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Abstract
In this manuscript, we implement a spectral collocation method to find the solu-
tion of the reaction–diffusion equation with some initial and boundary conditions. 
We approximate the solution of equation by using a two-dimensional interpolating 
polynomial dependent to the Legendre–Gauss–Lobatto collocation points. We fully 
show that the achieved approximate solutions are convergent to the exact solution 
when the number of collocation points increases. We demonstrate the capability and 
efficiency of the method by providing four numerical examples and comparing them 
with other available methods.
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CFODM	� Compact fourth-order differential method
POBVM	� P-order boundary value method
LGL	� Legendre–Gauss–Lobatto

1  Introduction

One of the special cases of partial differential equations (PDEs) is reaction diffusion 
equation (RDE) that has attracted the attention of many researchers, recently [1, 20, 
28, 32, 33]. RDEs are the mathematical models which correspond with physical and 
chemical phenomena. Often, it is the change in space and time in viscosity of one 
and more chemical materials: chemical reactions in which the materials converted 
in each other, and diffusion which causes the materials to extend over a surface in 
space. RDEs are also applied in sciences such that biology [14], geology [15], ecol-
ogy [20] and physics [23].

The general form of RDEs can be described as follows

and here we can consider the following initial and boundary conditions

where K is the diffusion coefficient, �1 ∶ [0, T] → ℝ , �2 ∶ [0, T] → ℝ and 
�3 ∶ [0, L] → ℝ are given sufficiently smooth functions. The target of this manu-
script is to present an effective numerical method for solving the RDE (1) with con-
ditions (2) and to analyze the convergence of the method.

There are several methods for solving this class of PDEs such as traveling wave 
method [19], finite elements [6], fixed-node finite-difference schemes [7] and spec-
tral methods [4]. One of other methods for solving RDE presented by Reitz [22]. He 
applied different several methods for solving RDE. His methods had good numeri-
cal stability and can be used for multidimensional cases. Sharifi and Rashidian [24] 
applied an explicit finite difference associated with extended cubic B-spline colloca-
tion method for solving RDEs. Wang et al. [27] used the compact boundary value 
method (CBVM) for solving RDE. Their method is the combination of compact 
fourth-order differential method (CFODM) and P-order boundary value method 
(POBVM). This method is locally stable and have unique solution. Furthermore this 
method have fourth-order accuracy in space and P-order accuracy in place. Wu et al. 
[29] applied variational iteration method (VIM) for structuring integral equations to 
solve RDE. In this method, Lagrange multipliers and a discrete numerical integral 
formula are used to solve RDE. This method for first time was proposed by He [11]. 
Biazar and Mehrlatifan [3] solved RDE using the compact finite difference method. 
Diaz and Puri [8] applied the explicit positivity-preserving finite-difference method 
for solving RDE. Lee et al. [17] in their work investigated and found exact solutions 

(1)ut(t, x) = Kuxx(t, x) + g(t, x, u(t, x)),

(2)

⎧⎪⎨⎪⎩

u(t, 0) = �1(t),

u(t, L) = �2(t), (t, x) ∈ [0, T] × [0, L],

u(0, x) = �3(x),
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of derivative RD system and next they showed some exact solutions of derivative 
nonlinear Schrödinger equation ( DNLS) via Hirota bilinearization method. Gaeta 
and Mancinelli [9] analyzed the asymptotic scaling properties of anomalous RDE. 
Their numerical results showed that for large t, well defined scaling properties. 
Another method for solving RDE is lifted local Galerkin which was presented by 
Xiao et al. [30]. Yi and Chen [31] introduced a new method based on repeated char-
acter maping of traveling wave for solving RDE. Toubaei et al. [26] represented one 
of the most applied functions of RDE in chemistry and biologic sciences in their 
paper and then they solved RDE by using collocation methods and finite differences 
methods. Koto [16] applied the implicit-explicit Range–Kutta method for RDE. 
Diaz [7] utilized a logarithmic numerical model. He considered the monotonous-
ness, bounding and positiveness of approximations in following of his work and for 
first time he showed that the logarithmic designs are stable and convergent. The non-
classical symmetries method is used by Hashemi and Nucci [10] to solve the diffu-
sion reaction equations. An et al. [2] suggested a method to compute the numerical 
approximation for both solutions and gradients, while the other methods can also 
compute the numerical solutions. Moreover, in this method they computed the ele-
ment by element instead of solving the whole of system that this can decrease the 
expenses of computations.

Despite the existence of above-mentioned numerical methods , providing a 
numerical convergent method with simple structure and high accuracy, for solv-
ing RDEs, is still required. Hence, we extend a spectral collocation method to 
estimate the solution of RDEs. Spectral methods are one of the most powerful 
methods for solving the ordinary and partial differential equations [5, 25]. In 
this method, we apply a two-dimensional Lagrange interpolating polynomial to 
estimate the solution of the RDE. We apply the Legendre–Gauss–Lobatto (LGL) 
nodes as interpolating or collocation points and convert the RDE with its initial 
and boundary conditions into a system of algebraic equations. By solving this 
system, the coefficients of interpolating polynomial can be gained. We fully show 
that the approximate solutions are convergent to the exact solution when the num-
ber of collocation points tends to infinity. Note that spectral collocation methods 
have high accuracy and exponential convergence and, up to now many research-
ers utilized them to solve different continuous-time problems involving the ordi-
nary and partial differential equations [12, 13, 18].

The paper is structured as follow: in Sect. 2, we implement the spectral colloca-
tion method for approximating the solution of RDE. In Sect. 3, we study the con-
vergence of approximations to the exact solution of RDE. In Sect. 4, four numerical 
examples are given to show the efficiency and accuracy of methods comparing with 
those of others. Finaly, the conclusions and the suggestions are presented in Sect. 5.

2 � Approximating the Solution by Spectral Collocation Method

We approximate the solution of system (1)–(2) as follows
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where Lr(t) and Lr(x) are the Lagrange polynomials and defined as

where {xn}Nn=0 and {tm}Nm=0 are shifted LGL points [25] in intervals [0, L] and [0, T] , 
respectively, and are defined with the following relations

where {x1
n
}N
n=0

 and {t1
m
}N
m=0

 are the roots of the following polynomial

where WN(.) is the Legendre polynomial [5] that is defined with the following recur-
rence formula

According to the approximation (3) we have

The Lagrange polynomials satisfy

So we can get

where Dmi and D(2)

nj
 are defined as follow

(3)u(t, x) ≃ uN(t, x) =

N∑
i=0

N∑
j=0

ũijLi(t)Lj(x),

(4)Lm(t) =

N∏
r=0,r≠m

t − tr

tm − tr
, Ln(x) =

N∏
r=0,r≠n

x − xr

xn − xr
,

(5)

{
xn =

L

2
(x1

n
+ 1), n = 0, 1,… ,N,

tm =
T

2
(t1
m
+ 1), m = 0, 1,… ,N,

W(�) = (1 − �2)W �
N
(�); � ∈ [−1, 1],

(6)
{

WN+1(�) =
2N+1

N+1
�WN(�) −

k

k+1
WN−1(�),

W0(�) = 1, W1(�) = � .

(7)

�
ut(t, x) ≃

∑N

i=0

∑N

j=0
ũijL

�
i
(t)Lj(x),

uxx(t, x) ≃
∑N

i=0

∑N

j=0
ũijLi(t)L

��
j
(x).

(8)Li(zj) =

{
1, i = j,

0, i ≠ j.

(9)u(tm, xn) ≃ umn, m, n = 0, 1,… ,N,

(10)ut(tm, xn) ≃

N∑
i=0

N∑
j=0

ũijL
�
i
(tm)Lj(xn) =

N∑
i=0

ũinDmi, m, n = 0, 1,… ,N,

(11)uxx(tm, xn) ≃

N∑
i=0

N∑
j=0

ũijLi(tm)L
��
j
(xn) =

N∑
j=0

ũmjD
(2)

nj
; m, n = 0, 1,… ,N,
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and

By replacing the relations (9), (10) and (11) in (1) we get

where ũmn for m, n = 0, 1,… ,N are the unknowns. By solving algebraic system (14), 
we achieve the point-wise approximate solutions ũmn (m, n = 0, 1,… ,N) and the 
continuous approximate solution uN(., .) defined by (3).

3 � Convergence Analysis

In this section we analyze the convergence of the proposed method. We assume 
Λ = [0, T] × [0, L] and Ck(Λ) is the set of all continuously differentiable functions 
from order k. To check the convergence of the method, we initial with the follow-
ing definition.

Definition 3.1  The continuous function F ∶ ℝ+
→ ℝ+ with the following properties 

is called modulus of continuity [21] 

1.	 F is increasing,
2.	 F(y) → 0 as y → 0,
3.	 F(y1 + y2) ≤ F(y1) + F(y2)   for any y1, y2 ∈ ℝ,
4.	 y ≤ aF(y)    for some a > 0 and 0 < y ≤ 2 .

A special case for modulus of continuity is

Here we consider that O2 is unit circle in ℝ2 . The continuous function f on Λ , 
accepts F(.) as modulus of continuity when the following is finite

(12)Dmi = L�
i
(tm) =

⎧
⎪⎪⎨⎪⎪⎩

−
2

T

N(N+1)

4
, m = i = 0,

WN (tm)

WN (ti)

1

tm−ti
, m ≠ i,

0, 1 ≤ m = i ≤ N − 1,
2

T

N(N+1)

4
, m = i = N,

(13)D
(2)

nj
=

N∑
p=0

DnpDpj.

(14)

⎧⎪⎨⎪⎩

∑N

i=0
ũinDmi ≃

∑N

j=0
ũmjD

(2)

nj
+ g(tm, xn, ũmn), m = 1,… ,N, n = 1,… ,N − 1,

ũm0 = 𝜑1(tm), ũm1 = 𝜑2(tm), m = 0,… ,N,

ũ0n = 𝜑3(xn), n = 1,…N − 1,

F(y) = y𝜗, 0 < 𝜗 ≤ 1.
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where

We utilize C1

F
(O2) to show the set of the first continuously differentiable functions 

on the unit circle O2 and equippe it with the following norm

Now we define

According to above if for some maps Γ1,… ,Γn

then f (., .) ∈ C1

F
(Λ) if and only if f◦Γi(., .) ∈ CF(O

2) for each i = 1,… ,N . Further-
more C1

F
(Λ) is a Banach space with the norm

We define P(N,N,Λ) , the space of all Polynomials, as

Lemma 3.1  For any f (., .) ∈ C1

F
(Λ) , exists a polynomial �(., .) ∈ P(N,N,Λ) such 

that

where �1 = ‖f (., .)‖1,F and constant �0 is independent of N.

Proof  The proof has been obtained from Theorem 2.1 in Ragozin [21]. 	� ◻

Related to the existence of solution, we convert system (14) into the following 
system

(15)

�f (., .)�F = sup

� �e(t1, x1) − e(t2, x2)�
Y(‖(t1, x1) − (t2, x2)‖∞) ∶ (t1, x1), (t2, x2) ∈ Λ, (t1, x1) ≠ (t2, x2)

�
,

‖(t1, x1) − (t2, x2)‖∞ = max{�t1 − t2�, �x1 − x2�}.

(16)‖f (., .)‖1,F = ‖f (., .)‖∞ + ‖ft(., .)‖∞ + ‖fx(., .)‖∞ + �ft(., .)�F + �fx(., .)�F.

(17)

C1

F
(Λ) = {f (., .) ∈ C1(Λ) ∶ ∀(t∗,x∗) ∈ Λ,∃ mapΓ ∶ O2

→ Λ s.t (t∗, x∗) ∈ int(Γ(O2))

and f◦Γ(., .) ∈ C1

F
(O2)}.

Λ =

n⋃
i=1

int(Γi(O
2)),

(18)‖f (., .)‖1,F =

N�
i=1

‖f◦Γi(., .)‖1,F.

(19)P(N,N,Λ) = {�(t, x) =

N∑
i=0

N∑
j=0

�ijt
ixj ∶ (t, x) ∈ Λ, �ij ∈ ℝ}.

(20)‖f (., .) − �(., .)‖∞ ≤ �0�1

2N
F
�

1

2N

�
,
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where N is enough large and F(.) is a function which satisfies Definition 3.1. Since 
limN→∞

√
N

2N−1
F
�

1

2N−1

�
= 0 , every ũmn (m, n = 0, 1,… ,N) in system (21) is a solu-

tion for system (14) as N → ∞ . We now define

In the following, we show that system (21) is feasible.

Theorem 3.1  Suppose u(., .) is a solution for system (1)–(2) such that u(., .) ∈ C1

F
(Λ) 

then there is N̄ > 0 such that for any N ≥ N̄ the relaxed system (21) has a solution 
as

that satisfies

where constant 𝛿 > 0 is independent of N.

Proof  We suppose that �(., .) ∈ P(N − 1,N,Λ) is the best approximation for ut(., .) . 
With the Lemma 1

	�  ◻

where positive constant � is independent from N. Define

and

We want to prove that ũN = (ũmn; m, n = 0, 1,… ,N) satisfies system (21). By (24), 
(25) and (26) for (t, x) ∈ Λ we have

(21)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

|

∑N
i=0 ũinDmi − K

∑N
j=0 ũmjD

(2)
nj − g(tm, xn, ũmn)

|

|

|

≤
√

N
2N−1F

(

1
2N−1

)

, m = 1,… ,N, n = 1,… ,N − 1,

|ũm0 − �1(tm)| ≤
√

N
2N−1F

(

1
2N−1

)

, |ũmL − �2(tm)| ≤
√

N
2N−1F

(

1
2N−1

)

, m = 0,… ,N,

|ũ0n − �3(xn)| ≤
√

N
2N−1F

(

1
2N−1

)

, n = 0, 1,…N,

(22)Φ(t, x, u, uxx) = Kuxx(t, x) + g(t, x, u(t, x)),

ũN = (ũmn;m, n = 0, 1,… ,N),

(23)|u(tm, xn) − ũmn| ≤ 𝛿

2N − 1
F
(

1

2N − 1

)
, m, n = 0, 1,… ,N,

(24)‖ut(t, x) − �(t, x)‖∞ ≤ �

2N − 1
F
�

1

2N − 1

�
, (t, x) ∈ Λ,

(25)ũ(t, x) = u(0, x) + ∫
t

0

𝜌(𝜐, x)d𝜐, (t, x) ∈ Λ,

(26)ũmn = ũ(tm, xn); m, n = 0, 1,… ,N.
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Now, according to the definition (25), the function ũ(., x), x ∈ [0, L] is a polynomial 
of degree less than or equal to N. So,

Therefore by (27) we have

where M is the Lipschitz constant of function �(., ., ., .) with respect to the third 
component. Also, for bounded conditions we have for m = 0,… ,N

where umn = u(tm, xn) for all m, n = 0, 1, ...,N. Moreover for n = 0, 1,… ,N we have

Now we can choice N̄ such that

for all N ⩾ N̄ and this completes the proof.
Here we want to give the convergence theorem of solutions.

(27)
|u(t, x) − ũ(t, x)| = |�

t

0

(ut(t, x) − 𝜌(𝜐, x))d𝜐| ≤ �
t

0

|(ut(𝜐, x) − 𝜌(𝜐, x))|d𝜐

≤ 𝜅

2N − 1
F
(

1

2N − 1

)
�

t

0

d𝜐 ≤ 𝜅T

2N − 1
F
(

1

2N − 1

)
.

(28)
N∑
i=0

ũinDmi = ũt(tm, xn); m, n = 0, 1,… ,N.

(29)

|||||

N∑
i=0

ũinDmi − Φ

(
tm, xn, ũmn,

N∑
j=0

ũmjD
(2)

nj

)|||||
≤ |ũt(tm, xn) − ut(tm, xn)|

+
|||||
ut(tm, xn) − Φ

(
tm, xn, ũmn,

N∑
j=0

ũmjD
(2)

nj

)|||||
= |𝜌(tm, xn) − ut(tm, xn)|

+
|||||
Φ(tm, xn, u(tm, xn), uxx(tm, xn)) − Φ

(
tm, xn, ũmn,

N∑
j=0

ũN
mj
D

(2)

nj

)|||||
⩽ |𝜌(tm, xn) − ut(tm, xn)| +M|u(tm, xn) − ũmn|
⩽

𝜅

2N − 1
F
(

1

2N − 1

)
+M

𝜅T

2N − 1
F
(

1

2N − 1

)

=
𝜅(1 +MT)

2N − 1
F
(

1

2N − 1

)
,

(30)|ũm0 − 𝜙1(tm)| ≤ |ũm0 − um0| + |um0 − 𝜙1(tm)| ≤ 𝜅T

2N − 1
F
(

1

2N − 1

)
,

(31)|ũmL − 𝜙2(tm)| ≤ |ũmL − umL| + |umL − 𝜙2(tm)| ≤ 𝜅T

2N − 1
F
(

1

2N − 1

)
,

(32)|ũ0n − 𝜙3(xn)| ≤ |ũ0n − u0n| + |u0n − 𝜙3(xn)| ≤ 𝜅L

2N − 1
F
(

1

2N − 1

)
.

max{�L, �T , �(1 +MT)} ≤ √
N,
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Theorem 3.2  Suppose {ũmn};m, n = 0, 1,… ,N}∞
N=N̄

 is the sequence of the solutions 
of system (21) and {uN(., .)}∞

N=N̄
 is the sequence of polynomials defined in (3). We 

assume that for any x ∈ [0, L] , the sequence {(uN(0, x), uN
t
(., .))}∞

N=N̄
 has a subse-

quence {(uNi(0, x), u
Ni

t (., .))}
∞
i=0

 such that converges to (�∞(x), p(., .)) uniformly, 
where p(., .) ∈ C2(Λ) , �∞(.) ∈ C2([0, L]) and limi→∞ Ni = ∞ . Then

satisfies the system (1)–(2).

Proof  Define

We show that ũ(., .) satisfies system (1)–(2). Firstly, let ũ(., .) does not satisfy (1). So 
there is a (�, y) ∈ Λ such that

We know the shifted LGL points {tm}Nm=1 and {xm}Nn=1 are dense in [0, T] and [0, L] , 
respectively, when N → ∞ . So there are subsequences {tmNi

}∞
i=1

 and {xnNi }
∞
i=1

 such that 
0 < mNi

< Ni, 0 < nNi
< Ni , limi→∞ tmNi

= �, limi→∞ xnNi
= y and limi→∞ Ni = ∞ . 

Hence, by (35) we get

On the other hand, since limi→∞

√
Ni

2Ni−1
F
�

1

2Ni−1

�
= 0 , by (21) we get

and this contradicts relation (36). So ũ(., .) satisfies the Eq. (1). Moreover, it is easy 
to show that ũ(., .) satisfies the initial and boundary conditions (2) and this completes 
the proof. 	�  ◻

4 � Examples

In this section, we have provided four of examples to illustrate the efficiency of method 
in solving RDEs. The first example is constructed by the authors to test the method. 
The next three examples show the comparison of the suggested method with other 
existing methods. We solve the corresponding system (14) using FSOLVE command in 
MATLAB software. The absolute error of gained estimate solution uN(., .) is defined by

(33)ũ(t, x) = lim
i→∞

uNi(t, x).

(34)ũ(t, x) = 𝜓∞(x) + ∫
t

0

𝜌(𝜐, x)d𝜐.

(35)ũt(𝜏, y) − Φ(𝜏, y, ũ(𝜏, y), ũxx(𝜏, y)) ≠ 0.

(36)
lim
i→∞

(
ũt(tmNi

, xnNi
) − Φ

(
tmNi

, xnNi
, ũmNi

,nNi
, ũxx(tmNi

, xnNi
)
))

= ũt(𝜏, y) − Φ(𝜏, y, ũ(𝜏, y), ũxx(𝜏, y)) ≠ 0.

lim
i→∞

(
ũt(tmNi

, xnNi
) − Φ

(
tm, xn, ũmNi

,nNi
, ũxx(tmNi

, xnNi
)
))

= 0,

EN(t, x) = |u(t, x) − uN(t, x)|, (t, x) = [0, 1] × [0, 1].
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Also, We calculate the L2 and L∞ errors of approximations by the following relations

Example 4.1  Consider the RDE (1)–(2) with g(t, x, u) = u + etsinx,K = 1 and the 
following conditions

The accurate solution is u(t, x) = etsinx, (t, x) ∈ [0, 1]2 . We solve this equation for N 
= 10 using suggested method. Figure 1 shows the obtained approximate solution and 
its absolute error. Also, Fig. 2 illustrates that by increasing N, the L2 and L∞ errors 
decrease. This shows our presented method has good accuracy and stable treatment.

Example 4.2  Consider the RDE (1)–(2) with 
g(t, x, u) = u − u2 + 3et−xcos(t + x) + e2(t+x)sin(t + x)2, K = 1 and the following 
conditions

EN
2
=

( N∑
i=0

N∑
j=0

|u(ti, xj) − uN(ti, xj)|2
) 1

2

,

EN
∞
= max{|u(ti, xj) − uN(ti, xj)| ∶ i, j = 0, 1,… ,N}.

(37)

⎧
⎪⎨⎪⎩

u(t, 0) = �1(t) = 0,

u(t, 1) = �2(t) = etsin1,

u(0, x) = �3(x) = sinx.

(38)

⎧⎪⎨⎪⎩

u(t, 0) = �1(t) = etsint,

u(t, 1) = �2(t) = et−1sin(t + 1),

u(0, x) = �3(x) = e(−x)sinx.
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Fig. 1   The estimate solution UN (., .) and logarithm of EN (., .) with N = 10 for Example 4.1
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Fig. 3   The estimate solution UN (., .) and logarithm of EN (., .) with N = 10 for Example 4.2
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The accurate solution for this example is u(t, x) = et−xsin(t + x), (t, x) ∈ [0, 1]2 . 
We illustrate the obtained approximate solution and its absolute error for N = 10 
in Fig. 3. EN

2
 and EN

∞
 errors are presented in Fig. 4. It can be seen that by increasing 

N, these errors decrease and our method is stable. Also we compare the presented 
method with IMEX Range–Kutta method [16], that are shown in Table  1. These 
results present that the EN

2
 error of suggested method is less than that of the method 

[16].

Example 4.3  Consider the RDE (1)–(2) with g(t, x, u) = 6u(1 − u), K = 1 and the 
following conditions

For this example, the accurate solution is u(t, x) = 1

(1+ex−5t)2
, (t, x) ∈ [0, 1] . We solve 

this equation for N = 20 using our approach . Figure 5 shows the gained approxi-
mate solution and its absolute error. Also, Fig. 6 illustrates that by increasing N, the 
EN
2

 and EN
∞

 errors decrease and the presented method has good accuracy. Then we 
compare with VIM method [29], that are shown in Table 2.

(39)

⎧⎪⎨⎪⎩

u(t, 0) = �1(t) =
1

(1+e−5t)2
,

u(t, L) = �2(t) =
1

(1+e1−5t)2
,

u(0, x) = �3(x) =
1

(1+ex)2
.

Table 1   The comparison for 
Example 4.2

N = 10 EN
2

EN
∞

Our approach 5.52 × 10−11 1.19 × 10−11

IMEX Runge–Kutta [16] 1.4 × 10−2 –

Fig. 5   The estimate solution UN (., .) and logarithm of EN (., .) with N = 20 for Example 4.3
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Example 4.4  Consider the RDE (1)–(2) with g(t, x, u) = −0.5u , K = 0.1 and follow-
ing conditions

(40)

⎧⎪⎨⎪⎩

u(t, 0) = �1(t) = 0,

u(t, L) = �2(t) = 0,

u(0, x) = �3(x) = sin(�x),

Fig. 6   The logarithm of EN

2
 and EN

∞
 for Example 4.3

Table 2   The comparison for 
Example 4.3 log(EN

2
) log(EN

∞
)

Our approach, N = 20 −8.5 −18

VIM method [29], N = 40 – −3.5
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Fig. 7   The estimate solution UN (., .) and logarithm of EN (., .) with N = 9 for Example 4.4



397

1 3

Journal of Nonlinear Mathematical Physics (2023) 30:384–399	

The accurate solution is u(t, x) = e(−0.5−0.1�
2)tsin(�x), (t, x) ∈ [0, 1]2 . We illustrate 

the obtained results, for N = 9, in Fig. 7. EN
2

 and EN
∞

 errors, for N = 9, are presented 
in Fig. 8. It can be seen that the errors decrease when N increases. We also give the 
absolute error of suggested method, compact finite difference method [3], explicit 
finite difference method [8] and collocation method [24] in the Table 3 . The results 
show that the error of suggested method is less than that of others.

5 � Conclusions and Suggestions

In this text we showed that spectral collocation method can be utilized to find a solu-
tion for RDE with a simple structure. We analyzed the convergence of approximate 
solutions to the accurate solution by utilizing the theory of module of continuity and 
a normed space of polynomials. We presented two main theorem related to feasibil-
ity of obtained estimate solutions and their convergence. We solved some numerical 
examples and illustrated the capability of the presented method. For future work, we 
will utilize this powerful method and its convergence results for other types of PDEs 
involving delay and fractional derivatives.
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Table 3   The comparison of maximum of EN (., .) for Example 4.4

 t = 0.8

Our method, N = 9 method [24], N = 9 Method [8] Method [3], N = 9
3.4708 × 10−10 1.25216 × 10−6 3.1835 × 10−2 1.09 × 10−4
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