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Abstract
The main aim of the current paper is to construct a numerical algorithm for the 
numerical solutions of second-order linear and nonlinear differential equations sub-
ject to Robin boundary conditions. A basis function in terms of the shifted Che-
byshev polynomials of the first kind that satisfy the homogeneous Robin boundary 
conditions is constructed. It has established operational matrices for derivatives of 
the constructed polynomials. The obtained solutions are spectral and are conse-
quences of the application of collocation method. This method converts the problem 
governed by their boundary conditions into systems of linear or nonlinear algebraic 
equations, which can be solved by any convenient numerical solver. The theoreti-
cal convergence and error estimates are discussed. Finally, we support the presented 
theoretical study by presenting seven examples to ensure the accuracy, efficiency, 
and applicability of the constructed algorithm. The obtained numerical results are 
compared with the exact solutions and results from other methods. The method 
produces highly accurate agreement between the approximate and exact solutions, 
which are displayed in tables and figures.
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1 Introduction

Boundary value problems (BVPs) are extremely important in describing many 
realistic problems with various applications. The most famous of these are the 
problems associated with Dirichlet, Neumann, and Robin boundary conditions. 
The latter type is considered one of the most difficult conditions facing research-
ers when dealing with this type of problem. Because of the difficulty of Rob-
in’s boundary conditions, research studies that discuss this type of BVP have not 
attracted much interest. The condition is named after the scientist Victor Gustav 
Robin, who was behind its origin [1]. It is also referred to as the “third kind” of 
boundary conditions, and these conditions are a linear mixture of the solution and 
its derivative at the boundary points. The present paper focuses on the numerical 
approach to solving second-order BVP associated with Robin boundary condi-
tions. This type of BVP is given as follows:

subject to the Boundary Conditions

where �1, �2, �1, �2, �1 and �2 are all constants. In the case of Robin type, all of 
these constants on the left side of conditions (1.2) and (1.3) are non-zero. While 
in the case of Dirichlet type, we have �1 = �2 = 0 , otherwise this BVP will be sub-
ject to Neumann condition when �1 = �2 = 0 . Robin boundary conditions appear in 
many branches of applications, such as electromagnetic problems, where they are 
named impedance boundary conditions, and heat transfer problems, where they are 
named convective boundary conditions, as explained in [2]. Such conditions play an 
essential role in the study of diffusion equation occurring in biology and chemistry 
field [3].

Several numerical approaches have been developed and implemented to solve 
BVP (1.1)-(1.3). In this regard, these approaches include the Adomian decom-
position method [4, 5], the Laplace transform-homotopy perturbation [6], the 
homotopy analysis method [7], the finite difference method [8, 9], Diagonal block 
method [10, 11], B-spline collocation method [12, 13], Cubic Hermite colloca-
tion method [14], Gegenbaur integration matrices [15] and the spectral method 
[16, 17].

The three popular versions of spectral methods are the collocation, tau, and 
Galerkin methods. They have important roles in obtaining numerical solutions for 
various mathematical models. These methods provide very accurate approximate 
solutions to various kinds of differential equations with a relatively small num-
ber of unknowns. The choice of the most convenient version of these methods is 
based on the type of the investigated differential equation and also on the kind 
of boundary conditions governed by it. In these methods, the use of operational 

(1.1)y(2)(x) = f (x, y, y�), a ≤ x ≤ b,

(1.2)�1y(a) + �1y
(1)(a) =�1,

(1.3)�2y(b) + �2y
(1)(b) =�2,
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matrices to build efficient algorithms to obtain accurate numerical solutions to 
various types of differential equations reduces the computational efforts.

The idea of an operational matrix of derivatives depends on the choice of con-
venient basis functions and expressing the first derivative of these in terms of their 
original ones (see for instance, [18–24]). In the Galerkin method, if the considered 
differential equation is subject to homogeneous initial and boundary conditions, the 
choice of basis functions must satisfy these conditions to ensure that the proposed 
approximate solution also satisfies these conditions. While in the case of nonho-
mogeneous conditions, the transformation process to the corresponding homogene-
ous form must be carried out first. In the collocation method, it is not necessary to 
choose the basis functions that satisfy the given conditions, but the best choice, as in 
the Galerkin method. In the tau method, the basis functions don’t satisfy the given 
conditions.

Up to now, and to the best of our knowledge, a Galerkin operational matrix using 
any basis function that satisfies the homogeneous Robin boundary conditions is not 
known and is traceless in the literature. This partially motivates our interest in such 
an operational matrix. Another motivation is the utilizing of this type of operational 
matrix for the numerical treatment of BVP (1.1)-(1.3).The principal aims of this 
paper can be summarized as follows: 

 (i) Constructing a new class of basis polynomials, named Robin-Modified Che-
byshev polynomials, using generalized shifted Chebyshev polynomials of the 
first kind that satisfy the homogeneous Robin boundary conditions.

 (ii) Establishing operational matrices for derivatives of the constructed polynomi-
als.

 (iii) Constructing numerical algorithm for solving BVP (1.1)-(1.3) based on 
employing collocation method together with the introduced operational matri-
ces of derivatives.

 (iv) Estimating the error obtained for the approximate solution.

The paper is organized as follows. In Sect. 2, the first-kind Chebyshev polynomials 
and their shifted ones are discussed. Section 3 is limited to constructing Robin-Mod-
ified Chebyshev polynomials of first-kind which satisfy the homogeneous Robin 
boundary conditions. Section 4 is limited to developing a new operational matrix of 
modified first-kind Chebyshev polynomials’ derivatives to handle BVP (1.1)-(1.3). 
The use of collocation method to solve numerical approach for BVP (1.1)-(1.3) is 
examined in Sect. 5. The theoretical convergence and error estimates are discussed 
in Sect. 6. Section 7 contains seven examples, as well as comparisons with several 
other methods from the literature. Finally, Sect. 8 displays some conclusions.

2  An Overview on First‑Kind Chebyshev Polynomials and Their 
Shifted Ones

The orthogonal Chebyshev polynomials of the first kind Tn(x) have the following 
trigonometric definition (see, [25])
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and they are satisfying the orthogonality relation

These polynomials can be built by using the following recurrence relation

with T0(t) = 1, T1(t) = t. The polynomials Tn(t) are special ones of the Jacobi poly-
nomials, P(𝛼,𝛽)

n
(t), (𝛼, 𝛽 > −1) . More definitely, we have

where (a)n = Γ(a + n)∕Γ(a) is the Pochhammer’s Symbol.
We defined the so-called shifted Chebyshev polynomials by introducing the 

change of variable t = 2x−a−b

b−a
 . Let the shifted Chebyshev polynomials Tn(

2x−a−b

b−a
) 

be denoted by T∗
n
(x;a, b) , then

In this respect, the orthogonality relation for the modified Chebyshev polynomials is

where w(x) = 1√
(b − x)(x − a)

.

Lemma 2.1 The power form representation of the modified Chebyshev polynomials 
can be represented as

where

(2.1)Tn(t) = cos(n cos−1 t), t ∈ [−1, 1],

�
1

−1

1√
1 − t2

Tm(t)Tn(t) dt =

⎧
⎪⎨⎪⎩

0, m ≠ n,
�

2
, m = n ≠ 0,

�, m = n = 0.

Tn(t) = 2t Tn−1(t) − Tn−2(t), n ≥ 2,

(2.2)Tn(t) =
n!

(1∕2)n
P

(
−

1

2
,−

1

2

)

n (t),

(2.3)T∗
n
(x;a, b) = cos

(
n cos−1

(
2 x − a − b

b − a

))
, x ∈ [a, b].

�
b

a

w(x) T∗
m
(x;a, b) T∗

n
(x;a, b) dx =

⎧⎪⎨⎪⎩

0, m ≠ n,
�

2
, m = n ≠ 0,

�, m = n = 0,

(2.4)T∗
n
(x;a, b) =

n∑
k=0

T∗(k)
n

(0;a, b)

k!
xk,

(2.5)

T∗(q)
n

(0;a, b) =
n(−1)n−qq!(n + q − 1)!

(
4

b−a

)q

(2q)!(n − q)! 2F1

(
q − n, n + q

q +
1

2

|||
a

a − b

)
.
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Proof The analytical form of known shifted Chebyshev polynomials of first kind 
T∗
n
(x;0, 1) is given by

The analytical expression of T∗
n
(x;a, b) can be written in the form

Substituting the relation

to Eq.(2.7), expanding and collecting similar terms - and after some rather manipu-
lation - we can deduce that T∗(q)

n (0;a, b), q ≤ n, has the form (2.5) and this completes 
the proof of Lemma 2.1.   ◻

As a direct consequence of Lemma  2.1, we get the known analytic form of the 
shifted Chebyshev polynomials:

Note 2.1 Here, it is important to remember that the generalized hypergeometric 
function is defined as [26]

where bj ≠ 0 , for all 1 ≤ j ≤ q.

3  Robin‑Modified Chebyshev Polynomials of First‑Kind

In this section, a novel kind of polynomials, it will symbol with �k(x) , will be devel-
oped, which we call “Robin-Modified Chebyshev polynomials of first-kind” in order to 
satisfy given form of Homogeneous Robin Boundary Conditions:

(2.6)Tn(x;0, 1) = n

n∑
k=0

(−1)n−k(n + k − 1)!4k

(2k)!(n − k)!
xk, x ∈ [0, 1].

(2.7)
T∗
n
(x;a, b) = T∗

n
(
x − a

b − a
;0, 1) = n

n∑
k=0

(−1)n−k(n + k − 1)!22k

(2k)!(n − k)!

(
x − a

b − a

)k

,

x ∈ [a, b].

(x − a)k =

k∑
i=0

(
k

i

)
(−a)k−i xk,

(2.8)T∗
n
(x;0, L) = n

n∑
k=0

(−1)n−k(n + k − 1)!4k

(2k)!(n − k)!Lk
xk, x ∈ [0, L].

pFq

(
a1, a2, ..., ap
b1, b2, ..., bq

|||z
)

=

∞∑
k=0

(a1)k...(ap)k z
k

(b1)k...(bq)k k!
,

(3.1)�1�k(a) + �1�
(1)

k
(a) =0,

(3.2)�2�k(b) + �2�
(1)

k
(b) =0.
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In this respect, we propose Robin-Modified Chebyshev polynomials of first-kind in 
the form

where qk(x) has the form

where Ak and Bk are unique constants such that �k(x) satisfy the two conditions (3.1) 
and (3.2). Substitution of �k(x) into (3.1) and (3.2) leads to the two linear equations 
in the two unknowns Ak and Bk:

which immediately gives

where L = b − a, r = b + a and � = �1 �2L2 − 4�1 �2
(

k2 + 1
)

k2 −
(

2k2 + 1
)

L(�2 �1 − �1 �2) ≠ 0
.In particular, and for the special case, homogeneous Dirichlet conditions can be 
obtained by taking �1 = �2 = 1 and �1 = �2 = 0 . In such case, we have

Also, homogeneous Neumann conditions can be considered as a special case of a 
Robin-type conditions (3.1) and (3.2), by taking �1 = �2 = 0, �1 = �2 = 1 , which 
immediately gives

The proposed Robin-Modified Chebyshev polynomials of first-kind have the special 
values

(3.3)�k(x) = qk(x)T
∗
k
(x;a, b), k = 0, 1, 2,… ,

qk(x) = x2 + Akx + Bk,

(3.4)
�1(a

2 + Aka + Bk)T
∗
k
(a;a, b) + �1((2a + Ak)T

∗
k
(a;a, b)

+ (a2 + Aka + Bk)T
∗(1)

k
(a;a, b)) = 0,

(3.5)
�2(b

2 + Akb + Bk)T
∗
k
(b;a, b) + �2((2b + Ak)T

∗
k
(b;a, b)

+ (b2 + Akb + Bk)T
∗(1)

k
(b;a, b)) = 0,

(3.6)

A
k
=

−1

�

�
2�1

�
�2L

�
a + k

2
r
�
+ 2�2

�
k
2 + 1

�
k
2
r
�
− �1L

�
2�2

�
b + k

2
r
�
+ �2Lr

��
,

B
k
=

1

�

�
�2
�
a�1L

�
a − 2b

�
k
2 + 1

��
+ 2�1

�
k
2 + 1

��
L
2 − 2abk

2
��

− �2bL
�
�1
�
b − 2a

�
k
2 + 1

��
+ a�1L

��
,

⎫⎪⎬⎪⎭

(3.7)�k(x) = (x2 − (a + b)x + ab)T∗
k
(x;a, b), k = 0, 1, 2,… .

(3.8)
�k(x) = (x2 − (a + b)x −

1

2k2
(a2 − 2ab

(
k2 + 1

)
+ b2))T∗

k
(x;a, b),

k = 1, 2,… ,

(3.9)
�
(q)

k
(0) = Bk T

∗(q)

k
(0;a, b) + q Ak T

∗(q−1)

k
(0;a, b)

+ q(q − 1) T
∗(q−2)

k
(0;a, b), 1 ≤ q ≤ k + 2.
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4  Operational Matrix of Derivatives of Robin‑Modified Chebyshev 
Polynomials of First‑Kind

In this section, we will construct the operational matrix of derivatives of Robin-
Modified Chebyshev polynomials of first-kind �n(x), n = 0, 1, 2,… . To do that, we 
need to extract the first derivative of �n(x) in terms of these polynomials themselves. 
First, we can see that

D�0(x) = 2x + A0,

D�1(x) =
1

L
(6�0(x) −

(
(a + b)A1 + 6B0 − 2B1

)
− 2

(
a + b + 3A0 − 2A1

)
x) . 

This leads us to state and prove the main theorem, by which a novel Galerkin opera-
tional matrix of derivatives will be introduced.

Theorem 4.1 The first derivative of �n(x) for all n ≥ 0 , can be written in the form

where the expansion coefficients a0(n), a1(n) … , an−1(n) , are the solution of the 
system

where an = [a0(n), a1(n), … , an−1(n)]
T , Gn = (gi,j(n))0≤i,j≤n−1 , and B

n
= [b0(n),

b1(n), … , b
n−1(n)]

T . The elements of Gn and Bn are defined as follows:

And the two coefficients e0(n) and e1(n) have the form:

Proof It is not difficult to show that the two coefficients e0(n) and e1(n) has the form 
(4.3). So the expansion (4.1) can be written in the form

(4.1)D�n(x) =

n−1∑
j=0

aj(n)�j(x) + �n(x), �n(x) = e1(n)x + e0(n),

(4.2)Gnan = Bn,

gi,j(n) =

{
�
(n−i+1)

n−j−1
(0) i ≥ j,

0, otherwise,
, bi(n) = �(n−i+2)

n
(0).

(4.3)
e0(n) = �(1)

n
(0) −

∑n−1

j=0
aj(n)�j(0),

e1(n) = �(2)
n
(0) −

∑n−1

j=0
aj(n)�

(1)

j
(0).

�

(4.4)

D�n(x) − �(1)
n
(0) − �(2)

n
(0)x =

n−1∑
j=0

a
j
(n)

(
�j(x) − �j(0) − �

(1)

j
(0)x

)
, n = 1, 2,… .
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Using the two formulae of Maclaurin series for �j(x) and D�n(x) , with taking into 
consideration that they are two polynomials of degree (j + 2) and (n + 1) , respec-
tively, Eq.(4.4) can be written as,

This gives the following triangle system of n equations in the unknown expansion 
coefficients a0(n), a1(n) … , an−1(n),

which can be written in the matrix form (4.2) and this completes the proof of Theo-
rem 4.1.   ◻

Now, we have reached the main desired result in this section, that is the opera-
tional matrix of derivatives of

which is given in the following corollary as a direct consequence of Theorem 4.1.

Corollary 4.1 The mth derivative of the vector �(x) has the form:

with �
(m)(x) =

m−1∑
k=0

Hk
�
(m−k−1)(x) , where 

�(x) =
[
�0(x), �1(x),… , �N(x)

]T
and H =

(
hi,j

)
0≤i,j≤N,

For instance, if N = 6, a = 0, b = 1, �1 = �2 = �1 = �2 = 1, �1 = �2 = 0 , we get

(4.5)

n+1�
r=2

�(r+1)
n

(0)

r!
xr =

n−1�
j=0

aj(n)

⎛
⎜⎜⎝

j+2�
r=2

�
(r)

j
(0)

r!
xr
⎞
⎟⎟⎠

=

n+1�
r=2

⎛
⎜⎜⎝

n+1�
j=r

�
(r)

j−2
(0)

r!
aj−2(n)

⎞
⎟⎟⎠
xr, n = 1, 2,… .

(4.6)
n+1∑
j=r

�
(r)

j−2
(0) aj−2(n) = �(r+1)

n
(0), r = n + 1, n,… , 2,

(4.7)�(x) = [�0(x),�1(x),… ,�N(x)]
T ,

(4.8)
dm�(x)

dxm
= Hm

�(x) + �
(m)(x),

hi,j =

{
aj(i), i > j,

0, otherwise.
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5  A Collocation Algorithm for Handling Second‑Order Differential 
Equation Subject to Robin Boundary Conditions

In this section, we utilize the operational matrix derived in Corollary  4.1 to get 
numerical solutions for the second-order BVP (1.1)-(1.3).

5.1  Homogeneous Boundary Conditions

Suppose that the boundary conditions (1.2) and (1.3) are homogeneous, that is, 
�1 = �2 = 0 . We can consider an approximate solution to y(x) in the form

where A =
[
c0, c1,… , cN

]T
.

Corollary 4.1 enables us to approximate the derivatives y(m)(x), m = 1, 2 in matrix 
form:

In this method, using the approximations (5.1) and (5.2) allow one to write the resid-
ual of equation (1.1) as

To obtain the numerical solution of the equation (1.1) subject to the two condi-
tions (1.2) and (1.3) (with �1 = �2 = 0 ), a spectral approach is suggested in the cur-
rent section: the Robin shifted Chebyshev first-kind collocation operational matrix 
method RSC1COMM. The collocation points are the (N + 1) zeros of T∗

N+1
(x),

(4.9)

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

6 0 0 0 0 0 0

−
4720

553
16 0 0 0 0 0

6721838

198527
−

47328

28361
20 0 0 0 0

−
6788639584

215798849

1646996888

30828407
−

151264

390233
24 0 0 0

50439810746450

560861208551
−

456048063168

80123029793

52347076116

1014215567
−

373472

2825113
28 0 0

−
207341477961232208

2987707657951177

49418658528697792

426815379707311
−

7275402570432

5402726325409

796262849104

15049376951
−

111648

1977839
32 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
7×7

.

(5.1)y(x) ≃ yN(x) =

N∑
i=0

ci �i(x) = A
T
�(x),

(5.2)y
(m)

N
(x) = A

T Hm
�(x) + �

(m)(x).

(5.3)RN(x) = A
T H2

�(x) + �
(2)(x) − f (x, AT

�(x), AT H�(x) + �(x)).
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so we have

then the unknown coefficients ci (i = 0, 1, ...,N) can be obtained by solving (N + 1) 
linear or nonlinear algebraic equations (5.4) using any suitable solver.

5.2  Nonhomogeneous Boundary Conditions

An important step in constructing the suggested algorithm is converting the equation 
(1.1) with respect to non-homogeneous Robin conditions (1.2) and (1.3) into the cor-
responding homogeneous conditions. To do that, we use the following transformation:

where � =
1

△
(�2�1 − �1�2), � =

1

△
(�2

(
a�1 + �1

)
− �1

(
�2b + �2

)
) , △ = �2

(
�1(a − b)

+�1
)
− �1�2 ≠ 0.

Hence it suffices to solve the following modified equation

subject to the homogeneous Robin conditions

Then

6  Convergence and Error Estimates For RSC1COMM

In this section, the convergence and error estimates of the suggested approach are 
examined. For a positive integer N, consider the space SN defined by

Additionally, the error between y(x) and its approximation yN(x) is defined by

In the paper, the error of the numerical scheme is analyzed by using:

xi =
1

2

⎛
⎜⎜⎜⎝
(b − a) cos

⎛
⎜⎜⎜⎝

�

�
i +

1

2

�

N + 1

⎞
⎟⎟⎟⎠
+ a + b

⎞
⎟⎟⎟⎠
, i = 0, 1,… ,N,

(5.4)RN(xi) = 0, i = 0, 1, ...,N,

(5.5)ȳ(x) = y(x) − 𝜆 x − 𝜇,

(5.6)ȳ(x) = f̄ (x, ȳ, ȳ�), a ≤ x ≤ b,

(5.7)𝛼1ȳ(a) + 𝛽1ȳ
(1)(a) = 0,

(5.8)𝛼2ȳ(b) + 𝛽2ȳ
(1)(b) = 0.

(5.9)yN(x) = ȳN(x) + 𝜆x + 𝜇.

SN = Span{�0(x),�1(x), ...,�N(x)}.

(6.1)EN(x) =
||y(x) − yN(x)

||.
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The L2 norm error estimate,

and the L∞ norm error estimate,

The proof of the following theorem is similar to the proofs of theorems presented in 
the research papers [27, Theorem 2], [28, Theorem 2], [29, Theorem 1], [30, Theo-
rem 4.3], [31, Theorem 2] and [32, Theorem 3.3] to confirm that the error converges 
to zero by increasing N.

Theorem  6.1 Assume that y(i)(x) ∈ C[a, b], i = 0, 1, ...,N + 1, with |y(N+1)(x)| ≤ M,

∀x ∈ [a, b] . Suppose that yN(x) has the form (5.1) and represents the best possible 
approximation for y(x) out of SN . Then, the following estimates for the error EN(x) 
are valid:

and

Proof The function y(x) can be stated in the power series form:

where

Additionally, we have

then we can deduce the following two inequalities:

(6.2)‖EN‖2 = ‖y − yN‖2 =
�
∫

b

a

�y(x) − yN(x)�2 dx
�1∕2

,

(6.3)‖EN‖∞ = ‖y − yN‖∞ = max
a≤x≤b�y(x) − yN(x)�.

(6.4)‖EN‖∞ ≤ MLN+1

(N + 1)!
,

(6.5)‖EN‖2 ≤ M

(N + 1)!

L(N+1)+1∕2

(2N + 3)1∕2
.

(6.6)y(x) = YN(x) + RN(x),∀x ∈ [a, b],

YN(x) =

N∑
j=0

y(j)(a)

j!
(x − a)j

and RN(x) =
y(N+1)(�(x))

(N + 1)!
(x − a)N+1, �(x) ∈ [a, b].

(6.7)|y(x) − YN(x)| = |RN(x)| ≤ M (x − a)N+1

(N + 1)!
, ∀x ∈ [a, b],

(6.8)‖y − YN‖∞ = ‖RN‖∞ ≤ MLN+1

(N + 1)!
,
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and

Since the approximate solution yN(x) ∈ SN represents the best possible approxima-
tion to y(x), we have, as a result,

and

Employing in particular f (x) = YN(x) in the previous two inequalities (6.10) and 
(6.11) leads to the two estimates:

and

respectively, and the proof is complete.   ◻

The following corollary shows that the obtained error has a very rapid rate of 
convergence.

Corollary 6.1 For all N ≥ 1 , the following two estimates hold:

and

Proof Making use of the asymptotic result in [33, p.233],

and some algebraic computations, the two inequalities (6.4) and (6.5) lead to the two 
estimates(6.14) and (6.15), and this completes the corollary’s proof.   ◻

(6.9)‖y − YN‖22 = �
b

a

�y(x) − YN(x)�2 dx ≤
�

M

(N + 1)!

�2
L2(N+1)+1

(2(N + 1) + 1)
.

(6.10)‖y − yN‖∞ ≤ ‖y − f‖∞,∀f ∈ SN ,

(6.11)‖y − yN‖2 ≤ ‖y − f‖2,∀f ∈ SN .

(6.12)‖EN‖∞ ≤ ‖y − YN‖∞ ≤ MLN+1

(N + 1)!
,

(6.13)‖EN‖22 ≤ ‖y − YN‖22 ≤
�

M

(N + 1)!

�2
L2(N+1)+1

(2(N + 1) + 1)
,

(6.14)‖EN−1‖∞ = O((Le)N∕NN+1∕2),

(6.15)‖EN−1‖2 = O((Le)N∕NN+1).

(6.16)Γ(c x + d) ∼
√
2𝜋 e−c x(c x)c x+d−1∕2, x ≫ 0, c > 0,
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7  Numerical Simulations

In this section, we present various examples to show the applicability and high 
accuracy of the suggested algorithm that is derived in Sect. 5. To examine the 
accuracy of the proposed method, the two error estimates ‖EN‖2 and ‖EN‖∞ are 
provided. Seven numerical problems are presented, in which we show that the 
proposed method RSC1COMM provides the exact solution if the given dif-
ferential equation has a polynomial solution of degree N. This solution can be 
found by combining �0(x), … ,�N−2(x) . Furthermore, the approximate solu-
tions obtained using the proposed method RSC1COMM are computed for var-
ious N, and the obtained errors reach 10−16 using, N = 10, ..., 18, as shown in 
Tables 1, 3, 5, 7, 9 and 11. In these tables, excellent computational results are 
obtained. The comparisons between our method and other methods in [9–12, 
34, 35] are shown on Tables 2, 4, 6, 8, 10 and 12 and they confirm that RSC-
1COMM gives more accurate results than other methods. Furthermore, the 
exact and approximate solutions to the given problems are in excellent agree-
ment, as shown in Figs.  1a,  3a,  5a,  7a,  9a and  11a. The computed approxi-
mate solutions corresponding to high accuracy are provided. Additionally, 
Figs. 1b, 3b, 5b, 7b, 9b and 11b show absolute error function EN(x) for various 
N values to demonstrate the dependence of error on N and the convergence of 
the solutions to the presented Problems 7.2-7.7 when RSC1COMM is employed. 
Furthermore, the stability of solutions are shown through Figs. 2, 4, 6, 8, 10, 12.

Problem 7.1 Consider the differential equation

(7.1)
2(x2 − x)y��(x) + (2x − 1) y�(x) − 2n2y(x) = 0, 0 ≤ x ≤ 1, n = 2, 3, 4,… ,

Table 1  Maximum absolute error of Example 7.2

N 0 3 6 10 11 12

‖E
N
‖∞ 8.59942E−02 8.52146E−05 6.76017E−09 9.32587E−15 1.66533E−15 1.11022E−15

‖E
N
‖2 5.12912E−02 4.42151E−06 3.12027E−10 1.02688E−15 5.46413E−16 4.21132E−16

Table 2  Comparison 
between different methods of 
Example 7.2

RSC1COMM CFDM [9] [10] [34]
(N = 11) (N = 50)

1.66533E−15 5.65024E−14 2.47E−10 1.525206E−10

Table 3  Maximum absolute error of Example 7.3

N 0 3 6 10 11 12

‖E
N
‖∞ 1.14271E−01 2.38005E−05 3.36707E−10 7.03476E−16 1.25816E−16 1.12012E−16

‖E
N
‖2 2.21381E−02 1.21124E−06 1.22801E−11 5.14481E−17 3.14106E−17 1.03114E−17
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Table 4  Comparison 
between different methods of 
Example 7.3

RSC1COMM CFDM [9] [10]
(N = 10) (N = 32)

7.03476E−16 5.09370E−13 1.90E−11

Table 6  Comparison 
between different methods of 
Example 7.4

RSC1COMM CFDM [9] [10]
(N = 13) (N = 40)

3.03577E−16 1.08691E−12 1.31E−12

Table 5  Maximum absolute error of Example 7.4

N 0 3 6 10 13 14 15

‖E
N
‖∞ 1.02162E−02 1.02475E−05 3.09152E−09 1.85491E−13 3.03577E−16 1.38778E−16 1.32247E−16

‖E
N
‖2 1.00712E−02 7.13455E−06 5.18041E−10 6.12501E−14 5.11287E−17 3.12105E−17 2.10441E−17

Table 7  Maximum absolute error of Example 7.5

N 0 3 6 12 17 18 19

‖E
N
‖∞ 3.79726E−02 1.79684E−04 3.05595E−07 3.83676E−12 6.10623E−16 3.33067E−16 3.33067E−16

‖E
N
‖2 2.10821E−02 3.10512E−05 1.16081E−08 7.91021E−13 6.00124E−17 4.10017E−17 2.43168E−17

Table 8  Comparison 
between different methods of 
Example 7.5

RSC1COMM CFDM [9] [10] [35]
(N = 17) (N = 128)

6.10623E−16 4.76696E−12 1.201E−11 0.83165E−12

Table 9  Maximum absolute error of Example 7.6

N 0 3 6 12 17 18 19

‖E
N
‖∞ 8.53216E−01 5.55065E−03 2.81478E−05 3.84521E−09 8.14467E−12 9.49796E−13 5.22665E−13

‖E
N
‖2 5.53216E−01 1.14151E−04 5.02581E−06 7.02151E−10 6.05418E−13 4.51806E−14 2.32471E−14

Table 10  Comparison 
between different methods of 
Example 7.6

RSC1COMM CFDM [9] [10] [12]
(N = 19) (N = 80)

5.22665E−13 1.99574E−09 6.29665E−09 8.425E−08
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Fig. 2  Log Errors for Example 7.2

Fig. 1  Approximate solution y11(x), and Errors E
N
(x) using various N for Example 7.2

Table 11  Maximum absolute error of Example 7.7

N 0 3 6 12 15 19 20

‖E
N
‖∞ 2.09383E−01 1.71264E−03 4.17341E−06 8.00145E−11 6.02235E−13 4.65148E−16 4.64662E−16

‖E
N
‖2 1.12243E−01 2.11725E−04 2.72081E−07 9.10228E−12 7.18271E−14 6.18171E−17 5.12701E−17

Table 12  Comparison 
between different methods of 
Example 7.7

RSC1COMM CFDM [9] [35] [11]
(N = 19) (N = 128)

4.65148E−16 2.86215E−13 0.80107E−11 1.1374E−10
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Fig. 4  Log Errors for Example 7.3

Fig. 5  Approximate solution y13(x), and Errors E
N
(x) using various N for Example 7.4

Fig. 3  Approximate solution y10(x), and Errors E
N
(x) using various N for Example 7.3
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Fig. 6  Log Errors for Example 7.4

Fig. 7  Approximate solution y17(x), and Errors E
N
(x) using various N for Example 7.5

Fig. 8  Log Errors for Example 7.5
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subject to the boundary conditions

The exact solution is y(x) = T∗
n
(x;0, 1).

(7.2)y(0) + y�(0) = (−1)n−1
(
2n2 − 1

)
, and y(1) + y�(1) = 2n2 + 1.

Fig. 9  Approximate solution y19(x), and Errors E
N
(x) using various N for Example 7.6

Fig. 10  Log Errors for Example 7.6

Fig. 11  Approximate solution y19(x), and Errors E
N
(x) using various N for Example 7.7
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The application of proposed method RSC1COMM gives the exact solution for 
N ≥ n − 2 in the form

where the polynomial �i(x) is determined by using the corresponding homogeneous 
conditions of (7.2), which has the form:

For N = 0, 1, 2, 3, 4, 5 , we get:

T∗
n
(x;0, 1) = yN(x) =

N∑
i=0

ai �i(x) + �N x + �N , N = n − 2, n − 1, n,… ,

�i(x) =

(
2i2 + 3

1 − 4
(
i4 + i2

) +

(
2

4
(
i4 + i2

)
− 1

− 1

)
x + x2

)
T∗
i
(x;0, 1), i = 0, 1, 2,… .

T
∗
2
(x;0, 1) = 8�0(x) + 16x − 23,

T
∗
3
(x;0, 1) = −

64

7
�0(x) + 16�1(x) + 2 x + 15,

T
∗
4
(x;0, 1) =

18320

553
�0(x) −

128

79
�1(x) + 16�2(x) + 64x − 95,

T
∗
5
(x;0, 1) = −

5430080

198527
�0(x) +

1313056

28361
�1(x)

−
128

359
�2(x) + 16�3(x) + 2x + 47,

T
∗
6
(x;0, 1) =

16207530520

215798849
�0(x) −

139032192

30828407
�1(x)

+
15613216

390233
�2(x) −

128

1087
�3(x) + 16�4(x) + 144x − 215,

T
∗
7
(x;0, 1) = −

30651035554688

560861208551
�0(x) +

7326113367600

80123029793
�1(x)

−
1013845632

1014215567
�2(x) +

104874784

2825113
�3(x) −

128

2599
�4(x)

+ 16�5(x) + 2x + 95.

Fig. 12  Log Errors for Example 7.7
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Problem 7.2 Consider the linear boundary value problem, [9, 10, 34]

subject to the non-homogeneous Robin conditions

The exact solution is y(x) = cos x and the computed approximate solution y11(x) has 
the form:

This solution agrees perfectly with the exact solution of accuracy 10−15 as shown in 
Table 1. ‖EN‖∞
Problem 7.3 Consider the nonlinear boundary value problem, [9, 10]

subject to the non-homogeneous Robin conditions

The exact solution is y(x) = ex, and the computed approximate solution y10(x) has 
the form:

This solution agrees perfectly with the exact solution of accuracy 10−16 as shown in 
Table 3.

(7.3)y��(x) = y(x) − 2 cosx,
�

2
≤ x ≤ �,

(7.4)3 y
(
�

2

)
+ y�

(
�

2

)
= −1, and 4 y(�) + y�(�) = −4.

y11(x) = 0.47992 + 0.448195 x − 0.500012 x2 + 0.0000210937 x3 + 0.0416414 x4

+ 0.0000217069 x5 − 0.00140266 x6

+ 6.5204 ∗ 10−6 x7 + 0.0000225085 x8 + 5.85383 ∗ 10−7 x9 − 3.77818 ∗ 10−7

x10 + 1.02794 ∗ 10−8 x11

+ 1.98148 ∗ 10−9 x12 − 1.12212 ∗ 10−10 x13 +
8

1 − 6�
x +

3 + 2�

6� − 1
.

(7.5)y��(x) =
e−x

2

(
(y(x))2 + (y�(x))2

)
, 0 ≤ x ≤ 1,

(7.6)y(0) − y�(0) = 0, and y(1) + y�(1) = 2 e.

y10(x) = −0.812188 − 0.812188 x + 0.5 x2 + 0.166667 x3

+ 0.0416667 x4 + 0.00833333 x5

+ 0.00138889 x6 + 0.00019841 x7

+ 0.000024807 x8 + 2.74801 ∗ 10−6x9 + 2.82816 ∗ 10−7 x10

+ 2.08084 ∗ 10−8 x11 + 3.4591 ∗ 10−9 x12 +
2e

3
(1 + x).
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Problem 7.4 Consider the nonlinear boundary value problem, [9, 10]

subject to the non-homogeneous Robin conditions

The exact solution is y(x) = ln((x + 2)∕2) and the computed approximate solution 
y13(x) has the form:

This solution agrees perfectly with the exact solution of accuracy 10−16 as shown in 
Table 5.

Problem 7.5 Consider the nonlinear boundary value problem, [9, 10, 35]

subject to the non-homogeneous Robin conditions

The exact solution is y(x) = ln(x + 1) and the computed approximate solution y17(x) 
has the form:

This solution agrees perfectly with the exact solution of accuracy 10−16 as shown in 
Table 7.

(7.7)y��(x) = −
1

8

(
e−2y(x) + 4 (y�(x))2

)
, 0 ≤ x ≤ 1,

(7.8)y(0) − 2 y�(0) = −1, and y(1) + y�(1) =
1

3
+ ln(

3

2
).

y13(x) = 0.130601 + 0.0653004 x − 0.125 x2 + 0.0416667 x3 − 0.015625 x4

+ 0.00625 x5 − 0.00260415 x6 + 0.00111594 x7

− 4.87768 ∗ 10−4 x8 + 2.15534 ∗ 10−4 x9 − 9.454 ∗ 10−5 x10

+ 3.95161 ∗ 10−5 x11 − 1.46273 ∗ 10−5 x12

+ 4.30234 ∗ 10−6 x13 − 8.5753 ∗ 10−7 x14 + 8.42121 ∗ 10−8 x15

+ 1∕4(−2 + x + (2 + x)(1∕3 + ln(3∕2))).

(7.9)y��(x) = −e−2y(x), 0 ≤ x ≤ 1,

(7.10)−y(0) + y�(0) = 1, and y(1) + y�(1) =
1

2
+ ln(2).

y17(x) = 0.268951 + 0.268951 x − 0.5x2 + 0.333333 x3 − 0.25 x4

+ 0.2 x5 − 0.166666 x6 + 0.142846 x7 − 0.124924 x8

+ 0.110715 x9 − 0.0984397 x10 + 0.0861476 x11 − 0.0718498 x12 + 0.0546513 x13

− 0.0360437 x14 + 0.0195358 x15

− 0.00820029 x16 + 0.00246922 x17 − 0.000470727 x18

+ 0.0000424513 x19 + 1∕3(−2 + x + (1 + x)(1∕2 + ln(2))).
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Problem 7.6 Consider the nonlinear boundary value problem, [9, 10, 12]

subject to the non-homogeneous Robin conditions

The exact solution is y(x) = −2ln
(
cos(

�

2
x −

�

4
)
)
− ln(2) and the computed approxi-

mate solution y19(x) has the form:

This solution agrees perfectly with the exact solution of accuracy 10−13 as shown in 
Table 9.

Problem 7.7 Consider the nonlinear boundary value problem [9, 11, 35],

subject to the non-homogeneous Robin conditions

The exact solution is y(x) = 2

2 − x
− x − 1 and the computed approximate solution 

y19(x) has the form:

This solution agrees perfectly with the exact solution of accuracy 10−16 as shown in 
Table 11.

(7.11)y��(x) = �2ey(x), 0 ≤ x ≤ 1,

(7.12)y(0) + 2y�(0) = −2�, and 2 y(1) − y�(1) = −�.

y19(x) = −4.24633 ∗ 10−13 + (2.1236 ∗ 10−13 − �) x + 4.9348 x2 − 5.16771 x3

+ 8.11742 x4 − 12.7505 x5 + 21.3589 x6

− 36.4881 x7 + 63.4097 x8 − 109.778 x9 + 184.343 x10 − 289.224 x11

+ 407.314 x12 − 495.785 x13

+ 504.326 x14 − 415.381 x15 + 267.778 x16 − 129.435 x17 + 43.9971 x18 − 9.37168 x19

+ 0.944748 x20 − 0.00140933 x21.

(7.13)y��(x) = 0.5(1 + x + y(x))3, 0 ≤ x ≤ 1,

(7.14)−y(0) + y�(0) = −0.5, and y(1) + y�(1) = 1.

y19(x) = −0.666667 − 0.666667 x + 0.25 x2 + 0.125 x3 + 0.0625 x4

+ 0.0312501 x5 + 0.0156239 x6 + 0.0078261 x7

+ 0.00379217 x8 + 0.0026494 x9 − 0.00220615 x10 + 0.0116036 x11 − 0.0298031 x12

+ 0.0634531 x13 − 0.104225 x14

+ 0.133728 x15 − 0.132109 x16 + 0.0987934 x17 − 0.0541116 x18 + 0.020537 x19

− 0.00484001 x20 + 0.000538381 x21

+
1

6
(x + 4).
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8  Conclusion

Herein, a system of modified shifted Chebyshev polynomials of the first kind that 
satisfies homogeneous two boundary Robin conditions has been established. The 
employment of these polynomials with the collocation spectral method provides an 
approximation of the given second-order differential equation. The proposed method 
RSC1COMM was tested using seven examples, which demonstrate the algorithm’s 
high accuracy and efficiency. We believe that the theoretical results in this paper can 
be utilized to treat other types of ordinary and fractional differential equations. Also, 
the theoretical convergence and error analysis were discussed, and it was demon-
strated that the dependence of error on N when RSC1COMM is employed. The pre-
sented numerical problems demonstrated the method’s applicability, effectiveness, 
and accuracy.
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