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Abstract
In this paper, we study the following fractional Choquard equation with critical or 
supercritical growth 

where 0 < s < 1 , (−Δ)s denotes the fractional Laplacian of order s, N > 2s , 
0 < 𝜇 < 2s and p ≥ 2∗

�,s
∶=

2N−�

N−2s
 , which is the critical exponent in the sense of 

Hardy-Littlewood-Sobolev inequality. Under some suitable conditions, we prove 
that the equation admits a nontrivial solution for small 𝜆 > 0 by variational methods, 
which extends results in Bhattarai in J. Differ. Equ. 263, 3197–3229 (2017).

Keywords Fractional Choquard equation · Critical or supercritical growth · 
Variational method
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1  Introduction and main result

Consider the following fractional Choquard equation

where 0 < s < 1 , (−Δ)s denotes the fractional Laplacian of order s, N > 2s , 
0 < 𝜇 < 2s and p ≥ 2∗

�,s
∶=

2N−�

N−2s
.

Problem (1.1) has nonlocal characteristics in the nonlinearity as well as in the 
(fractional) diffusion. When s = 1, � = 1, � = 1, p = 2 and f (x, u) = 0 , then (1.1) 
boils down to the so-called Choquard equation

(−Δ)su + V(x)u = f (x, u) + �
[
|x|−� ∗ |u|p

]
p|u|p−2u, x ∈ ℝ

N
,

(1.1)(−Δ)su + V(x)u = f (x, u) + �
[
|x|−� ∗ |u|p

]
p|u|p−2u, x ∈ ℝ

N
,
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which goes back to the description of the quantum theory of a polaron at rest by 
Pekar in 1954 [15] and the modeling of an electron trapped in its own hole in 1976 
in the work of Choquard, as a certain approximation to Hartree-Fock theory of one-
component plasma [6]. In some particular cases, this equation is also known as the 
Schrödinger-Newton equation, which was introduced by Penrose in his discussion 
on the selfgravitational collapse of a quantum mechanical wave function [16]. The 
first investigations for existence and symmetry of the solutions to (1.2) go back to 
the works of Lieb [6] and Lions [7]. Since then many efforts have been made to 
study the existence of nontrivial solutions for nonlinear Choquard equations, see for 
instance [3, 12, 13].

For fractional Laplacian with nonlocal Hartree-type nonlinearities, the problem 
has also attracted a lot of interest, we refer to Refs. [2, 4, 5, 8, 10, 11] and their refer-
ences therein.

Most of the works afore mentioned are set in ℝN , N > 2s , with subcritical and 
critical growth nonlinearities and to the authors’ best knowledge no results are avail-
able on the existence for problem (1.1) with supercritical exponent. We aim at stud-
ying the existence of nontrivial solutions for critical or supercritical problem (1.1).

In order to reduce the statements for main result, we list the assumption as fol-
lows: (V) V ∈ C

(
ℝ

N ,ℝ
)
 , 0 < V0 ∶= inf

x∈ℝN
V(x) and lim

|x|→+∞
V(x) = +∞.

(f1)  f ∈ C
(
ℝ

N ×ℝ,ℝ
)
 and there exists q ∈

(
2,

2(N−�)

N−2s

)
 such that 

|f (x, t)| ≤ C
(
1 + |t|q−1

)
 for all (x, t) ∈ ℝ

N ×ℝ.
(f2)  f (x, t) = o(|t|) uniformly in x ∈ ℝ

N as |t| → 0.
(f3)  f (x, t)t ≥ qF(x, t) ∶= q ∫

t

0
f (x, �)d� for all (x, t) ∈ ℝ

N ×ℝ.
(f4) c0 ∶= inf

x∈ℝN ,|t|=1
F(x, t) > 0.

For any 0 < s < 1 , the fractional Sobolev space Hs
(
ℝ

N
)
 is defined by

endowed with the natural norm

where the term

(1.2)−Δu + V(x)u =
[
|x|−1 ∗ |u|2

]
u, x ∈ ℝ

3
,

Hs
(
ℝ

N
)
=

{
u ∈ L2

(
ℝ

N
)
∶
|u(x) − u(y)|

|x − y|
N+2s

2

∈ L2
(
ℝ

N ×ℝ
N
)
}

,

‖u‖Hs(ℝN) =

�

∫
ℝN

u2dx +
∫
ℝ2N

�u(x) − u(y)�2

�x − y�N+2s
dxdy

� 1

2

,
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is the so-called Gagliardo semi-norm of u. Moreover, we can see that an alterna-
tive definition of the fractional Sobolev space Hs

(
ℝ

N
)
 via the Fourier transform as 

follows:

Here we denote the Fourier transform of u by û ∶= F(u) . Propositions 3.4 and 3.6 in 
[14] imply that

As a consequence, the norms on Hs
(
ℝ

N
)
,

are all equivalent.
Set E =

{
u ∈ Hs

(
ℝ

N
)
∶ ∫

ℝN |𝜉|2s|û(𝜉)|2d𝜉 + ∫
ℝN V(x)u

2dx < +∞
}
 with the norm

and Ds,2(ℝN) =
{
u ∈ L2

∗
s

(
ℝ

N
)
∶ ∫

ℝN |𝜉|2s|û(𝜉)|2d𝜉 < +∞
}
 with the norm

Then ‖u‖2
E
= ‖u‖2

D
s,2
+ ∫

ℝN V(x)u
2dx.

Our main result is the following:

Theorem  1.1 Suppose that (V) and (f1)–(f4) are satisfied. Then there exists some 
𝜆0 > 0 such that for � ∈ (0, �0] , Eq. (1.1) admits a nontrivial solution u�.

Remark 1.2 Bhattarai in [1] studied the following fractional Schrödinger equation

[u]Hs(ℝN) =

(

∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dxdy

) 1

2

Hs
(
ℝ

N
)
=

{
u ∈ L2

(
ℝ

N
)
∶
∫
ℝN

(
1 + |𝜉|2s

)
|û(𝜉)|2d𝜉 < +∞

}
.

2C−1
N,s ∫

ℝN

|𝜉|2s|û(𝜉)|2d𝜉 = 2C−1
N,s

‖‖‖(−Δ)
s

2 u
‖‖‖
2

L2(ℝN )
= [u]2

Hs(ℝN )
.

u ↦ ‖u‖Hs(ℝN),

u ↦

�
‖u‖2

L2(ℝN)
+ ‖(−Δ)

s

2 u‖2
L2(ℝN)

� 1

2

,

u ↦

�
‖u‖2

L2(ℝN)
+ ∫

ℝN �𝜉�2s�û(𝜉)�2d𝜉
� 1

2

‖u‖2
E
=
∫
ℝN

�𝜉�2s�û(𝜉)�2d𝜉 +
∫
ℝN

V(x)u2dx

‖u‖2
D

s,2 =
∫
ℝN

�𝜉�2s�û(𝜉)�2d𝜉.
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where 0 < 𝜇 < N , 2 < q < 2 +
4s

N
< 2∗

s
 , 2 ≤ p < 1 +

2s+N−𝜇

N
< 2∗

𝜇,s
 . Consequently, 

our result extends his result to some extent.

2  Proof of Theorem 1.1

Proposition 2.1 [9] (Hardy-Littlewood-Sobolev inequality) Let r, t > 1 and 
0 < 𝜇 < N with 1

r
+

�

N
+

1

t
= 2 . Let g ∈ Lr

(
ℝ

N
)
 and h ∈ Lt

(
ℝ

N
)
 . Then there exists a 

sharp constant Cr,N,�,t independent of g and h such that

Remark 2.2 In general, set F(u) = |u|q for some q > 0 . By Hardy-Littlewood-
Sobolev inequality, ∫

ℝN ∫ℝN

F(u(x))F(u(y))

|x−y|� dxdy is well defined if F(u) ∈ Lt
(
ℝ

N
)
 for 

t > 1 defined by 2
t
+

�

N
= 2 . Thus, for u ∈ Hs(ℝN) , there must hold

It is well known to us that a weak solution of problem (1.1) is a critical point of the 
following functional

Clearly, we cannot apply variational methods directly because the functional I� is not 
well defined on E unless p = 2∗

�,s
 . To overcome this difficulty, we define a function

(−Δ)su + �u = a|u|q−2u + �
[
|x|−� ∗ |u|p

]
|u|p−2u,

�
ℝN �ℝN

g(x)h(y)

�x − y��
dxdy ≤ Cr,N,�,t‖g‖r‖h‖t.

2N − �

N
≤ q ≤

2N − �

N − 2s
= 2∗

�,s
.

I𝜆(u) =
1

2 ∫
ℝN

|𝜉|2s|û(𝜉)|2d𝜉 + 1

2 ∫
ℝN

V(x)u2dx −
∫
ℝN

F(x, u)dx −
𝜆

2 ∫
ℝN

[
|x|−𝜇 ∗ |u|p

]
|u|pdx.

𝜙(t) =

{
p|t|p−2t, |t| ≤ M,

pMp−q|t|q−2t, |t| > M,
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where M > 0 . Then � ∈ C(ℝ,ℝ) , �(t)t ≥ qΦ(t) ∶= q ∫
t

0
�(s)ds ≥ 0 and 

|�(t)| ≤ pMp−q|t|q−1 for all t ∈ ℝ . Moreover, there exists a constant C > 0 such that

for all u ∈ Hs
(
ℝ

N
)
 . Indeed, for any u ∈ Hs

(
ℝ

N
)
 , taking t ∈

(
N

N−�
,

2N

q(N−2s)

]
 , by the 

Hölder inequality we can calculate that

Set h�(x, t) = �[|x|−� ∗ Φ(t)]�(t) + f (x, t) for all (x, t) ∈ ℝ
N ×ℝ . Then

(h1)  h� ∈ C
(
ℝ

N ×ℝ,ℝ
)
 and |h�(x, t)| ≤ C�M2(p−q)|t|q−1 + C

(
1 + |t|q−1

)
 for all 

(x, t) ∈ ℝ
N ×ℝ.

(h2) h�(x, t) = o(|t|) uniformly in x ∈ ℝ
N as |t| → 0.

(h3) h�(x, t)t ≥ qH�(x, t) ∶= q ∫
t

0
h�(x, �)d� ≥ 0 for all (x, t) ∈ ℝ

N ×ℝ.
(h4)  inf

x∈ℝN ,|t|=1
H𝜆(x, t) ≥ c0 > 0.

Let

By mountain pass theorem, using a standing argument we can prove that the 
equation

(2.1)
|||
[
|x|−� ∗ Φ(u)

]||| ≤ CMp−q

||x|−𝜇 ∗ Φ(u)| =
||||�ℝN

Φ(u(y))

|x − y|𝜇
dy
||||

≤ CMp−q

�
ℝN

|u(y)|q

|x − y|𝜇
dy

= CMp−q

�|x−y|≤1

|u(y)|q

|x − y|𝜇
dy + CMp−q

�|x−y|>1

|u(y)|q

|x − y|𝜇
dy

≤ CMp−q

(

�|x−y|≤1
|u(y)|tqdy

) 1

t

(

�|x−y|≤1

1

|x − y|
𝜇t

t−1

dy

) t−1

t

+ CMp−q

≤ CMp−q

(

�

1

0

𝜌
N−1−

𝜇t

t−1 d𝜌

) t−1

t

+ CMp−q
≤ CMp−q.

J𝜆(u) =
1

2 ∫
ℝN

|𝜉|2s|û(𝜉)|2d𝜉 + 1

2 ∫
ℝN

V(x)u2dx −
∫
ℝN

H𝜆(x, u)dx

=
1

2 ∫
ℝN

|𝜉|2s|û(𝜉)|2d𝜉 + 1

2 ∫
ℝN

V(x)u2dx −
∫
ℝN

F(x, u)dx

−
𝜆

2 ∫
ℝN

[
|x|−𝜇 ∗ Φ(u)

]
Φ(u)dx

=
1

4
CN,s[u]

2
Hs +

1

2 ∫
ℝN

V(x)u2dx −
∫
ℝN

F(x, u)dx

−
𝜆

2 ∫
ℝN

[
|x|−𝜇 ∗ Φ(u)

]
Φ(u)dx.
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has a nontrivial u� ∈ E with J�
�
(u�) = 0 and J�(u�) = c� ∶= inf

�∈Γ�

sup
t∈[0,1]

J�(�(t)) , where

In the sequel, set

and

and c ∶= inf
�∈Γ

sup
t∈[0,1]

J(�(t)) . Then Γ ⊂ Γ𝜆 and c� ≤ c.

Lemma 2.3 The solution u� satisfies ‖u�‖2
D

s,2
≤

2q

q−2
c� and there exists a constant 

A > 0 independent on � such that ‖u�‖2
D

s,2
≤ A.

Proof Taking into account (f3) we can see that

which implies that ‖u𝜆‖2
D

s,2
≤

2q

q−2
c𝜆 ≤

2q

q−2
c ∶= A > 0 . This completes the proof.  

 ◻

Lemma 2.4 There exist two constants B, D > 0 independent on � such that 
‖u�‖L∞ ≤ B(1 + �)D , where ‖u‖L∞ ∶= sup

x∈ℝN

�u(x)�.

Proof For any L > 0 and 𝛽 > 1 , set

where u�,L ∶= min{u�, L} . Since � is an increasing function, one has

for all a, b ∈ ℝ . Furthermore, set Γ(t) ∶= ∫
t

0

(
� �(�)

) 1

2 d� for t ≥ 0 . Then for any 
a, b ∈ ℝ , if a > b we obtain

(−Δ)su + V(x)u = h�(x, u)

Γ𝜆 ∶=
{
𝛾 ∈ C([0, 1],E) ∶ 𝛾(0) = 0, J𝜆(𝛾(1)) < 0

}
.

J(u) =
1

2 ∫
ℝN

|𝜉|2s|û(𝜉)|2d𝜉 + 1

2 ∫
ℝN

V(x)u2dx −
∫
ℝN

F(x, u)dx

Γ ∶= {𝛾 ∈ C([0, 1],E) ∶ 𝛾(0) = 0, J(𝛾(1)) < 0}

qc𝜆 = qJ𝜆(u𝜆) = qJ𝜆(u𝜆) −
�
J�
𝜆
(u𝜆), u𝜆

�

=

�q
2
− 1

�
�
ℝN

�𝜉�2s�û𝜆(𝜉)�2d𝜉 +
�q
2
− 1

�
�
ℝN

V(x)�u𝜆�2dx +
�
ℝN

�
f (x, u𝜆)u𝜆 − qF(x, u𝜆)

�
dx

+ 𝜆
�
ℝN

�
�x�−𝜇 ∗ Φ(u𝜆)

��
𝜙(u𝜆)u𝜆 −

q

2
Φ(u𝜆)

�
dx

≥

�q
2
− 1

�
�
ℝN

�𝜉�2s�û𝜆(𝜉)�2d𝜉 =

�q
2
− 1

�
‖u𝜆‖2

D
s,2 ,

�(u�) ∶= �L,�(u�) = u�u
2(�−1)

�,L
∈ Hs

(
ℝ

N
)
,

(a − b)[�(a) − �(b)] ≥ 0
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We can use a similar argument to obtain the above conclusion if a ≤ b . Therefore,

for all a, b ∈ ℝ . Consequently,

which implies that

By the fact that Γ(u�) ≥
1

�
u�u

�−1

�,L
 we see that

where S∗ = S(N, s) > 0 is a sharp constant that satisfies S∗‖u‖22∗
s

≤ [u]2 for any 
u ∈ Hs(ℝN) ( [14]). By the proof of (2.1) we know that there exists a constant C0 > 0 
such that

Moreover, by virtue of (f1)–(f2) we know that for any 𝜀 > 0 , there exists C𝜀 > 0 such 
that

for all (x, t) ∈ ℝ
N ×ℝ . For fixed 𝜆 > 0 and small 𝜀 > 0 , by (2.5) and properties of � 

we have

for all (x, t) ∈ ℝ
N ×ℝ . Therefore, in view of (2.2)–(2.4) and (2.6) one has

(a − b)[�(a) − �(b)] = (a − b)
�

a

b

� �(t)dt = (a − b)
�

a

b

(Γ�(t))2dt ≥

(

�

a

b

Γ�(t)dt

)2

= |Γ(a) − Γ(b)|2.

(a − b)[�(a) − �(b)] ≥ |Γ(a) − Γ(b)|2

|Γ(u�)(x) − Γ(u�)(y)|2 ≤ [u�(x) − u�(y)]

[(
u�u

2(�−1)

�,L

)
(x) −

(
u�u

2(�−1)

�,L

)
(y)

]
,

(2.2)

CN,s

2
[Γ(u�)]

2 +
�
ℝN

V(x)u2
�
u
2(�−1)

�,L
dx

≤
CN,s

2 �
ℝ2N

u�(x) − u�(y)

|x − y|N+2s
[(

u�u
2(�−1)

�,L

)
(x) −

(
u�u

2(�−1)

�,L

)
(y)

]
dxdy +

�
ℝN

V(x)u2
�
u
2(�−1)

�,L
dx

=
�
ℝN

f (x, u�)u�u
2(�−1)

�,L
dx + �

�
ℝN

[
|x|−� ∗ Φ(u�)

]
�(u�)u�u

2(�−1)

�,L
dx.

(2.3)[Γ(u�)]
2
≥ S∗‖Γ(u�)‖22∗

s

≥

�
1

�

�2

S∗‖u�u
�−1

�,L
‖2
2∗
s

,

(2.4)|||x|
−� ∗ Φ(u�)

|| ≤ C0M
p−q

(2.5)|f (x, t)| ≤ �|t| + C�|t|q−1

(2.6)|f (x, t) + ��(t)| ≤
V0

max{1,C0M
p−q}

|t| + C(1 + �)|t|q−1
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Set w�,L ∶= u�u
�−1

�,L
 . By applying the Hölder inequality and (2.7), we get

where �∗
s
∶=

22∗
s

2∗
s
−(q−2)

∈ (2, 2∗
s
) . Now, we observe that if u�

�
∈ L�

∗
s (ℝN) , from the defi-

nition of w�,L , and by using the fact that u�,L ≤ u� and (2.8) we obtain

Using the Fatou Lemma in L → +∞ one has

where u��
∗
s

�
∈ L1(ℝN).

Now, we take 𝛽 =
2∗
s

𝛼∗
s

> 1 . By u� ∈ L2
∗
s

(
ℝ

N
)
 , we know that (2.9) still holds for 

this choice of � . Then, observing that �2�∗
s
= �2∗

s
 , it follows that (2.9) holds with � 

replaced by �2 . Therefore,

(2.7)

CN,s

2

(
1

�

)2

S∗
‖‖‖u�u

�−1

�,L

‖‖‖
2

2∗
s

≤
CN,s

2
[Γ(u�)]

2

≤ max
{
1,C0M

p−q
}
�
ℝN

[
V0

max{1,C0M
p−q}

|u�| + C(1 + �)|u�|q−1
]
|||u�u

2(�−1)

�,L

|||dx

−
�
ℝN

V(x)u2
�
u
2(�−1)

�,L
dx

≤C(1 + �)
�
ℝN

|u�|q
|||u

2(�−1)

�,L

|||dx.

(2.8)

‖w�,L‖22∗
s

=
���u�u

�−1

�,L

���
2

2∗
s

≤ �2C(1 + �)
�
ℝN

�u��q
���u

2(�−1)

�,L

���dx

= �2C(1 + �)
�
ℝN

�u��q−2w2

�,L
dx

≤ �2C(1 + �)

�

�
ℝN

�u��2
∗
s dx

� q−2

2∗s

�

�
ℝN

w
�∗
s

L,�
dx

� 2

�∗s

≤ �2C(1 + �)‖wL,�‖2�∗
s

,

‖w𝜆,L‖22∗
s

≤ C𝛽2(1 + 𝜆)

�

�
ℝN

�u𝜆�𝛽𝛼
∗
s

� 2

𝛼∗s

< +∞.

(2.9)‖u�‖�2∗
s
≤ C

1

� �
1

� (1 + �)
1

2� ‖u�‖��∗
s
,
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Iterating this process and recalling that ��∗
s
= 2∗

s
 , we can infer that for every m ∈ ℕ,

Let m → +∞ and recalling that ‖u�‖2∗
s
≤ K we obtain

This completes the proof.   ◻

Proof of Theorem  1.1 For large M > 0 , we can choose small 𝜆0 > 0 such that 
‖u�‖L∞ ≤ B(1 + �)D ≤ M for all � ∈ (0, �0] . Consequently, u� is a nontrivial solution 
of (1.1) with � ∈ (0, �0] . This completes the proof.   ◻
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