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Abstract
A novel dynamic vibration absorber(DVA) model with negative stiffness and 
inerter-mass is presented and analytically studied in this paper. The research shows 
there are still two fixed points independent of the absorber damping in the amplitude 
frequency curve of the primary system when the system contains negative stiffness 
and inerter-mass. The optimum frequency ratio is obtained based on the fixed-point 
theory. In order to ensure the stability of the system, it is found that inappropri-
ate inerter coefficient will cause the system instable when screening optimal neg-
ative stiffness ratio. Accordingly, the best working range of inerter is determined 
and optimal negative stiffness ratio and approximate optimal damping ratio are also 
obtained. At last the control performance of the presented DVA is compared with 
three existing typical DVAs. The comparison results in harmonic and random exci-
tation show that the presented DVA could not only reduce the peak value of the 
amplitude-frequency curve of the primary system significantly, but also broaden the 
efficient frequency range of vibration mitigation.
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1 Introduction

Vibration control plays a critical role in industrial productions and has become 
one of the most important research topics in the field of nonlinear dynamics. 
Many types of vibration control techniques and efficient devices have been devel-
oped over the years. Dynamic vibration absorber (DVA), as one of the common 
devices for vibration control, has been widely used in engineering practice such 
as transportation, earthquake and civil engineering due to it’s simple structure 
and low cost.

A dynamic vibration absorber is a device that reduces the vibration of a pri-
mary vibration system by absorbing the vibration energy of the primary system 
through control structures attached to the primary system. In recent decades, vari-
ous structural forms and working methods of the DVA have been proposed. The 
first DVA without damping was invented by Frahm [1] in 1909. In 1928, Ormon-
droyd and Den Hartog [2, 3] found that a DVA with damping element could sup-
press the amplitude of the primary system in a broader frequency range, which 
had been recognized as the typical Voigt type DVA. Den Hartog and Ormondroyd 
also proposed the optimization principle of the damped DVA in terms of mini-
mizing the maximum amplitude response of the primary system. This optimum 
design method of the dynamic vibration absorber is called the fixed-points theory, 
which was well documented in the textbook by Den Hartog [3]. In 2001, Ren [4] 
presented a DVA where the damping element was not connected to the primary 
system, but to the earth or the base structure. The result indicated it could pre-
sent better control performance than Voigt type DVA under the same parameters 
condition. Thereafter, Asami et al. [5–7] derived the exact series solutions for the 
optimum frequency and damping ratios of the DVA attached to damped linear 
systems.

The general definition of stiffness is the load that an elastic element bears when 
it produces a unit deformation. If the deformation increases with the increase of 
load, the stiffness is positive. If the load increases and the deformation decreases, 
the stiffness is negative. Devices made up of a number of basic components 
exhibit negative stiffness characteristics under certain conditions, such as inverted 
pendulum, magnetic device, pressure bar device, etc. Negative stiffness element 
has been widely used in system vibration reduction in recent years because of 
its advantages of large bearing capacity, small deformation and good controlla-
bility, and the parallel use of positive stiffness element can effectively solve the 
contradiction between low stiffness and high static load shape variables. Thus, it 
is necessary and meaningful to draw into the negative stiffness to the vibration 
control system. In 2013, Acar et al. [8] analyzed and experimentally studied an 
adaptive passive DVA with a negative stiffness mechanism and found that it can 
suppress the amplitude of the system by appropriately adjusting the parameters. 
Yang et al. [9] studied nonlinear vibration isolation system with negative stiffness 
mechanism by means of average method. The results show that adding negative 
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stiffness can greatly enlarge the vibration isolation frequency band and achieve 
effective vibration isolation effect. Shen et al. [10, 11] applied negative stiffness 
elements to a variety of vibration absorbers, proving that vibration absorbers with 
reasonable negative stiffness elements have significant control performance. Zhou 
et al. [12] proposed two configurations of dynamic vibration absorber in conjunc-
tion with negative stiffness and optimized them using H

∞
 criterion and stability 

maximization criterion.
With the development of practical engineering research, components with 

amplifying function such as inerter are applied to the vibration absorption system 
to obtain better performance. Inerter is a new type of structural control element 
which is related to the acceleration of two endpoints and is widely used in vibra-
tion control field. Wang et al. [13, 14] designed a variety of DVAs with inerter 
and derived their corresponding optimal parameter design formulas. Hu et al. [15, 
16] investigated the influence of inerter on natural frequencies of vibration sys-
tems, and the efficiency of inerter in reducing the largest natural frequencies is 
verified. An improved inerter-based DVA was proposed by Gioacchino et al. [17], 
which combined the diamond bracket with inerter. Brzeski et  al. [18] investi-
gated a special type of inerter equipped with a continuously variable transmission 
and gear-ratio control system, and compared control performance with changes 
of mass and damping coefficient. Willian et  al. [19] discussed the advantages 
and disadvantages of the inerter in the vibration isolation system, and proposed 
a simple method to improve the high frequency performance of the system. De 
Domenico et al. [20] proposed a vibration control system that combines a tradi-
tional foundation isolation scheme with an inertial foundation device. When iner-
tiators are mounted in series with spring and damper elements, a lower mass and 
more efficient alternative to conventional tuned mass damper where device iner-
tia plays a role in tune mass damper is obtained. Based on the sensitivity analy-
sis, the effect of detuning is discussed.These studies show that the introduction 
of inerter has a potential advantage in improving the performance of the DVA. 
Kim et al. [21] proposed and analyzed the optimal design of friction multi-tuned 
mass dampers, studied the use of statistical linearization to replace the original 
nonlinear system and the equivalent linear system, and found a primary struc-
ture of optimal design to minimize the root mean square displacement. Sun et al. 
[22] studied a vibration isolation system of n-layer scissor structure, analyzed and 
designed nonlinear stiffness, friction and damping characteristics, and it is easy to 
achieve better vibration isolation performance and loading capacity by designing 
structural parameters. Bian et  al. [23] designed a novel tunable nonlinear tuned 
mass damper using a bionic X-type structure. Compared with traditional absorb-
ers, X absorbers can significantly improve the robustness of system parameters, 
expand anti-resonance and expand vibration suppression bandwidth. These stud-
ies showed that the introduction of inerter has a potential advantage in improving 
the performance of the DVA.

As described above, inerter can change the inertia characteristics of the sys-
tem without changing the physical mass of the structure, grounding stiffness 
can adjust the stiffness characteristics of the system. Both devices can change 
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the natural frequency of the system, and improve the performance of the vibra-
tion absorber. The control performance of the dynamic vibration absorber can 
be improved by using the grounded negative stiffness and inertial vessel simul-
taneously, but most of the current researches only introduce inertial vessel or the 
grounded negative stiffnes into the dynamic vibration absorber.

In this paper the effect of the negative stiffness and inerter on the amplitude 
of the primary system is studied by introducing inerter and the negative stiff-
ness which is connected the DVA with the earth. Section  2 presents the model 
and optimizes the system parameters based on the fixed-point theory. Section 3 
compares the present DVA with other typical DVAs under harmonic and random 
excitations, the results verify the DVA in this paper has more significant control 
performance. The conclusion is drawn finally in Sect. 4.

2  The Model of DVA and Parameters Optimization

2.1  Dynamic Model of DVA

Figure  1 shows the dynamic vibration absorber model proposed in this paper, 
where m1 , m2 , k1 and k2 are the masses, linear stiffness coefficients of the primary 
system and the DVA respectively. c is the damping coefficient of the absorber, b is 
the inertance and k is the negative stiffness coefficient. x1 and x2 are the displace-
ments of the primary system and the DVA respectively. F and � are the amplitude 
and frequency of the force excitation.

According to Newton’s second law, the motion equation of the system with 
negative stiffness can be established as

Using the following parametric transformation

(1)
m1ẍ1 + (k1 + k2)x1 − k2x2 + bẍ1 − bẍ2 = F cos (𝜔t)

m2ẍ2 + (k + k2)x2 − k2x1 + cẋ2 − bẍ1 + bẍ2 = 0

Fig. 1  The model of DVA with 
negative stiffness and inerter-
mass
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Eq. (1) becomes

2.2  The Analytical Solution

Letting f cos (�t) in Eq. (2) be represented by fej�t , the steady state solutions take 
the forms as

Substituting (3) into (2), one could obtain

where

Introducing the parameters

Based on the above analysis, the amplitude amplification factor of the primary sys-
tem should be

where

�1 =

√
k1

m1
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2.3  Parameters Optimization

By simple deduction of (6), it can be found that the normalized amplitude-frequency 
curve under the different damping ratios as 0.1, 0.2 and 0.4 given in Fig. 2 will pass 
through two points which are independent of the damping ratio. And it could be 
clearly seen that there exist two commonly fixed points P and Q on all the curves, 
which are independent of the damping ratio. Thus, based on fixed point theory, the 
optimum natural frequency ratio can be obtained by adjusting the responses at P and 
Q to the same level. Then making P and Q as the maximum values of the amplitude-
frequency curve to obtain the optimum damping ratio.

Due to the fixed-point theory, there exist two equal values if � → ∞ and � → 0 in 
Eq. (6)

i.e.

It could be found that there is no meaning when the right part of (9) is positive. 
Accordingly, taking the negative one and simplifying the equation, one can get

(7)

A3 = �1 − �2(h + 1), B3 = 2��, D3 = 2��(�2 − �2�3)

C3 =

(
�1 − �2(h + 1)

)
(�2 − �2�3) − �(h�2 − �2)2

�1 = �2(� + 1), �2 = ��2 + 1, �3 = �h + 1

(8)
|||||

A3

C3

|||||
=

|||||

B3

D3

|||||

(9)
�1 − �2(h + 1)

(
�1 − �2(h + 1)

)
(�2 − �2�3) − �(h�2 − �2)2

= ±

1

�2 − �2�3

Fig. 2  The normalized ampli-
tude-frequency curves
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where

Supposing the roots of Eq. (10) are �P and �Q , one can get the following equation

In order to get the optimum natural frequency ratio, adjusting the values at P and Q 
to be the same

Simplifying Eq. (12) leads to

Combining Eqs.(11) and (13), the optimum natural frequency ratio can be obtained

where b1 = ��2
3
− ��3 + 1 . For convenience, we denote

Then the two fixed points can be obtained

Based on the optimum natural frequency ratio, the amplitude amplification factor at 
P and Q can be obtained

Next, to make the maximum amplitude of the primary system at the fixed points, the 
damping ratio is adjusted. The condition can be achieved when the derivatives of the 
amplitude amplification factor are zero at the two fixed points
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Solving Eq. (17) and substituting the optimum natural frequency ratio into the 
results one can get

Taking an average of �P and �Q , one can get the optimum damping ratio

From the above analysis, we can see that this result cannot exactly make the points 
P and Q as the maximum values of the amplitude-frequency curve. But this approx-
imation can be accepted as a simple design law. Considering Eqs. (14) and (19), 
there still exist adjustable parameters in the optimum natural frequency ratio and 
damping ratio. According to the characteristics of the negative stiffness system, it 
can be achieved when the negative stiffness material is applied by preload, which 
could be realized by pre-compressed member or inverted pendulum. The preload 
will cause a pre-displacement of the primary system, therefore, an approximation 
method is adopted to select the pre-displacement as the amplitude at the fixed point, 
which means the response to zero-frequency excitation is the same as the response 
at the fixed points.

Solving Eq. (20), we can obtain

Considering Eqs. (14) and (19), one can find that taking �2 and �4 as the negative 
stiffness ratio will make the optimum natural frequency ratio as imaginary number 
and taking �3 as the negative stiffness will make the optimum damping ratio infinity. 
So �1 is choosed as the optimum negative stiffness ratio, namely

(17)
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√
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√
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Q
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�(1 − �h)2(2b3 − �3 − h − 2h
√
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√
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Then according to the parameter optimization procedures, the three adjustable 
parameters of the DVA are analytically obtained.

Actually, in terms of practicality, we give the relationships between the opti-
mum parameters in Eqs.(14), (19), and (22) with the mass ratio in Fig. 3. Based 
on the analysis of the figure, we can find that the negative stiffness ratio plays a 
small role in the consideration of the system stability.

2.4  The Best Working Range of Inerter

According to the calculation, when the inerter-mass ratio is not appropriate, 
the optimal solution will cause system instability, so it can be deduced that in 
the optimal design process of dynamic vibration absorber, under the premise of 
ensuring system stability, there is an optimal working range of inerter-mass ratio. 
The coefficients of existing inerter-mass ratio elements are all positive and the 
mass ratio is positive. Considering each optimal parameter and its calculation 
process, the working range of inerter-mass ratio should satisfy that the denomina-
tor of each expression is not equal to 0, the part under the square root is greater 
than 0, and the optimal frequency ratio �opt and optimal damping ratio �opt are 
greater than 0.

Substituting negative stiffness ratio �opt into optimal frequency ratio, yields

From above analysis, inerter-mass ratio h should simultaneously satisfy

Solving equation (24), one can obtain

(22)�opt = −

�3 −
√
�b3

�3

(23)�opt =

�
�3 + h

�3

√
�b3 − �(b3 − �3)

(24)𝛼opt < 0, 𝜈opt > 0, 𝜉opt > 0

(a) (b) (c)

Fig. 3  The relationship between mass ratio and optimum parameters
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3  Comparisons of the Control Performances

In order to verify the vibration reduction effect of the dynamic vibration absorber 
model proposed in this paper, a comparison was made between the classic Voigt 
dynamic vibration absorber, Ren-type dynamic vibration absorber and IR1 dynamic 
vibration absorber with inerter-mass element attached in reference [14]. The three 
comparative vibration absorber models are shown in Fig. 4, and the optimal param-
eter formula corresponding to each model is shown in Table 1 [4, 17].

3.1  The Comparison with Other DVAs Under Sinusoidal Excitation

Many equipment in engineering, especially rotating machinery, is often subjected 
to harmonic excitation, therefore the vibration reduction effect of each model under 
different excitation frequencies is firstly compared. The mass ratio is taken � = 0.1 
and � = 0.05 for all models, and the inerter-mass ratio is taken h = 0.1 for the model 
in reference [14] and this paper. Relevant parameters are calculated according to the 
optimal parameter design formula previously deduced and existing in Table 1, and 
the displacement response of the primary system under different frequency harmonic 

(25)0 < h <
1 − 2𝜇

2𝜇2

(a) (b) (c)

Fig. 4  Three typical models of DVAs: a The type by Den Hartog; b The type by Ren; c The type by Ref-
erence 14

Table 1  The formulas of the 
three typical models of DVAs

Model of DVA �opt �opt

Den Hartog 1

1+�

√
3�

8(1+�)

Ren
√

1

1−�

√
3�

8(1−0.5�)

Reference 14
√

1+h+�h

1−�−�2h

√
�(2�(1+�h)+�)

4(�(1+�h)+�−�2
(1+�h))
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excitation is simulated. The normalized displacement amplitude-frequency curves of 
each model are obtained, as shown in Fig. 5.

It must be pointed out that we adopt approximation in the optimum damping 
ratio, thus the three amplitudes on zero-frequency excitation, fixed point P and Q are 
not exactly the same.

Through the above analysis, we can draw conclusions: 

(1) According to the comparison, we can clearly find that the DVA presented in this 
paper can not only broaden the frequency range of vibration absorption, but also 
greatly reduce the amplitude of the primary system.

(2) By comparing with the traditional Den Hartog and Ren DVA, we can find that the 
negative grounding stiffness and inerter play a greater role in vibration absortion. 
Furthermore, compared with DVA in reference [14], it is found that the negative 
grounding stiffness is more beneficial to reduce the amplitude of the primary 
system.

(3) The presented DVA is not so sensitive to the mass ratio, which means one can 
get a better control performance using a smaller absorber mass.

3.2  The Comparison with DVAs Under Random Excitation

It is more important and meaningful to investigate the system response under 
random excitation, especially when DVA is applied in earthquake and civil 

(a) (b)

Fig. 5  The comparison with other DVAs

Fig. 6  A single degree system 
under random excitation
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engineering. A further study is conducted on the DVA under random excitation in 
this subsection. When a single degree-of-freedom system (SDOF, the primary sys-
tem) shown in Fig. 6 is subjected to random excitation with zero mean and power 
spectral density as S(�) = S0 , the mean square response of the SDOF system can 
be got as [3]

Considering Eq. (26), one can find that the mean square response will become infin-
ity if the damping coefficient approaches zero. Therefore, it is necessary to connect a 
DVA to reduce the system response.

Considering the primary system subjected to white noise excitation with zero 
mean value and constant power spectral density S(�) = S0 . Then, the power spec-
tral density function of the displacement response of the above four models is as 
follows.

where the subscript V, R, IR1 and N represent for the Den Hartog type DVA, the 
model by Ren, the model by reference [14] and the DVA in this paper respectively. 
According to the optimal parameters in literatures [4, 17], the mean square response 
of the primary system of these DVAs can be deduced as

where
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1
�
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The mean square response of the primary system under the optimal parameters can 
be respectively obtained for � = 0.1 , h = 0.1 , hIR1 = 0.1 as follows

It is shown that the DVA with negative stiffness and inerter-mass in this paper has 
the minimum mean square response, which means the presented model can get a 
better performance than other DVAs even under the random excitation. Moreover, 
the presented model is still superior to other three DVAs if different mass ratios are 
selected.

Furthermore, we construct the 50 s random excitation, which is composed of 
5000 normalized random numbers with zero mean and unit variance. The time his-
tory of random excitation is shown in Fig. 7. We take the primary mass m1 = 1 kg , 
the stiffness k1 = 100N∕m , the mass of the vibration absorber is m2 = 0.1 kg , 

(29)

Y
V
= �4(1 + �)2 + �2

(
4�2(1 + �) − � − 2

)
+ 1

Y
R
= �4 + �2(4�2 + � − 2) + 1

Y
IR1

= �4 + �2
(
4�2(1 + �h

IR1
) + � − 2(1 + h

IR1
)

)
+ (1 + h

IR1
)
2

Y
N
= �4�

1
+ �2�

2
+ (1 + h)

2
(� + 1)

�
1
=, (�h + 1)

2�3
+

(
2(1 − �)(�h + 1) + 1

)
�2

+

(
4��2(�h + 1) + (� − 1)

2
+ 2

)
� + 1

�
2
= −

(
(�h + 1)(h + 2) + h

)
�2 +

(
4�2(�h + 1) − 4(h + 1) + 2�

)
�

+ 4�2(�h + 1) − 2(h + 1) + �

(30)

�2

R
=

5.780�S0

�3

1

, �2

V
=

6.401�S0

�3

1

�2

IR1
=

5.958�S0

�3

1

, �2

N
=

1.595�S0

�3

1

Fig. 7  The time history of the random excitation
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according to Tab. 1 and the derivation process of this paper, the optimal parameters 
can be obtained. Based on the fourth-order Runge-Kutta method, the response of the 
primary systems without DVA and with different DVAs can be obtained. Figure 8 
shows the displacement response of the four different dynamic vibration absorbers 
attached to the primary system.

From Fig. 8, it could be concluded that DVA in this paper could present better 
control performance than other DVAs, even when the primary system is subjected 
to random excitation. Comparing with the traditional Den Hartog and Ren DVA, we 
can find that the negative grounding stiffness and inerter play a greater role in vibra-
tion absortion. Furthermore, when the DVA is attached with the negative grounding 
stiffness, compared with DVA in reference [14], it is found that the DVA presented 
in this paper has better control performance under random excitation.

4  Conclusions

In this paper, a novel dynamic vibration absorber model with inerter-mass and 
grounding negative stiffness is proposed. Based on the fixed point theory, the opti-
mal frequency ratio, approximate optimal damping ratio and optimal negative stiff-
ness ratio are obtained. It is found that when inerter-mass and negative grounding 
stiffness act together, the system will be unstable when the improper inerter-mass 
coefficient is used in the optimal design process, thus the optimum working range 
of inerter-mass is obtained, which provides reference for the design of new vibra-
tion absorber in practical production. Compared with other types of dynamic vibra-
tion absorbers, the proposed DVA can greatly reduce the resonance amplitude and 
broaden the vibration frequency range.

Fig. 8  Comparison of time domain dynamic responses for the primary system with different DVAs
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