j, b ⋅ ∇]u ⋅ Δ̇jb.

����4𝜒 �
Δ̇j∇ × u ⋅ Δ̇j𝜔

���� ≤
�
𝜇

2
+ 𝜒

�
‖∇u‖2

L2
+

8𝜒2

𝜇 + 2𝜒
‖𝜔‖2

L2
,

(65)

1

2

d

dt

�
‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2) +

𝜇

2
‖Δ̇j∇u‖2L2 + 𝜅‖Δ̇j∇𝜔‖2L2

+
𝜈

2
‖Δ̇j∇b‖2L2 + (4𝜒 −

4𝜒2

𝜇

2
+ 𝜒

�
‖Δ̇j𝜔‖2L2

≤ −
�

[Δ̇j, u ⋅ ∇]u ⋅ Δ̇ju +
�

[Δ̇j, b ⋅ ∇]b ⋅ Δ̇ju −
�

[Δ̇j, u ⋅ ∇]𝜔 ⋅ Δ̇j𝜔

−
�

[Δ̇j, u ⋅ ∇]b ⋅ Δ̇jb +
�

[Δ̇j, b ⋅ ∇]u ⋅ Δ̇jb.

(66)

1

2

d

dt

�‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2
�
+

𝜇

2
c̃22

2j‖Δ̇ju‖2L2
+

𝜈

2
c̃22

2j‖Δ̇jb‖2L2 + 𝜅c̃22
2j‖Δ̇j𝜔‖2L2 +

4𝜇𝜒

𝜇 + 2𝜒
‖Δ̇j𝜔‖2L2

≤ −
�

Δ̇j(u ⋅ ∇u) ⋅ Δ̇ju +
�

Δ̇j(b ⋅ ∇b) ⋅ Δ̇ju −
�

Δ̇j(u ⋅ ∇b) ⋅ Δ̇jb

+
�

Δ̇j(b ⋅ ∇u) ⋅ Δ̇jb −
�

Δ̇j(u ⋅ ∇𝜔) ⋅ Δ̇j𝜔

≤C2j‖Δ̇j(u⊗ u)‖L2‖Δ̇ju‖L2 + C2j‖Δ̇j(b⊗ b)‖L2‖Δ̇ju‖L2
+ C2j‖Δ̇j(u⊗ b)‖L2‖Δ̇jb‖L2 + C2j‖Δ̇j(u⊗𝜔)‖L2‖Δ̇j𝜔‖L2 .

(67)

d

dt

�
‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2 + c̃2c22

2j
�

‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2
≤C2j(‖Δ̇j(u⊗ u)‖L2 + ‖Δ̇j(b⊗ b)‖L2 + ‖Δ̇j(b⊗ u)‖L2 + ‖Δ̇j(u⊗𝜔)‖L2 ),
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where c2 = min{�, �, 2�} . For (67), applying Bernstein’s inequality and integrating 
it in [0, t], we obtain

Taking the l1
j
 over j ∈ ℤ , one yields

Denote c3 = 2c1c̃2c
⋆

2
 . Using Lemma 13, Lemma 14, and noting that ‖f‖L∞ ≤ C‖f‖Ḃ1

2.1
 

and ‖f‖L̃1t (Ḃs
2,1
) ≈ ‖f‖L1t (Ḃs

2,1
) , we have

This inequality indicates that, for any 0 < 𝜖 < 𝜖0,

then bootstrap argument yields

which completed the Proposition 5.   ◻

Next, we start to prove the decay estimates assertion of (II). As a tool, we first verify 
the following Proposition in the negative Sobolev space Ḣ−l , with 0 < l < 1.

Proposition 6 Let c2 = min{�, 2�, �} . Then for 0 < l < 1 , we have

‖Δ̇ju‖L2 + ‖Δ̇j𝜔‖L2 + ‖Δ̇jb‖L2 + c2c̃2c
⋆

2
(‖∇2u‖L1t L2 + ‖∇2

𝜔‖L1t L2 + ‖∇2b‖L1t L2 )
≤2‖Δ̇ju0‖L2 + 2‖Δ̇j𝜔0‖L2 + 2‖Δ̇jb0‖L2 + C2j‖Δ̇j(u⊗ u)‖L1t L2
+ C2j‖Δ̇j(b⊗ b)‖L1t L2 + C2j‖Δ̇j(u⊗𝜔)‖L1t L2 + C2j‖Δ̇j(u⊗ b)‖L1t L2 .

(68)

‖u‖Ḃ0
2,1
+ ‖b‖Ḃ0

2,1
+ ‖𝜔‖Ḃ0

2,1
+ c2

�
‖∇2u‖L̃1t Ḃ0

2,1
+ ‖∇2b‖L̃1t Ḃ0

2,1
+ ‖∇2

𝜔‖L̃1t Ḃ0
2,1

�

≤2‖u0‖Ḃ0
2,1
+ 2‖b0‖Ḃ0

2,1
+ 2‖𝜔0‖Ḃ0

2,1

+ C‖2j‖Δ̇j(u⊗ u)‖L1t L2‖l1j + C‖2j‖Δ̇j(b⊗ b)‖L1t L2‖l1j
+ C‖2j‖Δ̇j(u⊗ b)‖L1t L2‖l1j + C‖2j‖Δ̇j(u⊗𝜔)‖L1t L2‖l1j .

(69)

‖u‖
Ḃ
0

2,1

+ ‖b‖
Ḃ
0

2,1

+ ‖𝜔‖
Ḃ
0

2,1

+ c3

�
‖∇2

u‖
L
1
t
Ḃ
0

2,1

+ ‖∇2
b‖

L
1
t
Ḃ
0

2,1

+ ‖∇2
𝜔‖

L
1
t
Ḃ
0

2,1

�

≤2‖u0‖Ḃ0
2,1

+ 2‖b0‖Ḃ0
2,1

+ 2‖𝜔0‖Ḃ0
2,1

+ C
�

t

0

�
‖u(𝜏)‖

Ḃ
0

2,1

+ ‖b(𝜏)‖
Ḃ
0

2,1

+ ‖𝜔(𝜏)‖
Ḃ
0

2,1

�

×

�
‖∇2

u(𝜏)‖
Ḃ
0

2,1

+ ‖∇2
b(𝜏)‖

Ḃ
0

2,1

+ ‖∇2
𝜔(𝜏)‖

Ḃ
0

2,1

�
d𝜏.

‖u0‖Ḃ0
2,1
+ ‖b0‖Ḃ0

2,1
+ ‖𝜔0‖Ḃ0

2,1
< 𝜖,

(70)
‖u(t)‖Ḃ0

2,1
+ ‖𝜔(t)‖Ḃ0

2,1
+ ‖b(t)‖Ḃ0

2,1

+ ‖∇2u(t)‖L1t (Ḃ0
2,1
) + ‖∇2

𝜔(t)‖L1t (Ḃ0
2,1
) + ‖∇2b(t)‖L1t (Ḃ0

2,1
) ≤ C𝜖,
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Proof of Proposition 6 Due to (64) and with the divergence free condition 
∇ ⋅ u = ∇ ⋅ b = 0 , we derive that

Multiplying the above inequality by 2−2lj and taking the l2
j
 over j ∈ ℤ , and noting 

that Ḃ−l
2,2

= Ḣ−l , we have

Applying Lemma  10, Hölder’s inequality and the Gagliardo-Nirenberg inequality, 
we obtain

and

Then

(71)

d

dt
(‖u‖2

Ḣ−l
+ ‖b‖2

Ḣ−l
+ ‖𝜔‖2

Ḣ−l
) + c1(‖∇u‖2Ḣ−l

+ ‖∇b‖2
Ḣ−l

+ ‖∇𝜔‖2
Ḣ−l

)

≤C(‖∇u‖L2 + ‖∇𝜔‖L2 + ‖∇b‖L2 )(‖∇u‖1−lL2
+ ‖∇b‖1−l

L2
)(‖u‖l

L2
+ ‖b‖l

L2
)

× (‖u‖Ḣ−l + ‖b‖Ḣ−l + ‖𝜔‖Ḣ−l).

1

2

d

dt
(‖Δ̇ju‖2L2 + ‖Δ̇j𝜔‖2L2 + ‖Δ̇jb‖2L2) + (𝜇 + 𝜒)‖Δ̇j∇u‖2L2 + 𝜅‖Δ̇j∇𝜔‖2L2

+ 4𝜒‖Δ̇j𝜔‖2L2 +
𝜈

2
‖Δ̇j∇b‖2L2

≤ −
�

Δ̇j(u ⋅ ∇u) ⋅ Δ̇ju +
�

Δ̇j(b ⋅ ∇b) ⋅ Δ̇ju −
�

Δ̇j(u ⋅ ∇b) ⋅ Δ̇jb

+
�

Δ̇j(b ⋅ ∇u) ⋅ Δ̇jb −
�

Δ̇j(u ⋅ ∇𝜔) ⋅ Δ̇j𝜔 + 4𝜒
�

Δ̇j∇ × u ⋅ Δ̇j𝜔.

(72)

d

dt
(‖u‖2

Ḣ−l
+ ‖b‖2

Ḣ−l
+ ‖𝜔‖2

Ḣ−l
) + 2(𝜇 + 𝜒)‖∇u‖2

Ḣ−l

+ 2𝜅‖∇𝜔‖2
Ḣ−l

+ 8𝜒‖𝜔‖2
Ḣ−l

+ 𝜈‖∇b‖2
Ḣ−l

≤2‖2−lj‖Δ̇j(u ⋅ ∇u)‖L2‖l2
j
‖u‖Ḣ−l + 2‖2−lj‖Δ̇j(b ⋅ ∇b)‖L2‖l2

j
‖u‖Ḣ−l

+ 2‖2−lj‖Δ̇j(u ⋅ ∇𝜔)‖L2‖l2
j
‖𝜔‖Ḣ−l + 8𝜒‖2−lj‖Δ̇j(∇ × u)‖L2‖l2

j
‖𝜔‖Ḣ−l

+ 2‖2−lj‖Δ̇j(u ⋅ ∇b)‖L2‖l2
j
‖b‖Ḣ−l + 2‖2−lj‖Δ̇j(b ⋅ ∇u)‖L2‖l2

j
‖b‖Ḣ−l

≤2‖u ⋅ ∇u‖Ḣ−l‖u‖Ḣ−l + 2‖b ⋅ ∇b‖Ḣ−l‖u‖Ḣ−l + 2‖u ⋅ ∇𝜔‖Ḣ−l‖𝜔‖Ḣ−l

+ (𝜇 + 2𝜒)‖∇u‖2
Ḣ−l

+
8𝜒2

𝜇

2
+ 𝜒

‖𝜔‖2
Ḣ−l

+ 2(‖u ⋅ ∇b‖Ḣ−l + ‖b ⋅ ∇u‖Ḣ−l)‖b‖Ḣ−l .

‖u ⋅ ∇u‖Ḣ−l ≤ C‖u ⋅ ∇u‖
L

2
l+1
,

‖u ⋅ ∇u‖
L

2
l+1

≤ C‖u‖
L

2
l
‖∇u‖L2 ,

‖u‖
L

2
l
≤ C‖∇u‖1−l

L2
‖u‖l

L2
.

(73)‖u ⋅ ∇u‖Ḣ−l ≤ C‖∇u‖2−l
L2

‖u‖l
L2
.
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Similarly,

Combining (72) - (76), we obtain

where c2 = min{�, 2�, �} . Thus the proof of Proposition 6 is completed.   ◻

Next, we continue to prove (10). Multiplying (67) by 2sj and utilizing Bernstein’s 
inequality and integrating it in [0, t], finally, taking the l1

j
 over j ∈ ℤ , we have

Since (u0,�0, b0) ∈ Bs
2,1
(ℝ2) , we have

By Lemma  13, Lemma  14 and noting that ‖f‖L1t (Ḃs
2,1
) ≈ ‖f‖L̃1t (Ḃs

2,1
) and 

‖f‖L∞ ≤ C‖f‖Ḃ1
2,1

 , yield

(74)‖b ⋅ ∇b‖Ḣ−l ≤ C‖∇b‖2−l
L2

‖b‖l
L2
,

(75)
‖u ⋅ ∇b‖Ḣ−l + ‖b ⋅ ∇u‖Ḣ−l

≤ C(‖∇u‖1−l
L2

‖u‖l
L2
‖∇b‖L2 + ‖∇b‖1−l

L2
‖b‖l

L2
‖∇u‖L2 ),

(76)‖u ⋅ ∇𝜔‖Ḣ−l ≤ C‖∇𝜔‖L2‖∇u‖1−lL2
‖u‖l

L2
.

d

dt
(‖u‖2

Ḣ−l
+ ‖b‖2

Ḣ−l
+ ‖𝜔‖2

Ḣ−l
) + c2(‖∇u‖2Ḣ−l

+ ‖∇b‖2
Ḣ−l

+ ‖∇𝜔‖2
Ḣ−l

)

≤C(‖∇u‖L2 + ‖∇𝜔‖L2 + ‖∇b‖L2 )(‖∇u‖1−lL2
+ ‖∇b‖1−l

L2
)(‖u‖l

L2
+ ‖b‖l

L2
)

× (‖u‖Ḣ−l + ‖b‖Ḣ−l + ‖𝜔‖Ḣ−l),

(77)

‖u‖Ḃs
2,1
+ ‖b‖Ḃs

2,1
+ ‖𝜔‖Ḃs

2,1
+ c3

�
‖∇2u‖L̃1t (Ḃs

2,1
) + ‖∇2b‖L̃1t (Ḃs

2,1
) + ‖∇2

𝜔‖L̃1t (Ḃs
2,1
)

�

≤2(‖u0‖Ḃs
2,1
+ ‖b0‖Ḃs

2,1
+ ‖𝜔0‖Ḃs

2,1
) + C‖2(s+1)j‖Δ̇j(u⊗ u)‖L1t L2‖l1j

+ C‖2(s+1)j‖Δ̇j(b⊗ b)‖L1t L2‖l1j + C‖2(s+1)j‖Δ̇j(u⊗ b)‖L1t L2‖l1j
+ C‖2(s+1)j‖Δ̇j(u⊗𝜔)‖L1t L2‖l1j

≜A1 + A2 + A3 + A4 + A5.

A1 = 2(‖u0‖Ḃs
2,1
+ ‖b0‖Ḃs

2,1
+ ‖𝜔0‖Ḃs

2,1
) ≤ C.
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For A3 - A5 , by the similar method as A2 , together with the Young inequality, we get

Similarly,

Inserting A1 - A5 into (77), we derive that

Combining (78) and (59) with � sufficiently small, we have

Because Ḃ0
2,1

↪ Ḃ0
2,2

 and Ḃ0
2,2

∼ Ḣ0 ∼ L2 , thus (59) implies

A2 =C‖2(s+1)j‖Δ̇j(u⊗ u)‖L1t L2‖l1j
≤C

�

t

0

‖u⊗ u(𝜏)‖Ḃs+1
2,1

d𝜏

≤C
�

t

0

‖u(𝜏)‖Ḃs+1
2,1

‖u(𝜏)‖L∞d𝜏

≤C
�

t

0

�
‖u(𝜏)‖

s+1

s+2

Ḃs+2
2,1

‖u(𝜏)‖
1

s+2

Ḃ0

2,1

‖u(𝜏)‖
1

s+2

Ḃs+2
2,1

‖u(𝜏)‖
s+1

s+2

Ḃ0

2,1

�
d𝜏

≤C
�

t

0

‖∇2u(𝜏)‖Ḃs
2,1

‖u(𝜏)‖Ḃ0

2,1

d𝜏.

A3 = C‖2(s+1)j‖Δ̇j(b⊗ b)‖L1t L2‖l1j
≤ C

�

t

0

‖b⊗ b(𝜏)‖Ḃs+1
2,1

d𝜏

≤ C
�

t

0

‖∇2b(𝜏)‖Ḃs
2,1

‖b(𝜏)‖Ḃ0

2,1

d𝜏.

A4 ≤ C
�

t

0

(‖u(𝜏)‖Ḃ0
2,1
+ ‖b(𝜏)‖Ḃ0

2,1
)(‖∇2u(𝜏)‖Ḃs

2,1
+ ‖∇2b(𝜏)‖Ḃs

2,1
)d𝜏,

A5 ≤ C
�

t

0

(‖u(𝜏)‖Ḃ0
2,1
+ ‖𝜔(𝜏)‖Ḃ0

2,1
)(‖∇2u(𝜏)‖Ḃs

2,1
+ ‖∇2

𝜔(𝜏)‖Ḃs
2,1
)d𝜏.

(78)

‖u‖
Ḃ
s

2,1

+ ‖b‖
Ḃ
s

2,1

+ ‖𝜔‖
Ḃ
s

2,1

+ c3

�
‖∇2

u‖
L
1
t
(Ḃs

2,1
) + ‖∇2

b‖
L
1
t
(Ḃs

2,1
) + ‖∇2

𝜔‖
L
1
t
(Ḃs

2,1
)

�

≤C +
�

t

0

(‖u(𝜏)‖
Ḃ
0

2,1

+ ‖𝜔(𝜏)‖
Ḃ
0

2,1

+ ‖b(𝜏)‖
Ḃ
0

2,1

)

(‖∇2
u(𝜏)‖

Ḃ
s

2,1

+ ‖∇2
𝜔(𝜏)‖

Ḃ
s

2,1

+ ‖∇2
b(𝜏)‖

Ḃ
s

2,1

)d𝜏.

(79)

‖u(t)‖Ḃs
2,1
+ ‖b(t)‖Ḃs

2,1
+ ‖𝜔(t)‖Ḃs

2,1

+
c3

2 �

t

0

�
‖∇2u(𝜏)‖Ḃs

2,1
+ ‖∇2b(𝜏)‖Ḃs

2,1
+ ‖∇2

𝜔(𝜏)‖Ḃs
2,1

�
d𝜏 ≤ C.
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Combining (79) and (80), we have

which completed the proof of (I) in Theorem 2.   ◻

We now turn to prove the decay part (II) of Theorem 2.

Proof of (II) of Theorem 2 Multiplying (67) by 2mj , and taking the l1
j
 over j ∈ ℤ , we 

obtain

where y(t) =
����2

mj

�
‖Δ̇ju‖2 + ‖Δ̇j𝜔‖2 + ‖Δ̇jb‖2

����l1
j

 . Using Lemma  13 and 

Lemma 15, together with ‖f‖L∞ ≤ C‖f‖Ḃ1
2,1

 , we have

Then this inequality, together with (59) with � sufficiently small, we have

Applying Lemma 15 and Ḃs
2,2

↪ Ḃs
2,∞

 , we infer that

and

(80)
‖u(t)‖L2 + ‖b(t)‖L2 + ‖𝜔(t)‖L2
+
∫

t

0

�‖∇2u(𝜏)‖L2 + ‖∇2b(𝜏)‖L2 + ‖∇2
𝜔(𝜏)‖L2

�
d𝜏 < C𝜖.

‖u(t)‖Bs
2,1
+ ‖b(t)‖Bs

2,1
+ ‖𝜔(t)‖Bs

2,1

+
∫

t

0

�
‖∇2u(𝜏)‖Bs

2,1
+ ‖∇2b(𝜏)‖Bs

2,1
+ ‖∇2

𝜔(𝜏)‖Bs
2,1

�
d𝜏 < C,

d

dt
y(t) + c3

�
‖u‖Ḃm+2

2,1
+ ‖b‖Ḃm+2

2,1
+ ‖𝜔‖Ḃm+2

2,1

�

≤C‖2(m+1)j‖Δ̇j(u⊗ u)‖L2‖l1
j
+ C‖2(m+1)j‖Δ̇j(b⊗ b)‖L2‖l1

j

+ C‖2(m+1)j‖Δ̇j(u⊗ b)‖L2‖l1
j
+ C‖2(m+1)j‖Δ̇j(u⊗𝜔)‖L2‖l1

j
,

d

dt
y(t) + c3

�
‖u‖Ḃm+2

2,1
+ ‖b‖Ḃm+2

2,1
+ ‖𝜔‖Ḃm+2

2,1

�

≤C
�
‖u‖Ḃ0

2,1
+ ‖b‖Ḃ0

2,1
+ ‖𝜔‖Ḃ0

2,1

��
‖u‖Ḃm+2

2,1
+ ‖b‖Ḃm+2

2,1
+ ‖𝜔‖Ḃm+2

2,1

�
.

(81)
d

dt
y(t) +

c2

2

�
‖u‖Ḃm+2

2,1
+ ‖b‖Ḃm+2

2,1
+ ‖𝜔‖Ḃm+2

2,1

�
≤ 0.

(82)‖u‖Ḃm
2,1

≤ C‖u‖
2

m+l+2

Ḣ−l
‖∇2u‖

m+l

m+l+2

Ḃm
2,1

,

(83)‖b‖Ḃm
2,1

≤ C‖b‖
2

m+l+2

Ḣ−l
‖∇2b‖

m+l

m+l+2

Ḃm
2,1

,
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Therefore, if

then we can obtain from (81) - (83), there exists a constant a0 > 0 such that,

It follows from this that

which implies

which immediately yields (11).
Finally, to make the process more complete, we need to verify that (85) holds for 

0 ≤ l < 1 . To this end, we divide the proof into two cases.
Case 1. ( l = 0 ) Using the fact that Ḣ0 = L2 , by (13) we have

Then it yields (85).
Case 2. ( 0 < l < 1 ) Assume that

Suppose that for all t ∈ [0, T]

If we can derive that for all t ∈ [0, T],

then an application of the bootstrapping argument would imply that the solution 
(u,�, b) of system (8) satisfies (90) for all t ∈ [0, T] , which implies (85). With (86) 
and (87) at our disposal, we show that (90) holds.

With the help of (87) and Lemma 8, we know that

(84)‖𝜔‖Ḃm
2,1

≤ C‖𝜔‖
2

m+l+2

Ḣ−l
‖∇2

𝜔‖
m+l

m+l+2

Ḃm
2,1

.

(85)‖u‖Ḣ−l + ‖b‖Ḣ−l + ‖𝜔‖Ḣ−l ≤ C,

(86)
d

dt
y(t) + a0(y(t))

m+l+2

m+l ≤ 0.

y(t) ≤ C(1 + t)
−

m+l

2 ,

(87)‖u‖Ḃm
2,1
+ ‖b‖Ḃm

2,1
+ ‖𝜔‖Ḃm

2,1
≤ C(1 + t)

−
m+l

2 ,

‖u(t)‖L2 + ‖�(t)‖L2 + ‖b(t)‖L2 ≤ C.

(88)‖u0‖2Ḣ−l
+ ‖b0‖2Ḣ−l

+ ‖𝜔0‖2Ḣ−l
≤ C0.

(89)‖u(t)‖2
Ḣ−l

+ ‖b(t)‖2
Ḣ−l

+ ‖𝜔(t)‖2
Ḣ−l

≤ 2C0.

(90)‖u(t)‖2
Ḣ−l

+ ‖b(t)‖2
Ḣ−l

+ ‖𝜔(t)‖2
Ḣ−l

≤
3

2
C0,

(91)‖u(t)‖L2 = ‖u‖Ḃ0
2,2

≤ C‖u‖Ḃ0
2,1
,
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Similarly,

Integrating (71) in [0,  t] with 0 < t ≤ T  , together with (80), and (91) - (94), one 
infers that

By choosing � in (80) sufficiently small, then the above inequality yields (90) for 
all t ∈ [0, t] , which closes the proof. Then we have (85) and completed the proof of 
(11).   ◻

Appendix A: Functional Space

This appendix provides the definition of Littlewood-Paley decomposition and the 
definition of Besov space. Some related inequalities used in the previous sections 
are also included. Materials presented in this appendix can be found in several 
books and many papers (see, e.g., [3, 4, 22, 27, 40]).

We start with several notations. S denotes the usual Schwarz class and S≃ 
its dual, the space of tempered distributions. To introduce the Littlewood-Paley 
decomposition, we write for each j ∈ ℤ

The Littlewood-Paley decomposition asserts the existence of a sequence of func-
tions {Φj}j∈ℤ ⊂ S such that

(92)‖∇u‖L2 ≤ C‖u‖Ḃ1
2,1

≤ C‖u‖
s−1

s

Ḃ0
2,1

‖u‖
1

s

Ḃs
2,1

≤ C(1 + 𝜏)
−

l+1

2 .

(93)‖𝜔(t)‖L2 + ‖b(t)‖L2 = ‖𝜔‖Ḃ0
2,2
+ ‖b‖Ḃ0

2,2
≤ C(‖𝜔‖Ḃ0

2,1
+ ‖𝜔‖Ḃ0

2,1
),

(94)‖∇�‖L2 + ‖∇b‖L2 ≤ C(1 + t)
−

l+1

2 .

‖u(t)‖2
Ḣ−l

+ ‖b(t)‖2
Ḣ−l

+ ‖𝜔(t)‖2
Ḣ−l

≤‖u0‖2Ḣ−l
+ ‖b0‖2Ḣ−l

+ ‖𝜔0‖2Ḣ−l
+ C

�

t

0

(‖∇u(𝜏)‖
L2
+ ‖∇𝜔(𝜏)‖

L2
+ ‖∇b(𝜏)‖

L2
)2−l

× (‖u(𝜏)‖
L2
+ ‖𝜔(𝜏)‖

L2
+ ‖b(𝜏)‖

L2
)l(‖u(𝜏)‖

Ḣ−l + ‖b(𝜏)‖
Ḣ−l + ‖𝜔(𝜏)‖

Ḣ−l )d𝜏

≤C0 + C
�

t

0

(‖u(𝜏)‖
Ḃ
0

2,1

+ ‖𝜔(𝜏)‖
Ḃ
0

2,1

+ ‖b(𝜏)‖
Ḃ
0

2,1

)l(1 + 𝜏)
−

�
l+1

2
(2−l)

�

× (‖u(𝜏)‖
Ḣ−l + ‖b(𝜏)‖

Ḣ−l + ‖𝜔(𝜏)‖
Ḣ−l )d𝜏

≤C0 + C𝜖
l sup
0≤𝜏≤t

�‖u‖
Ḣ−l + ‖b‖

Ḣ−l + ‖𝜔‖
Ḣ−l

��
�

t

0

(1 + 𝜏)
−

�
l+1

2
(2−l)

�
d𝜏

�

≤C + C𝜖
l sup
0≤𝜏≤t

�‖u‖
Ḣ−l + ‖b‖

Ḣ−l + ‖𝜔‖
Ḣ−l

�
.

Aj = {𝜉 ∈ ℝ
𝕕 ∶ 2j−1 ≤ |𝜉| < 2j+1}.
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and

Therefore, for a general function � ∈ S , we have

We now choose Ψ ∈ S such that

Then, for any � ∈ S,

and hence

in S≃ for any f ∈ S≃ . To define the inhomogeneous Besov space, we set

To define the homogeneous Besov space, we set

Besides the Fourier localization operators Δj , the partial sum Sj is also a useful nota-
tion. For an integer j,

For any f ∈ S≃ , the Fourier transform of Sjf  is supported on the ball of radius 2j . It 
is clear from (A1) that Sj → Id as j → ∞ in the distributional sense.

supp�Φj ⊂ Aj,
�Φj(𝜉) =

�Φ0(2
−j
𝜉) or Φj(x) = 2jdΦ0(2

jx),

∞∑
j=−∞

Φ̂j(�) =

{
1, if � ∈ ℝ

d ⧵ {0},

0, if � = 0.

∞∑
j=−∞

Φ̂j(�)�̂(�) = �̂(�) for � ∈ ℝ
d ⧵ {0}.

Ψ̂(�) = 1 −

∞∑
j=0

Φ̂j(�), � ∈ ℝ
d.

Ψ ∗ � +

∞∑
j=0

Φj ∗ � = �

(A1)Ψ ∗ f +

∞∑
j=0

Φj ∗ f = f

(A2)Δjf =

⎧⎪⎨⎪⎩

0, if j ≤ −2,

Ψ ∗ f , if j = −1,

Φj ∗ f , if j = 0, 1, 2, ⋅ ⋅ ⋅.

(A3)Δ̇jf = Φj ∗ f , if j = 0,±1,±2, ⋅ ⋅ ⋅.

Sj ≡

j−1∑
k=−1

Δk.
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Definition 1 (see, e.g., [4, 22])The inhomogeneous and homogeneous Besov spaces 
Bs
p,q

 and Ḃs
p,q

 with s ∈ ℝ and p, q ∈ [1,∞] consists of f ∈ S≃ and f ∈ S≃⧵P , 
respectively, satisfying

and

respectively, where P represents the set of polynomials.

Many frequently used function spaces are special cases of Besov spaces. The fol-
lowing lemma lists some useful equivalence and embedding relations.

Lemma 7 (see, e.g., [4, 22]) For any s ∈ R,

For any s ∈ ℝ and 1 < q < ∞,

For any non-integer s > 0 , the Hölder space Cs is equivalent to Bs
∞,∞

.

In the following Lemmas, we stated a Sobolev-type embedding theorem for 
Besov space.

Lemma 8 (see [4]) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞ . Then, for any real 

number s, the space Ḃs
p1,r1

 is continuously emdedded in Ḃ
s−d(

1

p1
−

1

p2
)

p2,r2
.

Lemma 9 (see [2]) For every s ∈ ℝ , 𝜖 > 0 , 1 < p < +∞ and 1 ≤ q ≤ +∞ , we have

Lemma 10 (see [4]) If p belongs to (1,  2], then Lp(ℝd) embeds continuously in 
Ḣs(ℝd) with s = d

2
−

d

p
.

We also used the space-time space defined below.

Definition 2 (see, e.g., [4, 22]) For t > 0 , s ∈ ℝ and 1 ≤ p, q, r ≤ ∞ , the inhomog-
enous and homogenous space-times spaces Lr

t
Bs
p,q

 , Lr
t
Ḃs
p,q

 and L̃r
t
Bs
p,q

 , L̃r
t
Ḃs
p,q

 are 
defined through the norms

and

‖f‖Bs
p,q

≡ ‖2js‖Δjf‖Lp‖lq
j
< ∞,

‖f‖Ḃs
p,q

≡ ‖2js‖Δ̇jf‖Lp‖lq
j
< ∞,

Hs
∼ Bs

2,2
, Ḣs

∼ Ḃs
2,2
.

Bs
q,min{q,2}

↪ Ws
q
↪ Bs

q,max{q,2}
.

(A4)Hs+�(ℝn) ↪ Bs
p,q
(ℝn) ↪ Hs−�(ℝn).

‖f‖Lrt Bs
p,q

≡ ‖‖2js‖Δjf‖Lp‖lq
j
‖Lrt , ‖f‖Lrt Ḃs

p,q
≡ ‖‖2js‖Δ̇jf‖Lp‖lq

j
‖Lrt ,
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respectively.

The inhomogeneous space-time space has the following properties.

As q = r,

The homogeneous space-time space has similar properties.
Bernstein’s inequalities are useful tools in dealing with Fourier localized func-

tions. These inequalities trade integrability for derivatives. The following propo-
sition provides Bernstein type inequalities for fractional derivatives. The upper 
bounds also hold when the fractional operators are replaced by partial derivatives.

Lemma 11 (see, e.g., [4, 22]) Let � ≥ 0 and 1 ≤ p ≤ q ≤ ∞ . 1) If f satisfies

for some integer j and a constant K > 0 , then

2) If f satisfies

for some integer j and constants 0 < K1 ≤ K2 , then

where C1 and C2 are constants depending on �, p and q.

Next, we give several useful calculus inequalities. We first give two lemmas 
regarding commutator estimates and product law. Lemma  12 and Lemma  13 
below with p1 = q2 = ∞ and q1 = p2 have previously been obtained in [4, 22]. 
Here we state the following more general cases without detailed proofs since they 
can be proved by following the methods in [4, 22].

Lemma 12 Let s > −1 , (p, r, p1, p2, q1, q2) ∈ [1,∞] with 1
p
=

1

p1
+

1

q1
=

1

p2
+

1

q2
 and u 

be a smooth divergence free vector field. Then for j ∈ ℤ,

‖f‖L̃rt Bs
p,q

≡ ‖2js‖Δjf‖Lrt Lp‖lqj , ‖f‖L̃rt Ḃs
p,q

≡ ‖2js‖Δ̇jf‖Lrt Lp‖lqj ,

Lr
t
Bs
p,q

↪ L̃r
t
Bs
p,q
, if q ≥ r, L̃r

t
Bs
p,q

↪ Lr
t
Bs
p,q
, if r ≥ q.

‖f‖Lrt Bs
p,q

≈ ‖f‖L̃rt Bs
p,q
.

supp�f ⊂ {𝜉 ∈ ℝ
d ∶ |𝜉| ≤ K2j},

‖(−Δ)�f‖Lq(ℝd) ≤ C1 2
2�j+jd(

1

p
−

1

q
)‖f‖Lp(ℝd).

supp�f ⊂ {𝜉 ∈ ℝ
d ∶ K12

j
≤ |𝜉| ≤ K22

j},

C1 2
2�j‖f‖Lq(ℝd) ≤ ‖(−Δ)�f‖Lq(ℝd) ≤ C2 2

2�j+jd(
1

p
−

1

q
)‖f‖Lp(ℝd).

(A5)‖2js‖[Δ̇j, u ⋅ ∇]v‖Lp‖lr
j
≤ C(‖∇u‖Lp1‖∇v‖Ḃs−1

q1,r
+ ‖∇v‖Lp2‖∇u‖Ḃs

q2,r
),
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where [Δ̇j, u ⋅ ∇]v = Δ̇j(u ⋅ ∇v) − u ⋅ Δ̇j(∇v).

Lemma 13 Suppose that s > 0 and (p, r, p1, p2, q1, q2) ∈ [1,∞] with 
1

p
=

1

p1
+

1

q1
=

1

p2
+

1

q2
 . Then the following hold true

For inhomogeneous Besov space has the similar inequality.

Finally, we recall the following Besov space interpolation estimate and the ine-
quality for homogeneous Besov space.

Lemma 14 (see [32]) Fixed m > l > k , and 1 ≤ p ≤ q ≤ r ≤ ∞ , we have

These parameters satisfy the following restrictions

Also 1 ≤ p� ≤ q� ≤ r� ≤ ∞ and solving we have � =
m−l

m−k
∈ (0, 1].

Lemma 15 (see [4, 22]) Let s, s1 and s2 be real numbers. Let s1 < s2 , 0 < 𝜃 < 1 , 
1 ≤ p ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞ . Then

For inhomogeneous Besov space has the similar inequality.
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(A6)‖2js‖[Δ̇j, u ⋅ ∇]v‖Lp‖lr
j
≤ C(‖∇u‖Lp1‖v‖Ḃs

q1,r
+ ‖v‖Lp2‖∇u‖Ḃs

q2,r
),

(A7)‖fg‖Ḃs
p,r
≤ C(‖f‖Lp1‖g‖Ḃs

q1,r
+ ‖f‖Ḃs

p2,r
‖g‖Lq2 ).

(A8)‖f‖Ḃl

q,q�
(ℝ2) ≤ ‖f‖𝜃

Ḃk

r,r�
(ℝ2)

‖f‖1−𝜃
Ḃm

p,p�
(ℝ2)

.

l = k� + m(1 − �),
1

q
=

�

r
+

1 − �

p
,

1

q�
=

�

r�
+

1 − �

p�
.

(A9)‖f‖Ḃs
p,r2

(ℝ2) ≤ ‖f‖Ḃs
p,r1

(ℝ2).

(A10)‖f‖
Ḃ
𝜃s1+(1−𝜃)s2
p,r (ℝ2)

≤ C‖f‖𝜃
Ḃ
s1
p,r(ℝ

2)
‖f‖1−𝜃

Ḃ
s2
p,r(ℝ

2)
.

(A11)‖f‖
Ḃ
𝜃s1+(1−𝜃)s2
p,1

(ℝ2)
≤

C

s2 − s1

�
1

𝜃
+

1

1 − 𝜃

�
‖f‖𝜃

Ḃ
s1
p,∞(ℝ2)

‖f‖1−𝜃
Ḃ
s2
p,∞(ℝ2)

.
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