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Abstract
HIV infection is a worldwide health threat, necessitating a multifaceted strategy that 
includes prevention, testing, treatment and care. Moreover, it is essential to address 
the structural and social factors that influence the spread of this viral infection. In 
this study, we utilize fractional calculus to clarify the dynamics of HIV infection 
in  vivo, specifically examining the interface amid the HIV and the immune sys-
tem and taking into account the impact of antiretroviral therapy. We use important 
results from fractional theory to analyze our proposed model of HIV infection and 
developed a numerical scheme to depict the system’s dynamic behavior. By vary-
ing input factors, we were able to observe the system’s chaotic nature and track its 
trajectory, as well as examine the effect of viruses on T-cells. Our results reveal key 
factors affecting the system, and demonstrate the consequence of antiretroviral ther-
apy on our proposed model of HIV. Moreover, we observe that the system’s strong 
non-linearity is responsible for the oscillation phenomena and identify the most sen-
sitive parameters of the system.

Keywords Fractional-calculus · Immune system · HIV dynamics · Numerical 
scheme · Antiretroviral therapy · Dynamical behavior

1 Introduction

It is eminent that the viruses of the infection of HIV attacks the immune system and 
target CD4+ T-cells, which play a significant role in the body’s cover against infec-
tions. HIV weakens the immune system over time, making individuals vulnerable to 
several infections and diseases. HIV is a global health concern, with millions of peo-
ple affected worldwide. It has significant social, economic, and healthcare impacts, 
both at the individual and societal levels. HIV can result in decreased productivity 
and increased healthcare costs, as well as a reduced life expectancy in some cases. 
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Antiretroviral therapy (ART) is the standard treatment for HIV which can effec-
tively suppress the virus, slow down the infection and improve the quality of life 
of infected individuals [1]. Prevention measures, such as practicing safe sex, using 
clean needles, and accessing early testing and treatment, are essential in controlling 
the spread of HIV. Education, awareness, and access to healthcare services are vital 
in addressing the complex challenges associated with HIV and supporting those 
living with the virus [2]. Additionally, ongoing research and understanding of the 
dynamics of HIV infection and its interaction with the immune system are important 
for developing effective control strategies, treatment and management of HIV/AIDS.

HIV infection can decrease the number of CD4+ T-cells over time, leading to 
immunodeficiency, which weakens the immune system and makes the body more 
vulnerable to other infections. HIV invades and replicates inside T-cells, leading to 
their destruction and a gradual decline in their numbers [3]. This depletion of T-cells 
hinders the immune system’s ability to mount a strong immune response against 
other diseases and infections. If HIV is not treated properly, then it leads to AIDs 
and the immune system is not able to fight against other infections. AIDs is reported 
when T-cell falls below a specific level, or when they develop certain infections or 
cancers. Nevertheless, proper medical care and treatment can enable people with 
HIV to manage the virus and prevent it from causing immunodeficiency and AIDS. 
Antiretroviral therapy (ART) is a permutation of medications that can overturn HIV 
replication and control further damage to the immune system. When taken consist-
ently and correctly, ART can help people with HIV live long, healthy lives. In vivo 
study of HIV play a critical role in advancing our understanding of the virus, guid-
ing the development of effective interventions, and addressing the multifaceted chal-
lenges associated with HIV infection. They provide a realistic and dynamic platform 
for research that ultimately contributes to improved prevention, treatment, and care 
strategies for individuals living with or at risk of HIV.

It has been recognized that mathematical models are useful tools for forecast-
ing, understanding, optimising and making choices in a wide range of domains 
[4, 5]. They enhance our ability to evaluate ideas, analyse complex systems and 
offer direction for practical applications, ultimately leading to advancements in 
various fields like, engineering, economics, medicine and science [6, 7]. Recent 
advancements have allowed mathematical tools to formulate, investigate and ana-
lyze the intricate nature of biological processes [8]. In view of this, experts in epi-
demiological modeling [9–12] have been created novel models to examine HIV 
infection from different perspectives. These mathematical models afford intui-
tions into the dynamics of the immune response and viruses and are used to pro-
vide strategies for the management of the infection. These mathematical models 
described the intricate phenomena of immune system and virus with the effect of 
treatment and preventive measures [13]. Mostly of these models consists of three 
state-variables such as HIV virions, uninfected and infected T-cells, to provide 
basic understanding of the regulation of viral propagation. In [14], the authors 
studied the interaction of HIV viruses, healthy and infected T-cells. It is eminent 
that the infection of HIV can effectively suppressed through antiretroviral ther-
apy, however, therapeutic approaches may not fully restore the immune system 
[15]. In order to acquire more exact and accurate findings that can contribute to 
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the prevention and control of HIV infection, further research is required to thor-
oughly study the complex dynamics of the immune system and HIV infection.

This research is organized as: In the second section, we constructed the dynam-
ics of HIV infection to highlight the intricate phenomena of immune system and 
HIV viruses with the effect of antiretroviral therapy. In section three, we illustrate 
the rudimentary concepts of the fractional theory for examination of our model. 
In section four, the dynamics is represented through fractional framework. Sec-
tion five investigates the solution pathways and oscillatory nature of the system 
using numerical techniques. Finally, we conclude our work by summarizing our 
findings in the last section.

2  Evaluation of HIV Dynamics

Here, we will construct the dynamics of HIV that represents the interface between 
viruses and immune cells with the effect of antiretroviral therapy. There are 
numerous mathematical models for this viral infection in the literature [16–18]. 
In accordance with the findings of the researcher in [19], the phenomenon of HIV 
transmission can be described as

in which r is the growth rate of healthy T-cells and s indicating the recruit-
ment rate of healthy T-cells. The death rates for viruses, vigorous and diseased 
T-cells are denoted by �V , �T , and �I , respectively. The number at which viruses 
are reproduced by infected T-cells denoted by N while � denotes the rate of infec-
tion of healthy T-cells. The HIV model proposed by Perelson & Nelson in [20] 
can be represented as follows

In [21], the concept of saturated incidence rate has been presented in the 
dynamics of HIV infection. It is well-known that including the concept of satu-
rated incidence, can help improve our understanding of in what way the virus 
interrelates with the host’s immune system, and how this may impact the clini-
cal course of the infection, treatment strategies, and prevention efforts. Then, we 
have

(1)
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In this context, we are examining the levels of CD8+ T-cells and triggered CD8+ 
T-cells represented as C and A, respectively. We epitomize the reproduction of 
CD8+ T-cells from thymus by ℏC while these cells are naturally removed at a rate 
of �C . The activation of CD8+ T-cells happens in the existence of HIV and elimi-
nated at �A . Therefore, assuming the above conditions, the dynamics of HIV can be 
described as

where � is the rate at which antiretroviral therapy reduce the load of viruses. 
Moreover, we have the following

It’s important to note that HIV treatment plans are highly individualized and may 
vary depending on factors such as the stage of HIV infection, overall health of the 
person living with HIV, potential drug interactions, and adherence to medication 
regimens. The development of an effective treatment strategy for controlling HIV 
requires close collaboration with an experienced health-care official.

3  Fractional‑calculus Analysis

Fractional calculus provides a powerful mathematical tool for studying and ana-
lyzing complex biological processes that exhibit non-local and memory-dependent 
behavior. It allows for a more accurate and comprehensive description compared to 
classical integer-order models [22–24] and it has found applications in various areas 
of biology, ranging from cancer growth to neuronal dynamics.

Fractional calculus has been used in some studies to represent the dynamics of 
this viral infection, particularly in understanding the memory-dependent behavior 
and complex dynamics associated with the virus. The use of fractional derivatives 
in modeling HIV infection provides a way to account for the long-term memory 
effects and anomalous diffusion that can occur in the progression of the disease. It’s 

(3)
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T(0) = T0, I(0) = I0,V(0) = V0,C(0) = C0 and A(0) = A0.
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worth noting that while fractional calculus has been used in some studies to model 
HIV infection dynamics, it is not the only mathematical approach used in this field, 
and more research is required to completly understand the intricate process of HIV 
infection. HIV infection is a complex and dynamic process that involves multiple 
biological, immunological, and epidemiological factors, and mathematical mod-
eling, including fractional calculus, can provide valuable insights into its dynamics 
and potential treatment strategies. Therefore, we represent our model in framework 
of CF fractional derivative as

with the initial condition

There are numerous applications of fractional theory in modeling of infectious 
diseases. Here, we focussed to model the dynamics of HIV, taking into account the 
non-local interactions and memory effects that influence the dynamics of the virus 
in the body. CFD.

3.1  Results of Fractional Operator

In this subsection, we will present fundamental definitions and results that are cru-
cial for analyzing in-vivo dynamics of HIV with the effect of antiretroviral therapy. 
These analyses will be conducted within the framework of Caputo-Fabrizio (CF) 
derivative. The rudimentary findings of the Caputo-Fabrizio operator is given below:

Definition 1 Take a function f in, then the CF derivative is given by the following

where a is smaller than b and the fractional order � belongs to the interval [0,1] . 
In addition to this, the normality in the above is indicated by U(�) with the condition 

(5)
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�(0) = �(1) = 1 [25]. On the other hand, if f  does not belong �1(a, b) , then, we 
have

Remark 1 In the case, if and, then Eq. (6) implies that

Furthermore, we have

Now, we will represent the concept of integral for CF fractional operator intro-
duced in [26].

Definition 2 Take a function, then the integral in CF structure is given by the 
following

in which the fractional order � obeys the condition 0 < 𝜉 < 1.

Remark 2 The aforementioned Definition 2 further leads to

with �(�) = 2

2−�
 , 0 < 𝜉 < 1 . After that, the Eq. (10) is utilized and the follow-

ing is introduced, given by

4  Numerical Scheme for HIV Dynamics

Here, our key objective is to demonstrate the solution pathways of the recom-
mended system (4) of HIV with the help of numerical findings. Various numeri-
cal methods have been previously employed in the literature to investigate the 
dynamics of Caputo-Fabrizio fractional systems, such as those discussed in ref-
erences [27–29]. In this study, we will adopt the numerical scheme presented in 
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[29] as it is stable, easily implementable and more reliable for representing the 
dynamics of fractional system. We will visually depict the trajectory behavior of 
the system and illustrate the fluctuations that occur with variations in different 
input factors.

Initially, the recommended dynamics of HIV infection is represented in Volt-
erra type, and then we utilized the basic results of fractional theory. The numerical 
scheme is obtained by utilizing the first equation of our system as

For t = tm+1,m = 0,1,… , , we have the below

and

In this step, we calculate the differences between successive terms of the system 
as

In addition, we utilize an interpolation polynomial to approximate the function 
�1(t, z1) within the time interval [tk, tk + 1] , resulting in:

where h represents the time duration and is defined as h = tm − tm−1 . The expression 
of �k(t) is utilized to compute the value of the subsequent integral:

Now, putting (17) in (15), we have the following

The provided numerical scheme corresponds to the first equation in our system 
(5) that models HIV infection. By applying the same methodology, we can obtain 
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the appropriate scheme for the other equations of the recommended model (5) of 
HIV as:

and

The method employed involves a two-step Adams-Bashforth scheme to handle 
the Caputo-Fabrizio operator, which considers the nonlinearity of the kernel. More-
over, it includes an exponential decay law that is specially designed for the Caputo-
Fabrizio operator.

5  Numerical Results

The infection of HIV have a high negative impact on households in APR despite 
massive worldwide efforts to avoid it. A loss of capital needed to address the 
income-to-expenditure gap, decreased employment income, and increased health 
care costs are all contributory factors to this burden. In order to avoid these losses, 
it is crucial to understand and more accurately represent the dynamics of this viral 
infection. In this section, we will illustrate the dynamical behaviour of the system 
to show the impact of input parameters on the system. For numerical purposes, the 
values of state-variables and input parameters are considered.

In the first scenario presented in Figs. 1, 2 and 3, we have shown the impact of the 
fractional parameter on the system and presented a comparative view of integer and 
non-integer cases. In Fig. 1, we assumed the value of fractional parameter � = 1.0 to 
represent the integer case of the system. In Figs. 2 and 3, we assumed the values of 
� to be 0.856 and 0.656 to illustrate the non-integer case of the system. It has been 
observed that the fractional parameter has an attractive impact on the dynamics of 
the HIV infection. We showed the influence of the input parameter � on the output 
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of the system in Fig. 4. In this simulation, � is assumed to be 0.003 , 0.005 , 0.007 and 
0.009 to highlight the dynamics of CD8+ T-cells. In Fig. 5, the tracking paths of the 
concentrations of CD4+ T-cells, HIV viruses and CD8+ T-cells has been illustrated 
with the variation of the input parameter � . For this purpose, we take the values of 

Fig. 1  Representation of the solution paths of HIV infection system with the fractional parameter 
� = 1.00
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� to be 1 × 10−5, 10 × 10−5, 50 × 10−5, and 100 × 10−5 . The solution pathways of the 
system is highlighted with different values of � in Fig. 6. In this simulation, we take 
� = 0.35,0.45,0.55,0.65 and observed the role of � on the output of the system.

Fig. 2  Representation of the solution paths of HIV infection system with the fractional parameter 
� = 0.856
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In the last simulation illustrated in Figs.  7 and 8, we plotted the phase por-
trait of the system with different input factors to conceptualize the phenomena. In 
Fig. 7, we considered the input parameters � = 0.9 , s = 3.0 and r = 3.0 while input 
values are taken to be � = 0.8 , s = 5.0 and r = 1.0 in Fig. 8. It can be observed that 

Fig. 3  Representation of the solution paths of HIV infection system with the fractional parameter 
� = 0.656
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Fig. 4  Plotting the solution paths of HIV infection system with the variation of the input parameter � , 
i.e., � = 110−5, 1010−5, 5010−5, 10010−5
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Fig. 5  Plotting the solution paths of HIV infection system with the variation of the input parameter � , 
i.e., � = 0.003,0.005,0.007,0.009

Fig. 6  Graphical respresentation of the solution pathways of healthy CD4+ T-cells, infected CD4+ T-cells 
and HIV viruses with the variation of � , i.e., � = 0.35,0.45,0.55,0.65
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the system possesses oscillatory behaviour which is due to the nonlinear nature of 
the system. These types of phenomena depend on the initial conditions, system 
parameters and strong nonlinearity of the system which needs to be controlled. 
Further developments in in vivo models of HIV will provide critical insights into 

Fig. 7  Graphical analysis of the phase portrait of the system with diverse values of input parameters of 
HIV model with � = 0.9 , s = 3.0 and r = 3
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the mechanisms immune responses, viral persistence and the advancement of tar-
geted strategies. These studies will pave the way for the advancement of more 
effective treatment interventions and ultimately aid in achieving long-term remis-
sion or a functional cure for HIV.

Fig. 8  Graphical investigation of the phase portrait of the system with dissimilar values of input param-
eters of HIV model with � = 0.8 , s = 5 and r = 1
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6  Conclusion

The defensive system of humans is weakened by HIV infection against other 
infections by attacking the immune system and destroying T-cells. The global 
public health community is currently quite concerned about this issue. Despite 
recent evidence that the infection is declining, further study is necessary to com-
pletely understand how the viruses interact with T-cells. In this study, we formu-
lated the dynamics of HIV, considering the interaction of viruses and immune 
system with the effect of antiretroviral therapy. The basic concepts of fractional 
calculus are presented for the analysis of the model and a fractional framework is 
used for the dynamics of HIV infection. To represent the dynamical behaviour of 
the system, we introduced a numerical scheme. The tracking paths and the phase 
portraits of the system are depicted to illustrate the most sensitive parameters of 
the system. We have illustrated different simulations to show the importance of 
input parameters on the output of the system and to conceptualize the most cru-
cial circumstances of the system. The impact of input factors has been visualized 
with the help of numerical findings and most critical parameters are suggested 
to the policymakers and health officials. In  vivo models will remain crucial in 
assessing cutting-edge therapeutic approaches and HIV treatment plans. Testing 
of novel antiretroviral medications, immunotherapies, gene treatments, and com-
bination strategies are included in this. Future models will be used to evaluate the 
effectiveness, safety, and possibility of viral eradication or long-term remission of 
the therapy.
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