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Abstract
In this article, we investigate perfect fluid spacetimes equipped with concircular 
vector field. At first, in a perfect fluid spacetime admitting concircular vector field, 
we prove that the velocity vector field annihilates the conformal curvature tensor. 
In addition, in dimension 4, we show that a perfect fluid spacetime is a generalized 
Robertson–Walker spacetime with Einstein fibre. It is proved that if a perfect fluid 
spacetime furnished with concircular vector field admits a second order symmetric 
parallel tensor P, then either the equation of state of the perfect fluid spacetime is 
characterized by p =

3−n

n−1
� , or the tensor P is a constant multiple of the metric ten-

sor. Finally, The perfect fluid spacetimes with concircular vector field whose Lorent-
zian metrics are Ricci soliton, gradient Ricci soliton, gradient Yamabe solitons, and 
gradient m -quasi Einstein solitons, are characterized.

Keywords Perfect fluid spacetimes · Gradient Ricci solitons · Gradient Yamabe 
solitons · m-quasi Einstein solitons
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1 Introduction

We start with a Lorentzian manifold Mn whose Lorentzian metric g is of signature 
(+,+,… ,+
⏟⏞⏞⏞⏟⏞⏞⏞⏟
(n−1)times

,−) . In [1], Alias, Romero, and Sanchez introduced the idea of general-

ized Robertson–Walker (GRW) spacetimes. The Mn with n ≥ 3 is called a GRW  
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spacetime if it can be written as a warped product of an open interval I of ℝ (set of 
real numbers) and an (n − 1)−dimensional Riemannian manifold M∗ . That is, 
M = −I × �2M∗ , where � is a smooth positive function, named as warping function. 
The GRW  spacetime reduces to Robertson–Walker (RW) spacetime, if M∗ is of 
dimension 3 and is of constant sectional curvature. This means spontaneously, the 
GRW  spacetime is an extension of RW spacetime. It also includes the static Einstein 
spacetime, the Einstein-de Sitter spacetime, the Friedman cosmological models, the 
de Sitter spacetime and have implementations as inhomogeneous spacetimes obey-
ing an isotropic radiation. The reader can see the physical and geometrical features 
of GRW  spacetimes in [5, 20].

The Mn is named a perfect fluid spacetime if the Ricci tensor S of Mn satisfies

in which a, b are scalar fields, � is a unit timelike vector field defined as 
g(X, �) = A(X) for all X. We know, Every RW spacetime is perfect fluid [22]. For 
n = 4 , the GRW  spacetime is perfect fluid if and only if it is a RW spacetime. We 
refer [3, 23] for further details about this subject.

In [16], Hamilton introduced the notion of Ricci flow. He invented this notion 
from the problem of discovering a canonical metric on a smooth manifold. In a 
(pseudo-) Riemannian manifold Mn, the metric is called Ricci flow if it is satisfied 
by an evolution equation �

�t
gij(t) = −2Sij [16]. The self-similar solutions to the Ricci 

flow yield the Ricci solitons. A metric of Mn is said to be a Ricci soliton [15] if it 
satisfies

� being the real scalar. In this case, �W denotes the Lie derivative operator. We 
denote (g,W, �) as a Ricci soliton on Mn . The soliton is named shrinking, expanding 
or steady if � is negative, positive, or zero, respectively. In special scenario, the Ricci 
soliton is trivial provided W is Killing or identically zero and Mn is Einstein. If the 
soliton vector W is the gradient of some smooth function −f  , that is, W = −Df  , then 
the forgoing (2) is in the following form

Hess being the Hessian and D is the gradient operator. The metric is named a gradi-
ent Ricci soliton if it obeys (3). The smooth function −f  is called the potential func-
tion of the gradient Ricci soliton.

Motivated by the Yamabe’s conjecture (“metric of a complete Riemannian 
manifold is conformally related to a metric with constant scalar curvature”), 
Hamilton in [16], presented the idea of Yamabe flow on a complete Riemannian 
manifold Mn . A (pseudo-) Riemannian manifold Mn equipped with a (pseudo-) 
Riemannian metric g is named a Yamabe flow if it satisfies:

(1)S = ag + bA⊗ A,

(2)�Wg + 2S + 2�g = 0,

(3)Hess f − S − �g = 0,

�

�t
g(t) = −rg(t), g0 = g(t),
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t being the time and r is the scalar curvature. A (pseudo-) Riemannian manifold fur-
nished with a (pseudo-) Riemannian metric is named a Yamabe soliton if it satisfies

Here, L denotes the Lie derivative operator and W represents a vector field, termed 
as the potential vector field. On a (pseudo-) Riemannian manifold Mn, Yamabe 
soliton with W = Df  reduces to the gradient Yamabe soliton. Thus, Eq. (4) becomes

The gradient Yamabe (or Yamabe) soliton becomes trivial if f is constant (or W 
is Killing) on Mn . The Yamabe soliton on 3-Sasakian manifolds was studied by 
Sharma [23]. Wang [26] and Suh and De [24], characterized the 3-Kenmotsu mani-
folds and almost co-Kähler manifolds with Yamabe solitons, respectively. Properties 
of Riemannian manifolds with Yamabe solitons were investigated by Chen et al. [6]. 
In [3, 10, 11] and also by others, some important results on Yamabe solitons have 
been studied. In [12], the authors studied Yamabe and gradient Yamabe solitons in 
perfect fluid spacetimes.

A (pseudo-) Riemannian manifold Mn furnished with the semi-Riemannian 
metric g is named a gradient m-quasi Einstein metric [2] if, for a constant � and a 
smooth function f ∶ Mn

→ ℝ , we have

in which 0 < m ≤ ∞ is an integer and ⊗ denotes the tensor product. In this setting, f 
indicates the m-quasi Einstein potential function [2]. In this case, the Bakry–Emery 
Ricci tensor S + Hessf −

1

m
df ⊗ df  is proportional to the metric g and � is a constant 

[27].
If m = ∞ , Eq.  (6) represents a gradient Ricci soliton. If m = ∞ and � is a 

smooth function, then the metric represents almost gradient Ricci soliton. Some 
basic classifications of m-quasi Einstein metrics was characterized by He et  al. 
[17] on Einstein product manifold with non-empty base. In [18], characterization 
of m -quasi Einstein solitons have been presented (in details) .

Motivated by the above studies, properties of perfect fluid spacetimes are inves-
tigated if the Lorentzian metrics are Ricci, gradient Ricci, gradient Yamabe, and 
m-quasi Einstein solitons.

This article is organised as: in Sect. 2, perfect fluid spacetime with concircular 
vector field is investigated. After that in a perfect fluid spacetime with concircular 
vector field, we study the properties of second order symmetric parallel tensor. Sec-
tion 4 is devoted to study Ricci soliton and gradient Ricci soliton on a perfect fluid 
spacetime with concircular vector field. In Sect. 5, gradient yamabe soliton on per-
fect fluid spacetime is considered. As a final point, Sect. 6 focuses on studying gra-
dient m-quasi Einstein solitons on perfect fluid spacetime.

(4)
1

2
LWg = (r − �)g.

(5)Hessf = (r − �)g.

(6)S + Hessf =
1

m
df ⊗ df + 𝜂g,
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2  Perfect Fluid Spacetime

We know that in a perfect fluid spacetime, the unit timelike vector field � , also 
called the velocity vector field of the fluid, satisfies

where U ∈ �(M) . �(M) denotes the collection of all C∞ vector fields of M and A is a 
non-zero 1−form. Now, applying the covariant derivative on (7), we infer that

∇ is the Levi-Civita connection. Einstein’s field equations (EFE) is given as

where T is the energy momentum tensor and the constant � denotes the gravitational 
constant. In a perfect fluid spacetime, the energy momentum tensor is in the follow-
ing form

where � and p are the energy density and the isotropic pressure of the perfect fluid, 
respectively.

Contracting Eq. (1) over U and V, one easily gets

For a perfect fluid spacetime, the necessary and sufficient condition for the constant 
scalar curvature is that nU(a) = U(b). The combination of Eqs. (1), (9) and (10) give

Further, p and � are connected by the following state equation p = p(�) . The per-
fect fluid in this setting is called isentropic. On the other hand, the perfect fluid is 
named stiff matter if p = � . In [29], a stiff matter state equation was publicized by 
Zeldovich. It is well-known that the stiff matter era preceded the dust matter era with 
p = 0 , the radiation era with p − �

3
= 0 and the dark energy era with p + � = 0 [4].

Failkow in [14], introduced the idea of concircular vector field. On a (pseudo-) Rie-
mannian manifold, a vector field � is named concircular if, for a smooth function � 
(termed as potential function of � ), it obeys

It is to be noted that in [25], the world lines of receding or colliding galaxies in 
de Sitter’s model of general relativity are trajectories of timelike concircular vector 
fields. In this case, � is called non-trivial if � is non-constant. The vector � becomes 
concurrent if � is non-zero constant. Concircular vector fields and their applications 
to Ricci solitons were investigated in [7] by Chen. Spheres and Euclidean spaces 

(7)g(U, �) = A(U), g(�, �) = A(�) = −1,

(8)g(∇U�, �) = 0 and (∇UA)(�) = 0,

(9)S −
r

2
g = �T ,

(10)T = (𝜎 + p)A⊗ A + pg,

(11)r = na − b.

(12)b = �(p + �), a =
�(p − �)

2 − n
.

∇U� = �U, ∀ U ∈ �(M).
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with the Concircular vector fields have been studied by Deshmukh et al. [13]. For 
further details, see [8, 9].

The use of Eqs. (1) and (7) imply

and conclude that corresponding to the eigenvector � , a − b is an eigenvalue of S.
Agreement: In a perfect fluid spacetime, we consider that � is of concircular type 

throughout this paper.
If � of the perfect fluid spacetime is of concircular type, then

for all U. The use of the above expression with R(U,V)� = ∇
U
∇

V

� − ∇
V
∇

U
� − ∇[U,V]� yield

Contracting over U implies

Combining (13) and (15), we acquire

Utilizing (16) into (14), we infer

Applying the foregoing equation and from the expression of Weyl conformal curva-
ture tensor [28]

where the symbol R is the curvature tensor whereas Q is the Ricci operator. The 
Ricci operator is defined by g(QU,V) = S(U,V) . We find that

Theorem 2.1 Let M be a perfect fluid spacetime with concircular vector field. Then 
the velocity vector field � annihilates the conformal curvature tensor.

(13)S(U, �) = (a − b)A(U)

∇U� = �U,

(14)R(U,V)� = (U�)V − (V�)U.

(15)S(V , �) = (1 − n)(V�).

(16)(U�) =
a − b

1 − n
A(U).

(17)R(U,V)� =
a − b

1 − n
{A(U)V − A(V)U}.

C(U,V)X = R(U,V)X −
1

n − 2
[g(V ,X)QU − g(U,X)QV + S(V ,X)U

− S(U,X)V −
r

n − 1
{g(V ,X)U − g(U,X)V}],

C(U,V)� = 0, ∀ U,V ∈ �(M).
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For n = 4 , C(U,V)� = 0 is equivalent to C(U,V)W = 0 [19] . Also, from 
∇U� = �U , we find

Thus, the 1-form A is closed.
For n = 4, Mantica et al. proved that a perfect fluid spacetime obeying div� = 0 is a 

GRW  spacetime with Einstein fibre, provided � is closed [21] .
Since C(U,V)W = 0 ⇒ div� = 0 . Therefore, in view of the the above discussion, 

we can conclude that a perfect fluid spacetime with concircular vector field is a GRW  
spacetime with Einstein fibre. We thus have the following result:

Theorem 2.2 A perfect fluid spacetime admitting concircular vector field is a GRW 
spacetime with Einstein fibre.

3  Perfect Fluid Spacetime with Second Order Symmetric Parallel 
Tensor

In a perfect fluid spacetime, let P be a (0, 2) symmetric tensor which is parallel with 
respect to ∇ , that is ∇P = 0 . Therefore, by ∇P = 0 , one finds

in which U, V, X, and Y are arbitrary vectors fields. Since P is symmetric, putting 
X = Y = � in Eq. (18), one gets

Using Eq. (17), we find

Putting � instead of U in the aforementioned equation and utilizing Eq.  (7), one 
infers

which implies that either a = b , or

P is parallel as mentioned earlier, thus we have

(∇UA)(V) = �g(U,V) = (∇VA)(U).

(18)P(R(U,V)X, Y) + P(X,R(U,V)Y) = 0,

(19)P(R(U,V)�, �) = 0.

(20)
a − b

1 − n
P(A(U)V − A(V)U, �) = 0.

(21)
a − b

1 − n
{−P(V , �) − A(V)P(�, �)} = 0,

(22)P(V , �) = −A(V)P(�, �).
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Since � ≠ 0,

which entails that

Since ∇P = 0 , thus we easily conclude that P(�, �) = constant.
From Eq. (17) we can derive

Putting V = Y = � in Eq. (18) and utilizing (23), it leads us either a = b , or

Since a = b , from(12), one infers

which gives the form of the state equation in a perfect fluid spacetime. Hence, we 
have the following:

Theorem 3.1 If a perfect fluid spacetime possesses a second order symmetric paral-
lel tensor. Then either

(1) the equation of state of a perfect fluid spacetime is given as p =
3−n

n−1
� , or

(2) P is constant multiple of g.

Remark 3.1 For n = 4 , we get the state equation as � + 3p = 0 , which implies the 
radiation and it characterizes the early universe.

Corollary 3.1 If a perfect fluid spacetime is Ricci symmetric, then the spacetime is 
Einstein, provided a ≠ b.

0 =(∇XP)(V , �) = ∇XP(V , �) − P(∇XV , �) − P(V ,∇X�)

= − ∇XA(V)P(�, �) + A(∇XV)P(�, �) − P(V ,�X)

= − ∇XA(V)P(�, �) − �P(V ,X)

= − �g(X,V)P(�, �) − �P(V ,X).

g(X,V)P(�, �) = P(V ,X),

g(X,V)(∇YP)(�, �) = (∇YP)(V ,X).

(23)R(U, �)V =
a − b

1 − n
{g(U,V)� − A(V)U}.

P(X,U) = P(�, �)g(X,U).

p =
3 − n

n − 1
�,
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4  Perfect Fluid Spacetime Admitting Ricci Soliton and Gradient Ricci 
Soliton

Now assume that a perfect fluid spacetime with concircular vector field admits a Ricci 
soliton given by Eq.  (2). Since � in (2) is constant; therefore, we have ∇g = 0 and 
∇�g = 0 . Therefore, £Wg + 2S is parallel. The previous theorem implies that £Wg + 2S 
is constant multiple of g. That is, £Wg + 2S = a1g, being a1 is constant, provided 
a ≠ b . Therefore, £Vg + 2S + 2�g is in the form (a1 + 2�)g , which implies � = −a1∕2 . 
Hence, we have the following result:

Theorem 4.1 Let M be a perfect fluid spacetime endowed with concircular vector 
field. Then the Ricci soliton (g,V , �) is expanding or shrinking according as a1 is 
negative or positive, provided a ≠ b.

In particular case, let us consider the following case W = �. Hence, Eq. (2) is of the 
form

The use of ∇U� = �U implies

This equation means that the spacetime is Einstein. That is, trivial Ricci soliton. We 
thus have:

Theorem 4.2 Let M be a perfect fluid spacetime equipped with concircular vector 
field. Then the Ricci soliton (g, �, �) is both trivial and Einstein, provided a ≠ b.

Now, moving on to the next part of this section. This part focus on the investigation 
of gradient Ricci solitons in perfect fluid spacetimes equipped with concircular vector 
field.

Hence,

∀U, V ∈ �(M) and (1) imply

In a perfect fluid spacetime with concircular vector field, consider that the soliton 
vector field W of (g,W, �) is a gradient of some smooth function −f  . Thus Eq. (2) is 
reduced to be in the following form

(24)(£�g)(U,V) + 2S(U,V) + 2�g(U,V) = 0.

(25)S(U,V) = −(� + �)g(U,V).

(∇VA)(U) =∇VA(U) − A(∇VU)

=∇Vg(U, �) − g(∇VU, �)

=g(U,∇V�) = �g(U,V),

(26)QU = aU + bA(U)�, ∀ U ∈ �(M).
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for all U ∈ �(M) . Equation (27) along with the subsequent relation

yield

Applying the covariant derivative on (26) and utilizing (25), we have

In view of (29) and (30), we find

Taking a set of orthonormal frame field and hence, executing contraction of (31), it 
is

From Eq. (1) we can easily get

PuttingV = � in (32) and (33). We then can equate the values of S(�,Df ) , one infers

Suppose that

Thus, from Eqs. (34) we get

On a perfect fluid spacetime equipped with the gradient Ricci soliton, the last equa-
tion illustrates that either a = b or (�f ) = 0.

Case I. If a = b and ( �f ) ≠ 0 and hence from(12), we easily infer that

which demonstrates the form of the state equation in a perfect fluid spacetime. 
Moreover, � = b − a = 0 and thus the gradient Ricci soliton is steady.

Case II. If ( �f ) = 0 and a ≠ b . Thus, we conclude that f is invariant under the 
velocity vector field �.

In consequence of the above, our following result can be stated:

(27)∇UDf = QU + �U

(28)R(U,V)Df = ∇U∇VDf − ∇V∇UDf − ∇[U,V]Df

(29)R(U,V)Df = (∇UQ)(V) − (∇VQ)(U).

(30)(∇UQ)(V) = (Ua)V + (Ub)A(V)� + b(�g(U,V)� + �A(V)U).

(31)
R(U,V)Df = (Ua)V − (Va)U + {(Ub)A(V) − (Vb)A(U)}�

+ �b{A(V)U − A(U)V}.

(32)S(U,Df ) = (1 − n)(Ua) + (Ub) + (�b)A(U) + �b(n − 1)A(U).

(33)S(V ,Df ) = a(Vf ) + bA(V)(�f ).

(34)(a − b)(�f ) = (1 − n){(�a) − �b}.

(�a) = �b.

(35)(a − b)(�f ) = 0.

p =
3 − n

n − 1
�,
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Theorem 4.3 Let M be a perfect fluid spacetime equipped with concircular vector 
field possesses a gradient Ricci soliton with (�a) = �b . Then either

(1) the equation of state of M is governed by p =
3−n

n−1
� and the soliton is steady, or

(2) under the velocity vector �, f  is invariant.

5  Perfect Fluid Spacetimes Admitting Gradient Yamabe Soliton

From Eq. (5), we find

Covariantly, differentiating (36) along V, we easily obtain the following

U and V are interchanged in the the previous equation and hence using Eqs. (36) and 
(37) in R(U,V)Df = ∇U∇VDf − ∇V∇UDf − ∇[U,V]Df  , one infers

Now, consider an orthonormal frame field and making a contraction over U, we find 
that

From Eq. (1) we infer

Combining the last two equations, we infer

Putting V = � in the preceding equation, we get

Now, from (38) we infer that

Again (17) implies that

(36)∇VDf = (r − �)V .

(37)∇U∇VDf = (Ur)V + (r − �)∇UV .

(38)R(U,V)Df = (Ur)V − (Vr)U.

S(V ,Df ) = −(n − 1)(Vr).

S(V ,Df ) = a(Vf ) + b(�f )A(V).

(39)a(Vf ) + b(�f )A(V) = −(n − 1)(Vr).

(40)(a − b)(�f ) = −(n − 1)(�r).

(41)g(R(U,V)Df , �) = (Ur)A(V) − (Vr)A(U).

(42)g(R(U,V)�,Df ) =
a − b

1 − n
{A(U)(Vf ) − A(V)(Uf )}.
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Combining Eqs. (41) and (42), we have

Setting V = � in the previous equation gives

Utilizing (44) in (39) we infer that

this equation implies that either b = 0 or (Uf ) + (�f )A(U) = 0.
It is easy to find � + p = 0 if b = 0 . This represents a dark energy.
Now, assume that b ≠ 0 and (Uf ) + (�f )A(U) = 0, which gives Df = −(�f )� . 

Hence, we conclude the result as:

Theorem 5.1 If the Lorentzian metric of a perfect fluid spacetime M with concircu-
lar vector field is a gradient Yamabe soliton. Then either

(1) M denotes a dark energy, or
(2) the gradient of Yamabe soliton potential function is pointwise collinear with the 

velocity vector field of the perfect fluid spacetime.

Now, assume that b ≠ 0 on a perfect fluid spacetime with concircular vector 
field admitting a gradient Yamabe soliton.

The covariant derivative of Df = −(�f )� implies

where (36) is used. If f is invariant � , then we get

In view of the above, we can conclude that r is constant. Therefore, from Eq. (44), 
we have either a = b or Df = 0.

Case I If a = b and (Df ) ≠ 0 , then from (12), we infer that

which gives the state equation in such spacetime.
Case II If (Df ) = 0 and a ≠ b . Then, Df = 0 means in other words that f is con-

stant. It follows that the gradient Yamabe soliton is trivial. Thus, we can write:

(43)(Ur)A(V) − (Vr)A(U) = −
a − b

1 − n
{A(U)(Vf ) − A(V)(Uf )}.

(44)(Ur) =
a − b

1 − n
(Uf ).

(45)b{(Uf ) + (�f )A(U)} = 0,

−(r − �) = −�(�f ) + �(�f ),

(46)� = r.

p =
3 − n

n − 1
�.
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Corollary 5.1 Let the Lorentzian metric of a perfect fluid spacetime endowed with 
concircular vector field admits a gradient Yamabe soliton with b ≠ 0 . If f is invariant 
under � , Then either

(1) the equation of state of a perfect fluid spacetime is governed by p =
3−n

n−1
� or,

(2) the gradient Yamabe soliton is trivial.

Now, consider the next setting, if f is invariant under the velocity vector field � , 
then (46) is fulfilled. Therefore, we can easily find that the nature of the flow varies 
according to r. We thus can write the subsequent corollaries.

Corollary 5.2 Let a perfect fluid spacetime with concircular vector field admits a 
gradient Yamabe soliton with b ≠ 0 . If f is invariant under the velocity vector field � . 
Then the gradient Yamabe soliton is expanding, shrinking or, steady according as r 
is positive, negative or zero, respectively.

Corollary 5.3 Assume that the metric of a perfect fluid spacetime M equipped with 
concircular vector field admits a gradient Yamabe soliton with b ≠ 0 . Then it admits 
the constant scalar curvature r, provided f is invariant under �.

Remark 5.1 Gradient Yamabe soliton in perfect fluid spacetimes was studied in [12]. 
In this article, under extra conditions, we study gradient Yamabe soliton in perfect 
fluid spacetime. That is, in a perfect fluid spacetime M, we assume that the velocity 
vector field � is of concircular type which was first coined by Failkow [14]. In this 
setting, we discover some interesting results. These results are different from the 
results of the paper [12].

6  Gradient m‑quasi Einstein Solitons on Perfect Fluid Spacetimes

In this section, perfect fluid spacetimes equipped with concircular vector field with 
m-quasi Einstein metric are investigated. At first, let us prove the following result:

Lemma 6.1 For a perfect fluid spacetime with concircular vector field obeys the fol-
lowing relation:

for all U, V ∈ �(M).

(47)
R(U,V)Df = (∇VQ)U − (∇UQ)V +

�

m
{(Vf )U − (Uf )V}

+
1

m
{(Uf )QV − (Vf )QU},
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Proof At first, consider that a perfect fluid spacetime (with concircular vector field) 
with m-quasi Einstein metric. Hence, Eq.  (6) may be expressed as

After executing covariant derivative of (48) along V, one infers

Exchanging U and V in (49), it is easy to get

and

Utilizing (48)–(51) and the symmetric property of ∇ . Both together with 
R(U,V)Df = ∇U∇VDf − ∇V∇UDf − ∇[U,V]Df  , one easily finds

  ◻

In view of the Eqs.  (26), (30) and the foregoing Lemma, one can get

Taking a set of orthonormal frame field. And hence executing contraction of the 
Eq. (52), we conclude that

(48)∇UDf + QU =
1

m
g(U,Df )Df + �U.

(49)
∇V∇UDf = − ∇VQU +

1

m
∇Vg(U,Df )Df

+
1

m
g(U,Df )∇VDf + �∇VU.

(50)
∇U∇VDf = − ∇UQV +

1

m
∇Ug(V ,Df )Df

+
1

m
g(V ,Df )∇UDf + �∇UV ,

(51)∇[U,V]Df = −Q[U,V] +
1

m
g([U,V],Df )Df + �[U,V].

R(U,V)Df = (∇
V
Q)U − (∇

U
Q)V +

�

m
{(Vf )U − (Uf )V}

+
1

m
{(Uf )QV − (Vf )QU}.

(52)

R(U,V)Df =(Ua)V − (Va)U + {(Ub)A(V) − (Vb)A(U)}�

+ �b{A(V)U − A(U)V} +
�

m
{(Vf )U − (Uf )V}

+
1

m
{a(Uf )V + b(Uf )A(V)� − a(Vf )U − b(Vf )A(U)�}.

(53)

S(U,Df ) =(1 − n)(Ua) + (Ub) + (�b)A(U)

+ �b(n − 1)A(U) +
�

m
(n − 1)(Uf )

+
1

m
{a(Uf ) + b(�f )A(U) − na(Uf ) + b(Uf )}.
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Setting V = � in Eqs. (53) and (33) and then equating the values of S(�,Df ) , we find

Assume that f and a are invariant under the velocity vector field � . Then, we get 
from the previous equation that b = 0 , since m ≠ 0 . Thus, following the proof of 
Theorem 5.1, we conclude our result as:

Theorem 6.1 Let M be a perfect fluid spacetime equipped with concircular vector 
field admits a gradient m-quasi Einstein soliton. Then the spacetime M denotes a 
dark energy if f and a are invariant under �.

7  Conclusion

In true sense, solitons are nothing but the waves which is physically propagate with 
some loss of energy and hold their speed and shape after colliding with one more 
such wave. Solitons play an essential role in the treatment of initial-value problems. 
This occurs in nonlinear partial differential equations describing wave propagation.

The investigation in this present article is established that a perfect fluid space-
time with concircular vector field is a GRW spacetime with Einstein fibre. Further-
more, it is proved that if a perfect fluid spacetime endowed with concircular vector 
field possesses a second order symmetric parallel tensor, then either the equation of 
state is distinguished by p =

3−n

n−1
� or the tensor is a constant multiple of g. Also, in 

the perfect fluid spacetimes with concircular vector field different metrics like Ricci 
soliton, gradient Ricci soliton, gradient Yamabe solitons and gradient m-quasi Ein-
stein solitons are studied. In particular case, we find the condition for which the vec-
tor field � is steady, expanding and shrinking. It is noted that the spacetime denotes a 
dark matter era under certain restriction on �.

Acknowledgements We would like to thank the referees and editor for reviewing the paper carefully and 
their valuable comments to improve the quality of the paper.

Funding The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura Univer-
sity for supporting this work by Grant Code: 22UQU4270197DSR01.

Availability of data and material Not applicable.

Code availability Not applicable.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 

(54)
(

m

1 − n
+ � − a

)
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