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Abstract
The current research examines the rate of heat and mass transfer in MHD non-
Newtonian Williamson nanofluid flow across an exponentially permeable stretched 
surface sensitive to heat generation/absorption and mass suction. The influences of 
Brownian motion and thermophoresis are included. In addition, the stretched surface 
is subjected to an angled outside magnetic field. This study incorporates the variable 
viscosity, viscous dissipation, and slip velocity. The fundamental rules of motion 
and heat transmission have been constructed mathematically to fit the current flow 
problem. By using appropriate self-similarity transformations, the supplied system 
of PDEs is transformed into a nonlinear system of ODEs. Here, we use the spectral 
collocation method with the help of Vieta-Lucas polynomials approximation. This 
procedure converts the present model to a system of algebraic equations which is 
developed as a constrained optimization problem, which is then optimized to get 
the solution and the unknown coefficients. Calculations are made for the skin fric-
tion, wall temperature gradient, and wall concentration gradient. By comparing our 
findings in some special cases to those in the literature, a review of the literature 
confirms the results described here.
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1 Introduction

Non-Newtonian fluids (NNFs) are substances in which interactions between parti-
cles in the liquid phase can result in effects like shear thinning. Since NNFs are typi-
cally very non-linear PDEs, an accurate solution is typically not possible. Although 
non-Newtonian liquids exhibit a variety of rheological properties in nature, there is 
no one constitutive relationship between strain rate and stress that can be used to 
classify all of these qualities. Various constitutive formulations for NNFs have been 
developed in the literature. NNFs are of utmost importance today because of their 
potential application in cutting-edge technology and industry. NNFs according to the 
definition, do not follow Newton’s laws of motion. Examples include paste, paints, 
food items, waste liquids, lubricants, and a wide range of other things. A significant 
and basic subclass of rate-type NNFs is the Maxwell model. Also, Williamson fluid 
is a type of NNF that exhibits shear thinning. Williamson [1] was the one who origi-
nally put forth this model. Later, this model employed by several authors ([2–4]).

A nanofluid is created when nanoparticles smaller than 100 nm are suspended 
in a regular base fluid ([5–8]). The word ”nanofluid” was originally used by Choi 
[9] about three decades ago. However, nanoparticles have only lately become acces-
sible and affordable enough to justify consideration for use in practical applications. 
Following the groundbreaking work of Choi, some researchers ([10–12]) have also 
taken into account diverse physical configurations and summarized the significance 
of nanofluid flow and heat transfer in numerous engineering applications.

Because of their frequent appearance in many applications in fluid mechanics, 
biology, physics, and engineering, PDEs have been the subject of many investiga-
tions. As a result, the solutions of ODEs of physical relevance have received a lot 
of attention [13]. The spectral collocation method (SCM) is a numerical approach 
utilized for solving ODEs. This method involves an approximation of the solution 
by summing up basis functions and determining their coefficients by enforcing the 
differential equation at a limited number of collocation points ([14, 15]). Among 
the variety of base functions available for use in SCM, the Vieta-Lucas polyno-
mials (VLPs) are a set of orthogonal polynomials that can serve as effective basis 
functions [16]. Utilizing SCM with VLPs comes with the benefit of their remark-
able convergence properties. The accuracy of the solution improves rapidly with an 
increase in the number of collocation points. Moreover, VLPs exhibit good stability 
properties, making them suitable for solving differential equations that are stiff or 
have rapidly varying solutions. Vieta-Lucas polynomials have the added advantage 
of having a closed-form expression, which simplifies their computation and manipu-
lation. This feature can result in substantial computational savings, especially when 
compared to other techniques that necessitate solving extensive systems of ODEs 
[17].

Nonetheless, this research aims to investigate the approximate solution for the pro-
posed problem by using SCM based on VLPs. The study’s novelty and purpose stem 
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from the fact that it is the first of its type to use the given numerical procedure to 
numerically solve the proposed problem.

2  Mathematical Formulations

We take into account a nanofluid’s two-dimensional non-Newtonian Williamson flow 
in the direction of an exponentially stretching sheet that is maintained at a constant tem-
perature Tw and concentration Cw . Also, T∞ and C∞ represent the respective ambient 
temperature and concentration values. In this research, we take into account the slip 
velocity with the assumption that the sheet is rough. Figure 1 shows the problem for-
mulation, Cartesian coordinates x and y, corresponding velocity components u and v, 
and the fluid flow configuration. The Williamson nanofluid is supposed to move with 
a velocity of U0e

x

L , where U0 is a constant, as a result of the surface being stretched 
through the xy-plane. Additionally, the assumption that the sheet is permeable results 
in a suction velocity of vw . These prerequisites lead to the following definitions of the 
primary boundary layer (BL) equations for continuity, momentum, energy, and concen-
tration [18]:
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Fig. 1  Physical configuration of 
the problem
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where u and v represent the fluid velocity vector’s x and y axis coefficients, Γ is 
the Williamson parameter, � is the nanofluid dynamic viscosity, � is the inclination 
angle, � is the fluid’s thermal conductivity, DB is the Brownian motion’s variable 
diffusivity, � is electrical conductivity, cp is the specific heat at constant pressure, 
�∞ is the density of the nanofluid at the ambient, B0 is the magnetic field strength, 
k is the permeability of the porous medium, DT is the coefficient of thermophoretic 
diffusion and Q0 is the initial value of the heat generation coefficient. The previously 
mentioned governing equations have boundary conditions that take the following 
forms:

where �1 is the slip velocity factor and �∞ is the ambient nanofluid viscosity. Accord-
ing to analysis, Megahed’s previously described nonlinear temperature-dependent 
nanofluid viscosity is as follows [19]:

where � is the viscosity parameter.
Non-linear PDEs make up the governing Eqs. (1) through (4). These nonlinear PDEs 

are translated into nonlinear ODEs using the dimensionless transformation described 
below:
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under the corresponding boundary constraints:

The Williamson parameter, magnetic number, porous parameter, Prandtl num-
ber, thermophoresis parameter, Brownian motion parameters, and Eckert number, 
respectively, as well as the heat source parameter are represented by the dimension-
less parameters that are found in the controlling equations above. These terms are 
defined as follows, respectively:

Skin-friction coefficient (SFC), local Nusselt number (LNN), and local Sherwood 
number (LSN) are terms used to characterize the friction drags, heat transfer rate, 
and mass transfer rate, respectively, which can be introduced as follows [20]:
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where,    VLs
0
(�) = 2, VLs

1
(�) = (4∕ℏ)� − 2. It is easy to find that 

VLs
k
(ℏ) = (−1)kVLs

k
(0) = 2, k = 0, 1, 2… .

The function �(�) ∈ L2[0,ℏ] can be approximated as a finite series sum (the first 
(m + 1)-terms) as follows:

Here we use the following approximate formula of D(n)�m(�) of the approximated 
function �m(�) defined in the form (15) [17]:

For more details about the shifted VLPs and their convergence analysis of (15) and 
(16), see [17].

5  Procedure Solution Using SCM

We are going to use the proposed method to solve numerically the system under 
(10)–(14). We approximate f (�), �(�) , and �(�) by fp(�), �p(�) , and �p(�) , respec-
tively in the following form:

By substituting (17) and the formula (16), the non-linear system Eqs. (10)–(12) will 
be reduced to the following form:

VLs
k+1

(�) = ((4∕ℏ)� − 2)VLs
k
(�) − VLs

k−1
(�), k = 1, 2,… ,

(15)�m(�) =

m∑
�=0

c
�
VLs

�
(�).

(16)

� (n)
m
(�) =

m∑
j=n

j−n∑
k=0

cj �j,k,n �
j−k−n, �j,k,n =

(−1)k 4j−k(2j) Γ(2j − k) Γ(j − k + 1)

ℏnΓ(k + 1) Γ(2j − 2k + 1) Γ(j − k + 1 − n)
.

(17)

fp(�) =

p∑
o=0

ao VL
s
o
(�), �p(�) =

p∑
o=0

bo VL
s
o
(�), �p(�) =

p∑
o=0

co VL
s
o
(�).

(18)
(

1 +We

( p
∑

o=2

o−2
∑

k=0
ao �o, k, 2 �

o−k−2

))( p
∑

o=3

o−3
∑

k=0
ao �o, k, 3 �

o−k−3

)

− �

( p
∑

o=1

o−1
∑

k=0
bo �o, k, 1 �

o−k−1

)

.

( p
∑

o=2

o−2
∑

k=0
ao �o, k, 2 �

o−k−2

)(

1 + 0.5We

( p
∑

o=2

o−2
∑

k=0
ao �o, k, 2 �

o−k−2

))

+

(( p
∑

o=0
ao VLs

o(�)

)

.

( p
∑

o=2

o−2
∑

k=0
ao �o, k, 2 �

o−k−2

)

− 2

( p
∑

o=1

o−1
∑

k=0
ao �o, k, 1 �

o−k−1

)2

−Msin2�

( p
∑

o=1

o−1
∑

k=0
ao �o, k, 1 �

o−k−1

)

⎞

⎟

⎟

⎠

.

Exp

(

�

( p
∑

o=0
bo VLs

o(�)

))

− K

( p
∑

o=1

o−1
∑

k=0
ao �o, k, 1 �

o−k−1

)

= 0,



1140 Journal of Nonlinear Mathematical Physics (2023) 30:1134–1152

1 3

By collocating the previous Eqs. (18)–(20) at p + 1 − n of nodes �j, j = 0, 1,… , p − n , it 
will reduce to the form:
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 Also, by substituting from Eq. (17) through the boundary conditions (13)–(14), it 
will be expressed in the following equations:

With the help of the following cost functions (CFs), the previous system defined in 
(21)–(26) can be expressed as a constrained optimization problem as follows:
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 with the constraints (Cons):

The constrained optimization problem (27)–(30) can be solved by using the Pen-
alty Leap Frog procedure [21] for the coefficients ao, bo, co, , o = 0, 1,… , p . This in 
turn leads us to formulate the approximate solution by substitution in the form (17).

(28)

CF2 =
p
∑

q=0

|

|

|

( 1
Pr

)

( p
∑

o=2

o−2
∑

k=0
bo �o, k, 2 �

o−k−2
q

)

+

( p
∑

o=0
ao VLs

o(�q)

)( p
∑

o=1

o−1
∑

k=0
bo �o, k, 1 �

o−k−1
q

)

−

( p
∑

o=0
bo VLs

o(�q)

)

.
( p
∑

o=1

o−1
∑

k=0
ao �o, k, 1 �

o−k−1
q

)

+ Nt

( p
∑

o=1

o−1
∑

k=0
bo �o, k, 1 �

o−k−1
q

)2

+ Nb

( p
∑

o=1

o−1
∑

k=0
bo �o, k, 1 �

o−k−1
q

)

.
( p
∑

o=1

o−1
∑

k=0
co �o, k, 1 �

o−k−1
q

)

+ Ec
⎛

⎜

⎜

⎝

( p
∑

o=2

o−2
∑

k=0
ao �o, k, 2 �

o−k−2
q

)2

+
We

2

( p
∑

o=2

o−2
∑

k=0
ao �o, k, 2 �

o−k−2
q

)3
⎞

⎟

⎟

⎠

Exp

(

−�

( p
∑

o=0
bo VLs

o(�q)

))

+ Q

( p
∑

o=0
bo VLs

o(�q)

)

|

|

|

,

(29)

CF3 =

p∑
q=0

|||
p∑

o=2

o−2∑
k=0

co �o, k, 2 �
o−k−2
q

+ Sc

(
p∑

o=0

ao VL
s
o
(�q)

)(
p∑

o=1

o−1∑
k=0

co �o, k, 1 �
o−k−1
q

)

+
Nt

Nb

(
p∑

o=2

o−2∑
k=0

bo �o, k, 2 �
o−k−2
q

)
|||,

(30)

Cons =
���

p�
o=0

2(−1)o ao − �
��� +

p�
o=0

2(−1)o bo − 1
��� +

���
p�

o=0

2(−1)o co − 1
���

+
���

p�
o=0

ao VL
s�

o
(0) − �

⎛
⎜⎜⎝

p�
o=0

ao VL
s��

o
(0) + 0.5We

�
p�

o=0

ao VL
s��

o
(0)

�2⎞⎟⎟⎠
Exp

�
−�

p�
o=0

2(−1)obo

�
− 1

���

+
���

p�
o=0

ao VL
s�

o
(ℏ)

��� +
���

p�
o=0

2bo
��� +

���
p�

o=0

2co
���.

Table 1  Comparison of √
2CfxRe

1∕2
x

 for different values 
of We and � with the results [22] 
when � = K = M = � = 0

We � Nadeem and Hussain 
[22]

Present work

0.0 0.0 1.28180 1.2817990018
0.1 0.0 1.25153 1.2515288741
0.2 0.0 1.21794 1.2179388149
0.3 0.0 1.17956 1.1795598410
0.0 0.2 1.19298 1.1929772090
0.1 0.2 1.16468 1.1646759198
0.2 0.2 1.13365 1.1336479985
0.3 0.2 1.09881 1.0988075120
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6  Results and Discussion

We have determined the approximate values by using the Vieta-Lucas colloca-
tion method for the SFC, and compared them with those values of Nadeem and 
Hussain [22] in Table 1 to confirm the accuracy of our numerical solutions with 
the order of approximation p = 6 . These numerical solutions estimate the skin 
friction coefficient was calculated using the identical parametric data from both 
investigations, pointing to the same circumstance in both. We see that the com-
parison demonstrates good agreement. In light of this, we are certain that the data 
shown here are quite accurate.

Figure 2 shows the effect of K on graphs of f �(�) and �(�) . The temperature 
distribution is seen to be improved by an increase in K, whereas the velocity field 
shows the opposite tendency. The existence of porous media is a flow resistance 
mechanism, hence the observed behavior in the velocity field is expected. Here 
and all figures, we take the order of approximation p = 7 , and the interval (0,6).

Figure  3 illustrates the graphical output of f �(�) and �(�) profiles for differ-
ent values of the parameter � . The Williamson nanofluid flow speed f �(�) is 
confirmed to be at its highest when the inclination angle � is minimal by the 

Fig. 2  a Velocity f �(�) for different K   b Temperature �(�) for different K 

Fig. 3  a Velocity f �(�) for different �   b Temperature �(�) for different �
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discovery that the velocity decreases with increasing � . Likewise, it has been 
shown that when the inclination angle � is at its highest, a minor increase in tem-
perature behavior �(�) occurs more quickly. Additionally, it is obvious that with 
greater values of � , the temperature boundary layer thickens.

To see how the porous K and the aligned magnetic field angle � parameters 
affect the concentration �(�) of the Williamson nanofluid, look at Fig.  4. The 
graph makes it clear that the magnetic field’s inclination angle and the porosity 
parameter’s strength can be used to gently alter the concentration of nanoparticles.

The distributions of f �(�) and �(�) are examined concerning the similarity vari-
able � for different values of � in Fig. 5. For lower values of � , enhancement behav-
ior is seen in both the f �(�) and �(�) fields. The thinned boundary layer that results 
from the action of the slip velocity phenomena is advantageous to the stability of the 
nanofluid flow, it is inferred. Additionally, this decrease in temperature distribution 
caused by the slip velocity phenomenon may be advantageous for cooling proce-
dures, which are crucial in several engineering applications.

The distributions of f �(�) and �(�) are given in Fig. 6 for various quantities of 
M. It is revealed that shear stress increases for larger magnetic parameter quantities, 
which causes a decrease in the nanofluid velocity field. It is true physically because 

(a) Concentration φ(η) for different K (b) Concentration φ(η) for different β

Fig. 4  a Concentration �(�) for different K   b Concentration �(�) for different �

(a) Velocity f ′(η) for different λ (b) Temperature θ(η) for different λ

Fig. 5  a Velocity f �(�) for different �   b Temperature �(�) for different �
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when the intensity of the Lorentz force grows with an increase in M, the nanofluid 
flow is physically resisted more and as a result, velocity diminished. This declining 
tendency in the velocity profile also suggests that as M is elevated, the thickness 
of the BL shrinks. Further, the �(�)-field shows a different pattern as the magnetic 

(a) Velocity f ′(η) for different M (b) Temperature θ(η) for different M

Fig. 6  a Velocity f �(�) for different M   b Temperature �(�) for different M 

(a) Concentration φ(η) for different M (b) Concentration φ(η) for different λ

Fig. 7  a Concentration �(�) for different M   b Concentration �(�) for different �

(a) Velocity f ′(η) for different α (b) Temperature θ(η) for different α

Fig. 8  a Velocity f �(�) for different �   b Temperature �(�) for different �
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parameter is raised, indicating that the resistive force can assist raise both the ther-
mal thickness and the temperature of the nanofluid.

The behavior of the magnetic M and the slip velocity � parameters concerning 
the concentration of nanoparticles is explained in Fig. 7. This graph confirms that 
both M and � have a minimal impact on the profiles of nanoparticle concentration 
and that this consequence also contributes to a small improvement in boundary layer 
thickness.

For distinct quantities of � , Fig. 8 is carefully examined to communicate devia-
tions in f �(�) and �(�) profiles. In the BL region, both velocity and temperature 
profiles exhibit an evidently declining tendency. This is completely true since 
higher viscosity parameter values lead to greater shear stress, which restricts the 
motion of the nanofluid.

Figure  9 displays f �(�) and �(�) profiles for a few Williamson parameter We 
values that describe the flow behavior and the heat transfer distribution through 
the BL. Here, increasing We causes the velocity profile to degrade dramatically, 
although the �(�)-field shows the opposite tendency. As a result of the large shear 
stress caused by the great We , which creates a flow resistance mechanism for the 
nonfluid motion, it is to be expected.

(a) Velocity f ′(η) for different We (b) Temperature θ(η) for different We

Fig. 9  a Velocity f �(�) for different We   b Temperature �(�) for different We

(a) Concentration φ(η) for different α (b) Concentration φ(η) for different We

Fig. 10  a Concentration �(�) for different �   b Concentration �(�) for different We
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The behavior of the Williamson and viscosity parameters on the nanofluid 
concentration field is illustrated in Fig.  10. This graphic shows how increasing 
either the Williamson parameter or the viscosity parameter will result in a modest 
enhancement in the concentration of nanofluid.

The effect of Q on the Williamson nanofluid flow’s �(�)-distribution is depicted 
in Fig. 11a. This graph demonstrates how the temperature profile rises when Q is 
raised. Because boosting the values of the heat source parameter results in an 
improvement in the internal heat capacity of the nanofluid, which raises the �(�)
-distribution. Following that, Fig. 11b illustrates Pr varying on the �(�)-field. This 
graph demonstrates that a decrease in �(�)-distribution results from an increase in 
the Prandtl number. Temperature decreases as a result of reduced thermal diffu-
sivity caused by an increase in Pr.

Figure  12a plots the variation of �(�) with Ec. It has been noted that the 
temperature profile exhibits rising behavior for high Eckert numbers. The rea-
son for this is that a higher Ec improves the kinetic energy that is converted to 
thermal energy, which raises both �-distribution and the thickness of the thermal 
BL. Further, Fig.  12b examines how the parameter Nb impacts the �(�)-profile. 
It has been discovered that raising Nb improves the �(�)-profile. The additional 

(a) Temperature θ(η) for different Q (b) Temperature θ(η) for different Pr

Fig. 11  a Temperature �(�) for different Q   b Temperature �(�) for different Pr 

(a) Temperature θ(η) for different Ec (b) Temperature θ(η) for different Nb

Fig. 12  a Temperature �(�) for different Ec   b Temperature �(�) for different Nb 
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random movement for nanoparticles caused by an increase in the parameter Nb 
aids in transmitting heat through the boundary layer, which raises the temperature 
distribution.

To validate the accuracy of the approximation method, we evaluated through 
Table 2 the residual error function (REF) [23] of the current method with the values 
of parameters We = 0.4, � = K = Ec = Q = � = 0.2, M = Nb = 0.5, � = �

4
, Pr = 1.5, Nt = 0.1, Sc = 2.0 

and p = 8 . These values show the thoroughness of the proposed method in this 
article and confirm that the current method gives better accuracy.

Finally, in Table  3 (with p = 7 ), we present an adjustment of SFC, LNN and, 
LSN against various embedded factors. It is important to keep in mind that the local 
SFC decreases as slip velocity, Williamson, heat source, and Eckert number val-
ues increase, but that this effect is reversed for high values of the porous param-
eter, Prandtl number, aligned magnetic field angle, magnetic number, and viscos-
ity parameter. The table also makes clear that the local Sherwood number values 
decline when the porous parameter, aligned magnetic field angle, �, � , and M values 
rise, whereas the opposite direction is seen for the Eckert number and heat source 
parameter. Finally, a further examination of this table reveals that the local Nus-
selt number is strongly subject to a lowering tendency when K, �, M , and � are 
included, whereas the Prandtl number exhibits the opposite trend.

7  Conclusions

We have developed the approximate solutions for the proposed model by using 
the given method. The impacts of thermophoresis, viscous dissipation, Brownian 
motion, and slip velocity are all joined into the nanofluid system. Creating a justifi-
cation for the heat transfer improvement seen in non-Newtonian Williamson nano-
fluids was the aim of this research. The relationship between physical variables and 
alterations in f ′, �, � , the skin-friction coefficient, the Sherwood number, and the 
Nusselt number is examined using tables and diagrams. The following list includes 
significant findings from the current analysis. 

Table 2  Values for the REF in 
the current method

� REF of f (�) REF of �(�) REF of �(�)

0.0 3.741258E-06 5.852460E-07 3.854623E-08
1.0 1.852321E-07 8.654123E-06 4.852147E-07
2.0 4.951753E-07 3.951789E-06 0.963258E-07
3.0 0.620147E-08 0.652103E-07 8.951753E-07
4.0 2.012453E-07 2.012345E-07 7.654123E-08
5.0 5.854697E-07 4.014785E-08 1.954879E-07
6.0 2.963147E-08 2.320145E-07 7.621001E-06
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1. When the heat source, slip velocity, and Williamson parameters are enhanced, 
the skin friction falls.

2. The two most significant processes for nanoparticle/base-fluid slip have been 
identified as Brownian diffusion and thermophoresis.

3. It is possible to control a process temperature using � and � parameters.
4. When K, � , �, M , and � are increased, the velocity and momentum boundary 

layer also decline.
5. The Sherwood number has increased as Ec and Q improve, whereas it drops as 

the slip velocity, viscosity, and porous parameter boosts.
6. The value of heat transmission drops as K and � values improve, and it grows as 

the Prandtl number rises.
7. Slip velocity and greater levels of the viscosity parameter are two factors that 

regulate the temperature of nanofluids.
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