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Abstract
Considered in this paper is the Camassa–Holm–Kadomtsev–Petviashvili (CH–KP) 
equation [22], which can be obtained as a model for the propagation of shallow 
water waves over a flat bed. It is shown that the existence of periodic peaked sol-
itary-wave solutions to this model equation. In addition, we show that there are a 
multitude of solitary waves such as smooth, peakons, cuspons, stumpons, and com-
posite like as CH equation.

Keywords  Kadomtsev–Petviashvili equation · Camassa–Holm equation · Solitary 
waves

Mathematics Subject Classification  Primary 35Q53 · 35G25 · 76B15 · 76B25

Abbreviations
CH–KP	� Camassa–Holm–Kadomtsev–Petviashvili
CH	� Camassa–Holm
KP	� Kadomtsev–Petviashvili
KdV	� Korteweg-de Vries

1  Introduction

We consider the Camassa–Holm–Kadomtsev–Petviashvili (CH-KP) equation [22]

in which the unknown u depends upon two space variables (x, y) ∈ ℝ
2 and time 

t ∈ ℝ and the parameter k is a real. This equation aries as a two-dimensional 

(1.1)(ut − uxxt + kux + 3uux − (2uxuxx + uuxxx))x + uyy = 0,
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Camassa–Holm (CH) equation [4, 17, 21] for incompressible and irrotational three-
dimensional shallow water under the CH regime [22]. We can also regard equa-
tion (1.1) as a two-dimensional version of the CH equation just as the Kadomt-
sev–Petviashvili (KP) equation [26] is a two-dimensional version of the well-known 
Korteweg-de Vries (KdV) equation [27]. It is noticed that the CH–KP equation (1.1) 
admits a bi-Hamiltonian structure [22] and it can be written as

with skew-symmetric differential operators

and the corresponding Hamiltonians

It is observed that the structure of CH-KP equation (1.1) is similar to that of the fol-
lowing KP equation [26]

which is derived as a model for propagation of the weakly transverse water waves in 
a long wave regime. Well-posedness, stability issue, and existence or nonexistence 
of solitary waves of the KP equation (1.2) were studied extensively, and many inter-
esting results may be found in [2, 3, 23, 26, 32, 37].

If there is no y-dependence in the equation (1.1), then it becomes the Camassa–Holm 
(CH) equation [4, 17, 21]

which was proposed as a model for surface waves. CH equation has brought up 
much attention in many years because of its many remarkable properties, such as 
admitting infinitely many conservation laws and being a bi-hamiltonian system [4, 
21, 36], existence of action angle variables constructed by inverse scattering [1, 9, 
18, 19, 34], global existence of solutions [6, 12, 13], wave breaking [6, 12–15, 30] 
(i.e. the solution remains bounded, but its slope becomes unbounded in finite time) 
and so on. Especially, the CH equation (1.3) with k = 0 has non-smooth solitary 
waves(peakons) of the form

and in the periodic case

mt = −J1
�F

�m
= −J2

�E

�m

J1 = �x(1 − �2
x
), J2 = �x

((

m +
k

2

)

⋅

)

+
(

m +
k

2

)

�x + �−1
x
�2
y

E =
1

2 ∫
�2

(u2 + u2
x
)dxdy and F =

1

2 ∫
�2

(ku2 + u3 + uu2
x
+ (�−1

x
�yu)

2)dxdy.

(1.2)(ut + uxxx + ux + uux)x + uyy = 0,

(1.3)ut − uxxt + kux + 3uux = 2uxuxx + uuxxx,

u(t, x) = ce−|x−ct|, x ∈ ℝ, t ≥ 0, c > 0,

u(t, x) =
c

cosh(1∕2)
cosh(1∕2 − (x − ct) + [x − ct]), x ∈ ℝ, t ≥ 0, c > 0,
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where the notation [x] denotes the largest integer part of the real number x ∈ ℝ , 
which interact like soliton for integrable systems and they are stable [10, 29]. It is 
also pointed out that those peakons were proved to be asymptotically stable under 
the Camassa-Holm flow [33] (see also [24, 25] for other equations). It is also worth 
mentioning the recent papers [31, 35] where the H1-stability of peaked waves in the 
CH equation is analyzed.

The existence of (periodic) peakons is of interest for the nonlinear integrable equa-
tions since they are relatively new solitary waves (for most models the solitary waves 
are quite smooth). More importantly, in the theory of water waves a number of papers 
have investigated the Stokes waves of greatest height, traveling waves which are 
smooth everywhere except at the crest where the lateral tangents differ. There is no 
closed form available for these waves, and the peakons capture the essential features of 
the extreme waves-waves of great amplitude that are exact solutions of the governing 
equations for irrotational water waves, see the discussion in [7, 11, 38].

The aim of the present paper is to prove the existence of periodic peaked solitary-
wave solutions to the CH-KP equation (1.1) for certain cases. It should be pointed out 
that one of the most relevant motivations for the study of peaked waves (solitary or 
periodic) is the fact that the governing equations for irrotational water waves do admit 
peaked traveling waves (periodic, as well as solitary), namely the celebrated Stokes 
waves of greatest height-see the discussion in [7, 8, 16, 38]. Recently, it was found 
[22] that, the CH–KP equation (1.1) admits a single peaked solitary waves of the form

if and only if k + �2 = 0. As mentioned in [22], it is reasonable that CH-KP equation 
(1.1) also possess periodic peaked solitary waves with a choice of different parame-
ter k and wave speed c, since CH-KP equation (1.1) could be reduced to model 
related to the CH equation (1.3) using the translation scaling x → x + �y. Our main 
result is in Section  2. We prove that the periodic solitary wave 

c

cosh(1∕2)
cosh(1∕2 − (x − ct) − [x − ct])), c ∈ ℝ is only periodic peaked solitary wave 

solution in the form of �(t, y) cosh(1∕2 − (x − ct) − [x − ct])) and conclusions are 
included in Section 3.

Notation. Throughout the paper, the norm of a Banach space Z is denoted by 
‖ ⋅ ‖Z , while C([0, T); Z) denotes the class of continuous functions from the interval 
[0,  T) to Z. We denote �2 = � × �, where 𝕊 = ℝ∕ℤ as the unit circle and regard 
functions on � as periodic on the entire line with period one. Given T > 0 , let 
C∞
c
([0, T) × X) denote the space of all smooth functions with compact support on 

[0, T) × X, which can also be viewed as the space of smooth functions on ℝ × X hav-
ing compact support contained in [0, T) × X. For 1 ≤ p < ∞ , Lp(X) denotes the space 
of equivalence classes of Lebesgue measurable, pth-power integrable, real-valued 
functions defined on X. The usual modification is in effect for p = ∞. The norm on 
Lp(X) is written as ‖ ⋅ ‖Lp(X). For s ≥ 0 , the L2-based Sobolev space Hs is the sub-
space of those L2 functions whose derivatives up to order s all lie in L2. The associ-
ated norm is denoted as ‖ ⋅ ‖Hs(X) . We introduce Xs for s > 0 as the Hilbert space: 
Xs = Xs(�2) ∶= {u ∈ Hs(�2)|�−1

x
u ∈ Hs(�2), �xu ∈ Hs(�2)} equipped with the 

u(t, x, y) = ce−|x+�y−ct|
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norm ‖u‖Hs(�2) ∶=
�

‖u‖2
Hs(�2)

+ ‖�−1
x
u‖2

Hs(�2)
+ ‖�xu‖

2

Hs(�2)

�1∕2

 for any u ∈ Xs(�2) , 

where �−1
x
u(x, y) ∶= F

−1((i�)−1F(u)(�, �)) , operators F  and F−1 denote the Fourier 
transform and inverse of the Fourier transform in terms of variables x,  y, 
respectively.

2 � Main Result

We study the existence of periodic peaked solitary-wave solution to the CH-KP 
equation (1.1) in the form

Indeed, solution (2.1) is a special type of a weak solution in the following sense.

Definition 2.1  Given initial data u0 ∈ H1(�2), the function u ∈ C([0, T);H1

loc
(�2)) is 

called to be a weak solution to equation (1.1), if it holds the following identity:

for any smooth test function �(t, x, y) ∈ C∞
c
([0, T) × �

2). If u is a weak solution on 
[0, T) for every T > 0, then it is called a global weak solution, where the notation ∗ 

denotes the convolution with respect to the spatial variable x and G(x) =
cosh(x−[x]−

1

2
)

2 sinh(
1

2
)

 

is the fundamental solution of the operator (1 − �2
x
)−1 on �, which implies 

(1 − �2
x
)−1f = G ∗ f  for all f ∈ L2(�).

Our main result on existence of periodic peakons can be obtained by verifying the 
Definition 2.1.

Theorem 2.1  The CH-KP equation (1.1) has a global weak solution in the peak form 
of

for some � ∈ ℝ if and only if there holds that k + �2 = 0.

Remark 2.1  Theorem 2.1 does not imply on the nonexistence of other peaked soli-
tary wave solutions.

Proof  We identify �2 with [0, 1) × [0, 1) and suppose that

(2.1)u(t, x, y) = � cosh

(

1

2
− (x + �y − ct) + [x + �y − ct]

)

, c ∈ ℝ.

(2.2)

∫
T

0
∫
�2

[

−�t�x�u + �x�

(

u�xu + �xG ∗ (u2 +
1

2
(�xu)

2 + ku)
)

− �2
y
�G ∗ u

]

dxdydt

+ ∫
�2

u0(x, y)�x�(0, x, y)dxdy = 0,

u(t, x, y) =
c

cosh(1∕2)
cosh

(

1

2
− (x + �y − ct) + [x + �y − ct]

)

,



909

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:905–918	

Then we obtain

where � =
1

2
− (x + �y − ct) + [x + �y − ct]. Using (2.4) and integration by parts, for 

any �(t, x, y) ∈ C∞
c
([0, T) × �

2), we have

where we use the fact G ∗ �yuc = ��xG ∗ uc. Noticing from the definition of G(x) for 
the periodic case that

we obtain

When x + 𝛽y > ct, we split the right-hand side of (2.6) into the following three parts:

(2.3)uc(t, x, y) =
c

cosh(1∕2)
cosh

(

1

2
− (x + �y − ct) + [x + �y − ct]

)

.

(2.4)�xuc(t, x, y) = −
c

cosh(1∕2)
sinh �, �tuc(t, x, y) =

c2

cosh(1∕2)
sinh �,

(2.5)

∫
∞

0
∫
�2

[

−�t�x�uc + �x�

(

uc�xuc + �xG ∗ (u2
c
+

1

2
(�xuc)

2 + kuc)
)

− �2
y
�G ∗ uc

]

dxdydt

+ ∫
�2

uc,0(x, y)�x�(0, x, y)dxdy

= ∫
∞

0
∫
�2

�x�

[

�tuc + uc�xuc + �xG ∗ (u2
c
+

1

2
(�xuc)

2)
]

dxdydt

− ∫
∞

0
∫
�2

�x�
[

(k + �2)�xG ∗ (uc)
]

dxdydt

=
c2

cosh
2(1∕2) ∫

∞

0
∫
�2

�x�

[

cosh(1∕2) sinh � − sinh � cosh � + �xG ∗ (1 +
3

2
sinh

2 �)
]

dxdydt

−
c

cosh(1∕2) ∫
∞

0
∫
�2

�x�
[

(k + �2)�xG ∗ (cosh �)
]

dxdydt,

�xG(x) = −
sinh(1∕2 − x + [x])

2 sinh(1∕2)
, x ∈ �,

(2.6)

�xG(x) ∗
(

1 +
3

2
sinh

2 �

)

(t, x, y)

= −
1

2 sinh(1∕2) ∫�

sinh (1∕2 − (x + �y − z) + [x + �y − z])

×
(

1 +
3

2
sinh

2 (1∕2 − (z − ct) + [z − ct])
)

dz.

(2.7)

�xG(x) ∗
(

1 +
3

2
sinh

2 �

)

(t, x, y)

= −
1

2 sinh(1∕2)

(

∫
ct

0

+∫
x+�y

ct

+∫
1

x+�y

)

sinh (1∕2 − (x + �y − z) + [x + �y − z])

×
(

1 +
3

2
sinh

2 (1∕2 − (z − ct) + [z − ct])
)

dz

=∶ I1 + I2 + I3.
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Using the identity sinh2 A =
1

2
cosh 2A −

1

2
 , a direct computation gives rise to

In a similar manner,

and

Plugging (2.8)–(2.10) into (2.7), we deduce that for x + 𝛽y > ct,

(2.8)

I1 = −
1

2 sinh(1∕2) ∫
ct

0

sinh (1∕2 − (x + �y − z))
(

1 +
3

2
sinh

2 (1∕2 + (z − ct))
)

dz

= −
1

2 sinh(1∕2) ∫
ct

0

sinh (1∕2 − (x + �y − z))
(

1

4
+

3

4
cosh (1 + 2(z − ct))

)

dz

= −
1

2 sinh(1∕2)

[

1

4
cosh (1∕2 − (x + �y − ct)) −

1

4
cosh (1∕2 − (x + �y))

+
1

8
cosh (3∕2 − (x + �y − ct)) −

1

8
cosh (3∕2 − (x + �y + 2ct))

−
3

8
cosh (1∕2 + (x + �y − ct)) +

3

8
cosh (1∕2 + (x + �y − 2ct))

]

.

(2.9)

I2 = −
1

2 sinh(1∕2) ∫
x+�y

ct

sinh (1∕2 − (x + �y − z))
(

1 +
3

2
sinh

2 (1∕2 − (z − ct))
)

dz

= −
1

2 sinh(1∕2) ∫
x+�y

ct

sinh (1∕2 − (x + �y − z))
(

1

4
+

3

4
cosh (1 − 2(z − ct))

)

dz

= −
1

2 sinh(1∕2)

[

1

4
cosh (1∕2) −

1

4
cosh (1∕2 − (x + �y − ct))

−
3

8
cosh (3∕2 − 2(x + �y − ct)) +

3

8
cosh (3∕2 − (x + �y − ct))

+
1

8
cosh (1∕2 − 2(x + �y − ct)) −

1

8
cosh (1∕2 + (x + �y − ct))

]

,

(2.10)

I3 = −
1

2 sinh(1∕2) ∫
1

x+�y

sinh (−1∕2 − (x + �y − z))
(

1 +
3

2
sinh

2 (1∕2 − (z − ct))
)

dz

= −
1

2 sinh(1∕2) ∫
1

x+�y

sinh (−1∕2 − (x + �y − z))
(

1

4
+

3

4
cosh (1 − 2(z − ct))

)

dz

= −
1

2 sinh(1∕2)

[

1

4
cosh (1∕2 − (x + �y)) −

1

4
cosh (−1∕2)

−
3

8
cosh (−1∕2 − (x + �y − 2ct)) +

3

8
cosh (1∕2 − 2(x + �y − ct))

+
1

8
cosh (−3∕2 + (x + �y + 2ct)) −

1

8
cosh (3∕2 − 2(x + �y − ct))

]

.
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where we use the identities cosh(A + B) = cosh(A) cosh(B) + sinh(A) sinh(B) and 
sinh(2A) = 2 sinh(A) cosh(A).

While for the case x + �y ≤ ct, we split the right hand side of (2.6) into the fol-
lowing three parts:

For II1 a direct calculation gives rise to

Similarly, one obtains

and

(2.11)

�xG(x) ∗
(

1 +
3

2
sinh

2 �

)

(t, x, y)

= −
1

2 sinh(1∕2)

[

1

2
cosh (3∕2 − (x + �y − ct)) −

1

2
cosh (1∕2 + (x + �y − ct))

−
1

2
cosh (3∕2 − 2(x + �y − ct)) +

1

2
cosh (1∕2 − 2(x + �y − ct))

]

= − cosh(1∕2) sinh(1∕2 − (x + �y − ct))

+ sinh(1∕2 − (x + �y − ct)) cosh(1∕2 − (x + �y − ct)),

(2.12)

�xG(x) ∗
(

1 +
3

2
sinh

2 �

)

(t, x, y)

= −
1

2 sinh(1∕2)

(

∫
x+�y

0

+∫
ct

x+�y

+∫
1

ct

)

sinh (1∕2 − (x + �y − z) + [x + �y − z])

×
(

1 +
3

2
sinh

2 (1∕2 − (z − ct) + [z − ct])
)

dz

=∶ II1 + II2 + II3.

(2.13)

II1 = −
1

2 sinh(1∕2) ∫
x+�y

0

sinh (1∕2 − (x + �y − z))
(

1 +
3

2
sinh

2 (1∕2 + (z − ct))
)

dz

= −
1

2 sinh(1∕2)

[

1

4
cosh (1∕2) −

1

4
cosh (1∕2 − (x + �y))

+
1

8
cosh (3∕2 + 2(x + �y − ct)) −

1

8
cosh (3∕2 − (x + �y + 2ct))

−
3

8
cosh (−1∕2 − 2(x + �y − ct)) +

3

8
cosh (−1∕2 − (x + �y − 2ct))

]

.

(2.14)

II2 = −
1

2 sinh(1∕2) ∫
ct

x+�y

sinh (−1∕2 − (x + �y − z))
(

1 +
3

2
sinh

2 (1∕2 + (z − ct))
)

dz

= −
1

2 sinh(1∕2)

[

1

4
cosh (−1∕2 − (x + �y − ct)) −

1

4
cosh (−1∕2)

+
1

8
cosh (1∕2 − (x + �y − ct)) −

1

8
cosh (1∕2 + 2(x + �y − ct))

−
3

8
cosh (−3∕2 − (x + �y − ct)) +

3

8
cosh (−3∕2 − 2(x + �y − ct))

]

,
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Plugging (2.13)–(2.15) into (2.12), we deduce that for x + �y ≤ ct,

On the other hand, one can deduce

In view of (2.11), (2.16) and 2.17, we deduce from (2.5)

for every test function �(t, x, y) ∈ C∞
c
([0, T) × �

2). Now we consider

When x + 𝛽y > ct , we split the right hand side of (2.19) into the following three 
parts:

(2.15)

II3 = −
1

2 sinh(1∕2) ∫
1

ct

sinh (−1∕2 − (x + �y − z))
(

1 +
3

2
sinh

2 (1∕2 − (z − ct))
)

dz

= −
1

2 sinh(1∕2)

[

1

4
cosh (1∕2 − (x + �y)) −

1

4
cosh (−1∕2 − (x + �y − ct))

−
3

8
cosh (−1∕2 − (x + �y − 2ct)) +

3

8
cosh (1∕2 − (x + �y − ct))

+
1

8
cosh (3∕2 − (x + �y + 2ct)) −

1

8
cosh (−3∕2 − (x + �y − ct))

]

.

(2.16)

�xG(x) ∗
(

1 +
3

2
sinh

2 �

)

(t, x, y)

= cosh(1∕2) sinh(1∕2 + (x + �y − ct))

− sinh(1∕2 + (x + �y − ct)) cosh(1∕2 + (x + �y − ct)).

(2.17)

(cosh(1∕2) sinh 𝜉 − sinh 𝜉 cosh 𝜉)(t, x, y)

=

⎧

⎪

⎨

⎪

⎩

cosh(1∕2) sinh(1∕2 − (x + 𝛽y − ct))

− sinh(1∕2 − (x + 𝛽y − ct)) cosh(1∕2 − (x + 𝛽y − ct)), x + 𝛽y > ct,

− cosh(1∕2) sinh(1∕2 + (x + 𝛽y − ct))

+ sinh(1∕2 + (x + 𝛽y − ct)) cosh(1∕2 + (x + 𝛽y − ct)), x + 𝛽y ≤ ct.

(2.18)∫
∞

0
∫
�2

�x�

[

�tuc + uc�xuc + �xG ∗
(

u2
c
+

1

2
(�xuc)

2

)]

dxdydt = 0,

(2.19)

�xG ∗ cosh �(t, x, y)

= −
1

2 sinh(1∕2) ∫�

sinh(1∕2 − (x + �y − z) + [x + �y − z])

× cosh(1∕2 − (z − ct) + [z − ct])dz.

(2.20)

�xG ∗ cosh �(t, x, y)

= −
1

2 sinh(1∕2)

(

∫
ct

0

+∫
x+�y

ct

+∫
1

x+�y

)

sinh(1∕2 − (x + �y − z) + [x + �y − z])

× cosh(1∕2 − (z − ct) + [z − ct])dz

∶= III1 + III2 + III3.
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We directly compute III1, III2 and III3 as follows:

and

Plugging (2.21)–(2.23) into (2.20), we deduce that for x + 𝛽y > ct,

While for the case x + �y ≤ ct, we split the right hand side of (2.19) into the follow-
ing three parts:

For IV1, IV2 and IV3 , a direct computation yields

(2.21)

III1 = −
1

2 sinh(1∕2) ∫
ct

0

sinh(1∕2 − (x + �y − z)) cosh(1∕2 + (z − ct))dz

= −
1

2 sinh(1∕2)

[

1

4
cosh(1 − (x + �y − ct)) −

1

4
cosh(1 − (x + �y + ct))

−
1

2
sinh(x + �y − ct)ct

]

,

(2.22)

III2 = −
1

2 sinh(1∕2) ∫
x+�y

ct

sinh(1∕2 − (x + �y − z)) cosh(1∕2 − (z − ct))dz

= −
1

2 sinh(1∕2)

[

1

2
sinh(1 − (x + �y − ct))(x + �y) −

1

2
sinh(1 − (x + �y − ct))ct

]

,

(2.23)

III3 = −
1

2 sinh(1∕2) ∫
1

x+�y

− sinh(1∕2 + (x + �y − z)) cosh(1∕2 − (z − ct))dz

= −
1

2 sinh(1∕2)

[

1

4
cosh(−1 + (x + �y + ct)) −

1

4
cosh(1 − (x + �y − ct))

−
1

2
sinh(x + �y − ct) +

1

2
sinh(x + �y − ct)(x + �y)

]

.

(2.24)

�xG ∗ cosh �(t, x, y) =
1

2
(1∕2 − (x + �y − ct)) cosh(1∕2 − (x + �y − ct))

−
1

4
coth(1∕2) sinh(1∕2 − (x + �y − ct)).

(2.25)

�xG ∗ cosh �(t, x, y)

= −
1

2 sinh(1∕2)

(

∫
x+�y

0

+∫
ct

x+�y

+∫
1

ct

)

sinh(1∕2 − (x + �y − z) + [x + �y − z])

× cosh(1∕2 − (z − ct) + [z − ct])dz

∶= IV1 + IV2 + IV3.
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and

Plugging (2.26)–(2.28) into (2.25), we obtain that for x + �y ≤ ct,

In view of (2.24), (2.29) and the fact that the linear independent of the functions 
cosh � and sinh � , we deduce from (2.5) that

if and only if k + �2 = 0. Therefore, we conclude from (2.5), (2.18) and (2.30) that 
for every �(t, x, y) ∈ C∞

c
([0,∞) × �

2),

(2.26)

IV1 = −
1

2 sinh(1∕2) ∫
x+�y

0

sinh(1∕2 − (x + �y − z)) cosh(1∕2 + (z − ct))dz

= −
1

2 sinh(1∕2)

[

−
1

2
sinh(x + �y − ct)(x + �y)

+
1

4
cosh(1 + (x + �y − ct)) −

1

4
cosh(1 − (x + �y + ct))

]

,

(2.27)

IV2 = −
1

2 sinh(1∕2) ∫
ct

x+�y

− sinh(1∕2 + (x + �y − z)) cosh(1∕2 + (z − ct))dz

= −
1

2 sinh(1∕2)

[

−
1

2
sinh(1 + (x + �y − ct))ct +

1

2
sinh(1 + (x + �y − ct))(x + �y)

]

,

(2.28)

IV3 = −
1

2 sinh(1∕2) ∫
1

ct

− sinh(1∕2 + (x + �y − z)) cosh(1∕2 − (z − ct))dz

= −
1

2 sinh(1∕2)

[

1

4
cosh(−1 + (x + �y + ct)) −

1

4
cosh(1 + (x + �y − ct))

−
1

2
sinh(x + �y − ct) +

1

2
sinh(x + �y − ct)ct

]

.

(2.29)

�xG ∗ cosh �(t, x, y) = −
1

2
(1∕2 + (x + �y − ct)) cosh(1∕2 + (x + �y − ct))

+
1

4
coth(1∕2) sinh(1∕2 + (x + �y − ct)).

(2.30)

− ∫
∞

0
∫
�2

�x�
[

(k + �2)�xG ∗ (uc)
]

dxdydt

= −
c

cosh(1∕2) ∫
∞

0
∫
�2

�x�

[

−
(k + �2)

2
� cosh � +

(k + �2)

4
sinh �

]

dxdydt

= 0

∫
∞

0
∫
�2

[

−�t�x�uc + �x�

(

uc�xuc + �xG ∗ (u2
c
+

1

2
(�xuc)

2 + kuc)
)

− �2
y
�G ∗ uc

]

dxdydt

+ ∫
�2

uc,0(x, y)�x�(0, x, y)dxdy = 0
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if and only if k + �2 = 0, which completes the proof of Theorem 2.1. 	�  ◻

Note that if the initial data u0(x, y) = U0(x + �y) in (1.1), then the uniqueness 
of the solution (1.1) in [22] implies that the function u(t, x, y) = U(t, x + �y) is the 
solution of (1.1), where U(t, �) solves the following Camassa-Holm equation

with initial data U(0, �) = U0(�). In view of the classification of traveling-wave solu-
tion for the Camassa-Holm equation in [28], we may also obtain the following result 
and detailed proof is omitted.

Theorem  2.2  Fix k, � ∈ ℝ and let z = c − (k + �2) −M − m. The equation (2.31) 
possesses a periodic peaked solitary wave solution U(� − ct) with m = minx∈ℝ U(�) , 
M = maxx∈ℝ U(�) or m = maxx∈ℝ U(�) , M = minx∈ℝ U(�) if either z < m < M = c 
or z > m > M = c.

Remark 2.2  By theorem 2.2, we know that periodic peaked solitary waves exist for 
equation (2.31). Performing similar arguments as in [28], we can obtain an explicit 
expression for the periodic peakons as following:

where

or

3 � Conclusions

Existence of localized travelling waves, commonly referred to as solitary waves, are 
important in general in the study of nonlinear dispersive equations. Existence and 
nonexistence of smooth and peaked solitary waves to the CH–KP equation (1.1) is 
an interesting issue, even it is not easy to deal with because of its structure with slow 
transverse effect. We have proven some partial results for certain cases(Theorem 2.1 
and Theorem 2.2). It was observed in [5] that there is no existence of smooth local-
ized solitary wave solution analogous to the KP case (1.2). However, we found that 
for the CH–KP equation (1.1) is still possible to admit line(or periodic) peaked, 
smooth, cuspons, stumpons, and composite solitary waves like as CH equation (1.3). 

(2.31)Ut − Ut�� + (k + �2)U� + 3UU� = 2U�U�� + UU���

U(�) = (m + (k + �2)∕2) cosh |� − �0| − (k + �2)∕2, |� − �0| ≤ p

2
,

p = 4 ln

�√

M − m +
√

k + �2 +M + m
√

k + �2 + 2m

�

,

U(�) =
c + (k + �2)∕2

cosh(p∕2)
cosh |� − �0| − (k + �2)∕2, |� − �0| ≤ p∕2.
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We prove the existence of periodic peaked solitary waves to the CH–KP equation 
(1.1) with an emphasis on the understanding of weak transverse effect. Moreover, 
we see that there are a multitude of solitary waves such as smooth, peakons, cus-
pons, stumpons, and composite waves like as CH equation (1.3). Furthermore, it 
is of great interest whether those solitary waves remain stable or not. To see this, 
it is worth noting that there are two approaches to study stability of peaked soli-
tary waves. one approach in [20] is variational methods, that is, it should be proved 
that each peaked solitary wave is the unique minimum (ground state) of constrained 
energy. Another method is to linearize the equation around the solitary waves, and it 
is commonly believed that nonlinear stability is governed by the linearized equation. 
But, for the CH–KP equation (1.1), the nonlinearity plays the dominant role rather 
than being a higher-order correction to linear terms. Thus it is unclear how one can 
get nonlinear stability of peaked solitary waves by studying the linearized problem. 
Moreover, the peaked solitary waves are not differentiable, making it difficult to ana-
lyze the spectrum of the linearized operator around them.

We think that one possibility to prove the stability of the peaked solitary waves 
for CH–KP equation (1.1) is the simple approach in [10]. By using their method, 
the most difficult part to establish a suitable Lyapunov functional is that one needs 
to construct two functionals, which are connected to the conservation laws E and F 
in the introduction. On the other hand, those two functionals require to vanish at the 
peaked solitary waves. Also, nonlocal form of conservation law F makes difficult 
to construct those crucial two functionals corresponding to the conservation laws E 
and F. Thus, the stability issue of peaked solitary waves of CH–KP equation (1.1) is 
more subtle but challenging. We are planning to pursue this issue in the near future.
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