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Abstract
This paper considers a single-layer fourth order quasi-geostrophic equation in two-
dimensional case. We prove the existence and uniqueness of global smooth solution 
to the Cauchy problem of this equation by using energy estimate. We also establish a 
new estimate for the nonlinear term and obtain decay estimates of the solution in L2.
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1  Introduction

A hierarchy of ocean models occur in the literature of wind-driven circulation, start-
ing from the most complex model and ending with a very elementary model (see 
e.g. [1, 7]). One of them is the so-called quasi-geostrophic �-plane model, which 
is considered as a simplification of the shallow-water equations when the Rossby 
number is small and the magnitude of bottom topography variations is comparable 
to the Rossby number. This paper studies the homogeneous quasi-geostrophic model 
by ignoring the effect of the bottom friction and the wind-stress effect. In this case, 
the model takes the form

where � = �(x, y, t) is the geostrophic pressure (or the geostrophic stream function), 
and the nonlinear term J is defined by

(1.1)
�

�t
[Δ� − F�] + J(� ,Δ�) + �

��

�x
=

1

Re

Δ2� ,
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The coefficients in equation (1.1) are: the rotational Froude number F, the Coriolis 
parameter � and the Reynolds number Re.

Equation (1.1) is a single-layer quasi-geostrophic model. A direct extension of 
this model is a two-layer quasi-geostrophic model, where the densities are constant 
in each layer and the motion of fluid in both layers is coupled through the conti-
nuity of pressure and vertical velocity (see [1]). Due to wide applications in mete-
orology and oceanography, these models have been intensively studied in the past 
years. In [8], the authors proved global existence of weak solutions for the fractional 
quasi-geostrophic equation with Δ2� replaced by (−Δ)1+�� ( � ∈ (0, 1] ) and they 
also obtained long-time behavior of the solution when � ∈ (0,

1

2
] . The authors of [3] 

discussed the existence theory and decay estimates for two-layer quasi-geostrophic 
model with fractional dissipative term. Decay estimates were also studied in [2] for 
a type of two-layer quasi-geostrophic model with both viscosity and friction. Medjo 
in [6] investigated the existence of strong solutions and maximal attractor for the 
multi-layer quasi-geostrophic equations.

In this work, we study the existence and large time behavior of smooth solution 
for the initial-value problem equipped with the initial data

Throughout the paper, for 1 ≤ p < +∞ , we denote by Lp(ℝ2) the Lebesgue space 
equipped the norm

For s ∈ ℝ , Hs(ℝ2) denotes the nonhomogeneous Sobolev space whose norm is 
defined by

where û(�) is the Fourier transform of u.
Now we state the main results of the paper.

Theorem 1.1  Assume that �0 ∈ Hm(ℝ2) with m ≥ 4 be an integer, then system (1.1)–
(1.2) admits a unique global solution � ∈ C(ℝ+;Hm(ℝ2)).

Theorem  1.2  Let �0 ∈ Hm(ℝ2) ∩ L1(ℝ2) with m ≥ 4 be an integer, and � is the 
solution obtained by Theorem  1.1. Then for any multi-index � we have the decay 
estimates

J (f , g) ∶=
�f

�x
⋅

�g

�y
−

�f

�y
⋅

�g

�x
.

(1.2)�(x, y, 0) = �0(x, y).

‖u‖Lp =
�
∫
ℝ2

�u(x)�pdx
� 1

p

.

Hs(ℝ2) = {u ∈ S
� ∣ ‖u‖2

Hs = ∫
ℝ2

(1 + �𝜉�2)s��u(𝜉)�2d𝜉 < +∞},
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and

Theorem 1.1 is proved via a-priori energy estimates, and the proof is given in the 
next section. In Section 3, we present the proof of Theorem 1.2. We remark that the 
decay estimates of system (1.1)–(1.2) are not obtained in the previous works due to 
the effect of the nonlinear term J(� ,Δ�) . In this work, a new estimate is established 
for this nonlinear term and we apply this estimate to get the large time behavior for 
all the derivatives of the solution.

2 � Global Existence of the Solution

In this section, we give the proof of Theorem 1.1. Indeed, the proof consists of two 
crucial steps. The first step is to obtain local existence of the solution to system 
(1.1)–(1.2), and the second step is to extend the local solution globally in time by 
establishing the a-priori estimates. For the first step, we can apply the regularized 
strategy of [5, Chapter 3] to study the approximated system

where J�f  denotes the mollification of function f defined by

with � be a positive and radial C∞
0

 function whose mass is equal to one. By a limiting 
argument for the regularized system (2.1)–(2.2), it is not hard to obtain local exist-
ence and uniqueness of solution to system (1.1)–(1.2). Moreover, if T∗ < +∞ is the 
maximal existence time of the solution, then there holds

Since the argument for the local existence part is standard, we omit further details. 
Hence, in order to complete the proof of Theorem 1.1, it is sufficient to establish the 
following three propositions which give the a-priori estimates.

(1.3)‖D��‖L2 ≤ C(1 + t)−
1

4
−

���
4 , ��� = 0, 1, ⋯ , m − 1,

(1.4)‖D��‖L2 ≤ C(1 + t)−
m

4 , ��� = m.

(2.1)
�

�t
[Δ�� − F��] + J�J(J��

� ,J�Δ�
�) + �J2

�

��

�x
=

1

Re

J
2

�
Δ2� ,

(2.2)�(x, y, 0) = J��0,

J�f (x) =
1

�2 ∫ℝ2

�
(x − y

�

)
f (y)dy

lim
t→T∗

‖�(t)‖Hm = +∞.
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Proposition 2.1  Let � be a sufficiently smooth solution to system (1.1)–(1.2). Assume 
� and its derivatives decay at infinity, then there hold

where C1 , C2 depend only on ‖�0‖H1 , ‖∇�0‖H1 , respectively.

Proof  We multiply equation (1.1) with 2� to get

Since

integrating (2.5) in time gives

Hence, the bound (2.3) follows.
To obtain (2.4), we multiply Eq. (1.1) with 2Δ� to get

Note that

thus the bound (2.4) follows immediately. 	�  ◻

Proposition 2.2  With the same assumptions as Proposition 2.1, we have

(2.3)�
ℝ2

(|∇�|2 + F|�|2)dxdy + 2

Re
�

t

0
�
ℝ2

|Δ�|2dxdyds ≤ C1,

(2.4)∬
ℝ2

(|Δ�|2 + F|∇�|2)dxdy + 2

Re
∫

t

0
∬
ℝ2

|∇Δ�|2dxdyds ⩽ C2,

(2.5)

−
d

dt ∬
ℝ2

(|∇�|2 + F|�|2)dxdy + 2∬
ℝ2

J(� ,Δ�)�dxdy =
2

Re
∬
ℝ2

|Δ�|2dxdy.

∬
ℝ2

J(� ,Δ�)�dxdy = 0,

∬
ℝ2

(|∇�|2 + F|�|2)dxdy + 2

Re
∫

t

0
∬
ℝ2

|Δ�|2dxdyds ⩽ ∬
ℝ2

(|∇�0|2 + F|�0|2)dxdy.

d

dt ∬
ℝ2

(|Δ�|2 + F|∇�|2)dxdy + 2∬
ℝ2

J(� ,Δ�)Δ�dxdy +
2

Re
∬
ℝ2

|∇Δ�|2dxdy = 0.

∬
ℝ2

J(� ,Δ�)Δ�dxdy = 0,

(2.6)�
ℝ2

(|∇Δ�|2 + F|Δ�|2)dxdy + 1

Re
�

t

0
�
ℝ2

|Δ2�|2dxdyds ≤ C3,
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where C3 , C4 depend on ‖∇�0‖H3 and t.

Proof  From Eq. (1.1), we can get the following energy identity

Note that

the nonlinear integral term of the above identity is estimated by

where we have used Young’s inequality and the fact ‖Δ�‖L2 ≤ C in the last step. 
Hence, the bound (2.6) follows by choosing � =

1

Re

.
Similarly, taking energy estimate at the level of fourth order derivative gives

For the nonlinear term, we have

Then choosing � =
1

Re

 yields the desired bound (2.7). 	� ◻

(2.7)∬
ℝ2

(|Δ2�|2 + F|∇Δ�|2)dxdy + 1

Re
∫

t

0
∬
ℝ2

|∇Δ2�|2dxdyds ⩽ C4,

d

dt ∬
ℝ2

(|∇Δ�|2 + F|Δ�|2)dxdy + 2

Re
∬
ℝ2

|Δ2�|2dxdy = −2∬
ℝ2

∇J(� ,Δ�)∇Δ�dxdy.

∬
ℝ2

J(f , g)gdxdy = 0,

����
ℝ2

∇J(� ,Δ�)∇Δ�dxdy
��� =

����
ℝ2

J(∇� ,Δ�)∇Δ�dxdy
���

≤ 2‖Δ�‖L2‖∇Δ�‖2
L4

≤ C‖Δ�‖L2
�
‖Δ�‖

1

2

L2
‖Δ2�‖

3

2

L2

�

≤ �‖Δ2�‖2
L2
+ C,

d

dt ∬
ℝ2

(|Δ2�|2 + F|∇Δ�|2)dxdy + 2

Re
∬
ℝ2

|∇Δ2�|2dxdy = −2∬
ℝ2

ΔJ(� ,Δ�)Δ2�dxdy.

����
ℝ2

ΔJ(� ,Δ�)Δ2�dxdy
��� = 2

����
ℝ2

J(∇� ,∇Δ�)Δ2�dxdy
���

≤ 2‖Δ�‖L2‖Δ2�‖2
L4

≤ C‖Δ�‖L2 (‖∇Δ�‖
1

2

L2
‖∇Δ2�‖

3

2

L2
)

≤ �‖∇Δ2�‖2
L2
+ C.
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Proposition 2.3  With the same assumptions as Proposition 2.2, there exists Cm > 0 
depending on ‖�0‖Hm and t such that

This proposition can be proved with an induction on m. We omit further details 
for simplicity. With these propositions, Theorem 1.1 thus follows.

3 � Decay Estimates of the Solution

In this section we study the large time behaviour of solution to the Cauchy problem 
for the nonlinear quasi-geostrophic model (1.1)–(1.2). We first derive the integral 
identity of the solution. Applying Fourier transform to Eq. (1.1), we get

which implies that

In the succeeding arguments, we need to estimate the nonlinear term in (3.2) which 
is presented in Lemma 3.1 below.

Lemma 3.1  For any � ∈ H3(ℝ2) , there holds that

Proof  Recall that

we use integration by parts to rewrite Ĵ(𝜓 ,Δ𝜓) as

‖�(t)‖2
Hm + �

t

0

‖∇�(s)‖2
Hmds ≤ Cm.

(3.1)(−|𝜉|2𝜓̂ − F𝜓̂)t + Ĵ(𝜓 ,Δ𝜓) + i𝛽𝜉1𝜓̂ =
1

Re

|𝜉|4𝜓̂ ,

(3.2)𝜓̂(𝜉1, 𝜉2, t) =e

i𝛽𝜉1−
1
Re

|𝜉|4
|𝜉|2+F t

𝜓̂0 + ∫
t

0

e
(t−s)

i𝛽𝜉1−
1
Re

|𝜉|4
|𝜉|2+F Ĵ(𝜓 ,Δ𝜓)

|𝜉|2 + F
ds.

(3.3)�Ĵ(𝜓 ,Δ𝜓)� ⩽ 2(𝜉2
1
+ 𝜉2

2
)‖𝜓‖L2‖Δ𝜓‖L2 .

J(f , g) = fxgy − fygx,
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Thus there holds

Ĵ(𝜓 ,Δ𝜓) = ∬
ℝ2

�
𝜓xΔ𝜓y − 𝜓yΔ𝜓x

�
e−i(x𝜉1+y𝜉2)dxdy

= i𝜉2 ∬
ℝ2

Δ𝜓𝜓xe
−i(x𝜉1+y𝜉2)dxdy − i𝜉1 ∬

ℝ2

Δ𝜓𝜓ye
−i(x𝜉1+y𝜉2)dxdy

= i𝜉2

⎛⎜⎜⎝∬ℝ2

𝜓xx𝜓xe
−i(x𝜉1+y𝜉2)dxdy + i𝜉2 ∬

ℝ2

𝜓x𝜓ye
−i(x𝜉1+y𝜉2)dxdy

−∬
ℝ2

𝜓xy𝜓ye
−i(x𝜉1+y𝜉2)dxdy

⎞⎟⎟⎠
− i𝜉1

⎛⎜⎜⎝
i𝜉1 ∬

ℝ2

𝜓x𝜓ye
−i(x𝜉1+y𝜉2)dxdy

−∬
ℝ2

𝜓x𝜓xye
−i(x𝜉1+y𝜉2)dxdy +∬

ℝ2

𝜓yy𝜓ye
−i(x𝜉1+y𝜉2)dxdy

⎞⎟⎟⎠
=
�
𝜉2
1
− 𝜉2

2

�
∬
ℝ2

𝜓x𝜓ye
−i(x𝜉1+y𝜉2)dxdy

−
𝜉1𝜉2
2 ∬

ℝ2

��𝜓x
��2e−i(x𝜉1+y𝜉2)dxdy +

𝜉1𝜉2
2 ∬

ℝ2

���𝜓y
���
2

e−i(x𝜉1+y𝜉2)dxdy

−
𝜉1𝜉2
2 ∫

ℝ2

��𝜓x
��2e−i(x𝜉1+y𝜉2)dxdy +

𝜉1𝜉2
2 ∬

ℝ2

���𝜓y
���
2

e−i(x𝜉1+y𝜉2)dxdy

=
�
𝜉2
1
− 𝜉2

2

�
∬
ℝ2

𝜓x𝜓ye
−i(x𝜉1+y𝜉2)dxdy

− 𝜉1𝜉2 ∬
ℝ2

��𝜓x
��2e−i(x𝜉1+y𝜉2)dxdy + 𝜉1𝜉2 ∫

ℝ2

���𝜓y
���
2

e−i(x𝜉1+y𝜉2)dxdy

= −
�
𝜉2
1
− 𝜉2

2

�
∬
ℝ2

𝜓𝜓xye
−i(x𝜉1+y𝜉2)dxdy −

�
𝜉2
1
− 𝜉2

2

�
(−i𝜉2)∬

ℝ2

𝜓𝜓xe
−i(x𝜉1+y𝜉2)dxdy

+ 𝜉1𝜉2 ∬
ℝ2

𝜓𝜓xxe
−i(x𝜉1+y𝜉2)dxdy + (𝜉1𝜉2)(−i𝜉1)∬

ℝ2

𝜓𝜓xe
−i(x𝜉1+y𝜉2)dxdy

− 𝜉1𝜉2 ∬
ℝ2

𝜓𝜓yye
−i(x𝜉1+y𝜉2)dxdy − (𝜉1𝜉2)(−i𝜉2)∬

ℝ2

𝜓𝜓ye
−i(x𝜉1+y𝜉2)dxdy

= −
�
𝜉2
1
− 𝜉2

2

�
∬
ℝ2

𝜓𝜓xye
−i(x𝜉1+y𝜉2)dxdy −

1

2

�
𝜉2
1
− 𝜉2

2

�
(𝜉1𝜉2)∬

ℝ2

�𝜓�2e−i(x𝜉1+y𝜉2)dxdy

+ 𝜉1𝜉2 ∬
ℝ2

𝜓𝜓xxe
−i(x𝜉1+y𝜉2)dxdy +

1

2
𝜉3
1
𝜉2 ∬

ℝ2

�𝜓�2e−i(x𝜉1+y𝜉2)dxdy

− 𝜉1𝜉2 ∬
ℝ2

𝜓𝜓yye
−i(x𝜉1+y𝜉2)dxdy −

1

2
𝜉1𝜉

3

2 ∬
ℝ2

�𝜓�2e−i(x𝜉1+y𝜉2)dxdy

= −
�
𝜉2
1
− 𝜉2

2

�
∬
ℝ2

𝜓𝜓xye
−i(x𝜉1+y𝜉2)dxdy + 𝜉1𝜉2 ∬

ℝ2

𝜓𝜓xxe
−i(x𝜉1+y𝜉2)dxdy

− 𝜉1𝜉2 ∬
ℝ2

𝜓𝜓yye
−i(x𝜉1+y𝜉2)dxdy.
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	�  ◻

We remark that for the nonlinear estimate Ĵ(𝜓 ,Δ𝜓) , in the works [2, 8], the 
authors used the following bound (due to [4])

However, we observe that it is not sufficient to prove Theorem  1.2 by using this 
bound. Therefore, the decay argument in [2, 8] can not cover our fourth-order quasi-
geostrophic equation. Hence, the bound (3.3) is new and crucial in the following 
decay estimates. In particular, the step of establishing logarithmic decay bound is 
not needed in our proof by using this new bound (3.3). Now we can prove The-
orem 1.2 in the framework of Fourier splitting method which is originally due to 
Schonbek [9, 10] and improved by Zhang [11].

Proof of Theorem 1.2  We first show

From the basic energy estimate (2.5), namely,

we have

Applying Plancherel’s theorem (that is, ‖f‖L2 = ‖f̂‖L2 for any f ∈ L2 ) to (3.5), we 
see

Define

then

�Ĵ(𝜓 ,Δ𝜓)� ⩽ 2
�
𝜉2
1
+ 𝜉2

2

�
∬
ℝ2

�𝜓��Δ𝜓�dxdy ⩽ 2(𝜉2
1
+ 𝜉2

2
)‖𝜓‖L2‖Δ𝜓‖L2 .

�Ĵ(𝜓 ,Δ𝜓)� ⩽ (𝜉2
1
+ 𝜉2

2
)‖∇𝜓‖2

L2
.

(3.4)‖∇�‖L2 + ‖�‖L2 ⩽ C(1 + t)−
1

4 .

(3.5)
d

dt ∬
ℝ2

(|∇�|2 + F|�|2)dxdy + 2

Re
∬
ℝ2

|Δ�|2dxdy = 0,

(3.6)‖∇�‖2
L2
+ F‖�‖2

L2
⩽ C, ∫

t

0
∬
ℝ2

�Δ��2dxdyds ⩽ C.

(3.7)

d

dt ∬
ℝ2

[(𝜉2
1
+ 𝜉2

2
)|𝜓̂|2 + F|𝜓̂|2]d𝜉1d𝜉2 + 2

Re
∬
ℝ2

(𝜉2
1
+ 𝜉2

2
)
2|𝜓̂|2d𝜉1d𝜉2 = 0.

S1(t) =
�
(�1, �2);(�1, �2) ∈ ℝ

2,
�2
1
+ �2

2�
F + �2

1
+ �2

2

⩽

√
3Re√

4(1 + t)

�
,
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Inserting (3.8) into (3.7), we obtain

From (3.2), Lemma 3.1 and (3.6), we can get

Using this estimate, we have

Now it follows from (3.10) and (3.11) that

then we have

(3.8)

∬
ℝ2

|𝜉|4|𝜓̂|2d𝜉1d𝜉2 = ∬
ℝ2�S1(t)

|𝜉|4|𝜓̂|2d𝜉1d𝜉2 +∬
S1(t)

|𝜉|4|𝜓̂|2d𝜉1d𝜉2

⩾ ∬
ℝ2�S1(t)

3Re(F + |𝜉|2)
4(1 + t)

|𝜓̂|2d𝜉1d𝜉2 +∬
S1(t)

|𝜉|4|𝜓̂|2d𝜉1d𝜉2

⩾∬
ℝ2

3Re(F + |𝜉|2)
4(1 + t)

|𝜓̂|2d𝜉1d𝜉2 −∬
S1(t)

3Re(F + |𝜉|2)
4(1 + t)

|𝜓̂|2d𝜉1d𝜉2.

(3.9)

d

dt ∬
ℝ2

(|∇𝜓|2 + F|𝜓|2)dxdy + 3

2 ∬
ℝ2

F + |𝜉|2
1 + t

|𝜓̂|2d𝜉1d𝜉2

⩽ C∬
S1(t)

F + |𝜉|2
1 + t

|𝜓̂|2d𝜉1d𝜉2.

(3.10)

�𝜓̂� ⩽ C‖𝜓0‖L1 + C ∫
t

0

e
−�𝜉�4(t−s)
Re(�𝜉�2+F)

�𝜉�2‖𝜓‖L2‖Δ𝜓‖L2
�𝜉�2 + F

ds

⩽ C‖𝜓0‖L1 + C�𝜉�2 ∫
t

0

‖𝜓‖L2‖Δ𝜓‖L2ds

⩽ C + C�𝜉�2
�
∫

t

0

‖𝜓‖2
L2
ds

� 1

2

�
∫

t

0

‖Δ𝜓‖2
L2
ds

� 1

2

⩽ C + C�𝜉�2t 12 .

(3.11)

∬
S1(t)

F + �𝜉�2
(1 + t)

�𝜓̂�2d𝜉1d𝜉2 ⩽ C

(1 + t) ∫
2𝜋

0
∫

�
C

1+t

� 1
4

0

(F + r2)(1 + r4t)rdrd𝜃

⩽
C

(1 + t)
⋅

�
1√
1 + t

+
t

(1 + t)
3

2

�

⩽ C(1 + t)−
3

2 .

d

dt ∬
ℝ2

(|∇𝜓|2 + F|𝜓|2)dxdy + 3

2 ∬
ℝ2

F + |𝜉|2
1 + t

|𝜓̂|2d𝜉1d𝜉2 ⩽ C

(1 + t)
3

2

,
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Integrating the above inequality over interval [0, t], we get

Thus, we get the decay bound (3.4).
Next, we want to prove

From the proof of Proposition 2.1, we get the energy estimate

which can be rewritten in the Fourier space as

Define

We now treat the dissipative term as

and we use (3.10) to get

Inserting the above two estimates into (3.13), we can get

d

dt

⎡
⎢⎢⎣
(1 + t)

3

2 ∬
ℝ2

(�∇��2 + F���2)dxdy
⎤
⎥⎥⎦
⩽ C.

∬
ℝ2

(|∇�|2 + F|�|2)dxdy ⩽ C(1 + t)−
1

2 .

(3.12)‖Δ�‖L2 + ‖∇�‖L2 ⩽ C(1 + t)−
1

2 .

d

dt ∬
ℝ2

(|Δ�|2 + F|∇�|2)dxdy + 2

Re
∬
ℝ2

|∇Δ�|2dxdy = 0,

(3.13)
d

dt ∬
ℝ2

[|𝜉|4|𝜓̂|2 + F|𝜉|2|𝜓̂|2]d𝜉1d𝜉2 + 2

Re
∬
ℝ2

|𝜉|6|𝜓̂|2d𝜉1d𝜉2 = 0.

S2(t) =
�
(�1, �2);(�1, �2) ∈ ℝ

2,
�2
1
+ �2

2�
F + �2

1
+ �2

2

⩽

√
Re√
1 + t

�
.

∬
ℝ2

|𝜉|6|𝜓̂|2d𝜉1d𝜉2 ⩾∬
ℝ2

Re(F|𝜉|2 + |𝜉|4)
1 + t

|𝜓̂|2d𝜉1d𝜉2 −∬
S2(t)

Re(F|𝜉|2 + |𝜉|4)
1 + t

|𝜓̂|2d𝜉1d𝜉2,

∬
S2(t)

F|𝜉|2 + |𝜉|4
1 + t

|𝜓̂|2d𝜉1d𝜉2 ⩽ C

1 + t ∫
2𝜋

0
∫

(
C

1+t

) 1
4

0

(Fr2 + r4)(1 + r4t)rdrd𝜃

⩽ C(1 + t)−2.
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and integrating this inequality gives (3.12).
Then we will prove

From the proof of Proposition 2.2, we actually obtain the estimate

and by (3.12), we have

Denote

then there holds

where

Combining these estimates yields that

so we obtain (3.14) as desired.
Finally, applying the same treatment as above, we can get

d

dt
[(1 + t)2 ∬

ℝ2

(|Δ�|2 + F|∇�|2)dxdy] ⩽ C,

(3.14)‖∇Δ�‖L2 + F‖Δ�‖L2 ⩽ C(1 + t)−
3

4 .

d

dt �
ℝ2

(�∇Δ��2 + F�Δ��2)dxdy + 2

Re
�
ℝ2

�Δ2��2dxdy ≤ 1

Re

‖Δ2�‖2
L2
+ C‖Δ�‖6

L2
,

d

dt �
ℝ2

(|∇Δ𝜓|2 + F|Δ𝜓|2)dxdy + 1

Re
�
ℝ2

|𝜉|8|𝜓̂|2dxdy ≤ C

(1 + t)3
.

S3(t) =
�
(�1, �2);(�1, �2) ∈ ℝ

2,
�2
1
+ �2

2�
F + �2

1
+ �2

2

⩽

√
5Re√

4(1 + t)

�
,

∬
ℝ2

|𝜉|8|𝜓̂|2d𝜉1d𝜉2 ⩾∬
ℝ2

5Re(F|𝜉|4 + |𝜉|6)
4(1 + t)

|𝜓̂|2d𝜉1d𝜉2 −∬
S3(t)

5Re(F|𝜉|4 + |𝜉|6)
4(1 + t)

|𝜓̂|2d𝜉1d𝜉2,

5Re

4 ∬
S3(t)

F|𝜉|4 + |𝜉|6
1 + t

|𝜓̂|2d𝜉1d𝜉2 ⩽ C

1 + t ∫
2𝜋

0
∫

(
C

1+t

) 1
4

0

(Fr4 + r6)(1 + r4t)rdrd𝜃

⩽ C(1 + t)−
5

2 .

d

dt
[(1 + t)

5

2 ∬
ℝ2

(|∇Δ�|2 + F|Δ�|2)dxdy] ⩽ C,

(3.15)‖Δk�‖L2 + F‖∇Δk−1�‖L2 ⩽ C(1 + t)−
m

4 , m = 2k, k = 1, 2, … ,
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or

As the idea of the proof is similar to (3.14), so it is omitted here. By the bounds 
(3.4), (3.12), (3.14), (3.15) and (3.16), we thus obtain the decay bounds (1.3) and 
(1.4) in Theorem 1.2. 	�  ◻
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