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Abstract
Analysis of dynamic characteristics of the defective bearing is significant for the 
fault diagnosis of the machinery. At present, there are few researches on numeri-
cal modeling of bearing with defective roller. To solve this problem, explicit finite 
element method is adopted in this paper to establish a nonlinear dynamic model of 
the cylindrical roller bearing with roller spalling defects. In the proposed model, the 
flexibility of all the components, the internal friction, the relative sliding, the finite 
size of the roller and the rollers-to-cage contact force are all considered. Then the 
proposed dynamic model is verified theoretically and experimentally. The vibration 
responses of bearing and the sliding behavior of defective roller and cage are ana-
lyzed based on the proposed numerical model. The results show that the roller-to-
cage contact force will be increased and the slippage of the defective roller will be 
aggravated when the roller defect occurs. In addition, the increment of defect width 
and number of defective rollers will aggravate the vibration of bearing and the slid-
ing of cage.
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1  Introduction

Rolling bearings are extensively applied in rotary machine of aerospace, railway, 
construction, mining and other industries because of their convenient installa-
tion and reliable operation [1]. Generally, various types of rolling bearing fail-
ures occur due to incorrect installation, poor maintenance and surface fatigue. 
Through theoretical modeling and experimental analysis, the relation between 
system responses and kinetic parameters can be obtained so as to understand the 
mechanism of defects generation. Therefore, it is of great significance to establish 
a reasonable mathematical model of the bearing for accurately identifying defect 
characteristics, determining defect types and analyzing defect causes. Thus, 
scholars have conducted a large number of research on the modeling of rolling 
bearing with defects.

In 1984, McFadden and Smith [2] constructed the first vibration response model 
with local fault using periodic pulses with equal amplitude to simulate the impact 
force produced by the defect. McFadden and Smith [3] further improved their model 
to study the frequency components of acceleration signals with two point damages. 
Su et al. [4] improved the model proposed by Refs. [2, 3] to analyze the vibration 
frequency generated by single point and multi-point faults under different types of 
loads. Unlike the Refs. [2–4], Tandon and Choudhury [5] proposed a model using 
three different types of pulse shapes—rectangle, triangle and half sine. Cong et al. 
[6] presented an impulse-train model with defective raceways to investigate the 
vibration response of bearing. The impulse-train models mentioned above [2–6] 
cannot consider the fault morphology, so the influence of fault size and shape on 
bearing vibration and fault size estimation cannot be studied. Therefore, the nonlin-
ear multi-body dynamic models were adopted by many researchers.

The simplest multi-body dynamic model [7] had only two degrees of freedom. 
That is, only the planar translational movements of the inner ring are consid-
ered. Sunnersjo [7] first proposed the concept of variable compliance vibrations 
explaining the vibrations of rolling bearing even under the perfect manufacture. 
Based on this model, a number of scholars had carried out the failure dynamic 
analysis of bearings [8, 9, 21, 22]. Patil et  al. [8] presented a 2-DOF dynamic 
model using half-sinusoidal displacement excitation to simulate the raceway 
defects, and analyzed the influence of defect size and location on dynamic char-
acteristics. Qin et al. [9] constructed a novel vibration model of defective bearing 
considering the coupling effects of loaded balls. The above models [7–9] only 
considered the defects as the displacement excitation, which is obviously not 
comprehensive. Shao et  al. [10] considered the time-varying contact character-
istics on the defective zone, more accurately describing the impact produced by 
the defect. Liu et  al. [11] further considered the different edge topographies of 
raceway defects to construct the numerical model of a bearing. Liu et  al. [12] 
investigated the effect of the raceway dent on the bearing dynamic characteristic 
considering the time-varying contact force caused by the dent.

The rolling elements were not contained in the above models [7–12]. Xu 
et al. [13] proposed an improved quasi-static model of deep groove ball bearing 
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considering the axial force and overturning torque to analyze its ultimate load-
bearing capacities. Liu et al. [14] constructed a dynamic model of rolling bear-
ing considering the rolling elements and flexible cage. Some models [15–18] 
regarded the rolling element as a point mass, but ignored the size of the rolling 
elements, so the vibration response was not completely consistent with the reality. 
Patel et al. [15] presented a model with multiple raceway defects and analyzed the 
components of the spectrum. Harsha [16] presented a nonlinear vibration model 
with surface waviness on raceways considering the mass of the rollers. Sawalhi 
et al. [17, 18] established a defective bearing-gear composite model considering 
the slipping, Hertz contact and nonlinear stiffness. Ahmadi et al. [19] constructed 
a vibration model of rolling bearings with defective outer race considering the 
size of rollers on the basis of Refs. [16–18].

The above models were mainly focused on raceway defects. Some research-
ers also studied the bearing dynamic characteristics with rolling element defects. 
Cao [20] constructed a numerical model of the double-row ball bearing with local 
faults. Rafsanjani et al. [21] proposed a 2-DOF dynamic model with raceway and 
ball defects. Kankar et  al. [22] presented a 2-DOF dynamic model with defec-
tive ball and raceway considering the unbalanced force of the rotor. Niu et  al. 
[23] constructed a bearing dynamic model with defective roller and elaborated 
the multiple impulses when the roller defect passes through the raceway based 
on the Gupta’s dynamic model [24]. Yang et al. [25] presented a vibration model 
of rolling bearing-rotor-casing system and investigated the influence of localized 
defects on the system dynamic characteristics.

More and more researchers considered the cage, lubrication and flexibil-
ity in their models. Han et al. [26] presented a 3-D dynamic model considering 
the roller crown profile and analyzed the influence of load conditions on sliding 
behavior. Liu et al. [27] analyzed the influence of flexibility on the bearing vibra-
tion response. Shi et  al. [28] constructed a planar dynamic model of the bear-
ing considering the elastic supports of the shaft and housing, the cage-to-rollers 
interaction. Shi et al. [29] constructed a dynamic model of ceramic bearing-steel 
pedestal system including the thermal deformation. Liu et al. [30] established a 
friction-vibration model of faulty ACBBs considering the sliding behavior at the 
contact area based on the acoustic calculation methods given by Sharma [31] and 
Patil [32].

The lumped-parameter models usually need to make assumptions and simplifi-
cations. Unlike analytical models, finite element (FE) models can minimize the 
assumptions, which is in more accord with the actual situation. Therefore, a number 
of researchers used the finite element methods to construct the dynamic model of 
bearing. Laniado-jacome et al. [33] analyzed the sliding behavior of rollers using the 
FE method. Singh et al. [34] investigated the contact force characteristics and accel-
eration responses of the bearing with defective outer race using explicit dynamic FE 
software package LS-DYNA. Yang et al. [35] proposed a dynamic model of bear-
ing-rotor system with transverse crack. Parametric uncertainties were considered 
using the Polynomial Chaos Expansion. Xu et al. [36] proposed a new method for 
calculating the radial time-varying stiffness of cylindrical roller bearings with local-
ized defects using analytical-finite-element method.
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The above models with rolling element defects [20–22] only considered the roll-
ing elements as the point mass without considering the size of the rolling elements 
and faults, nor the friction inside the bearing, the inertia force and the sliding of 
the rolling elements. The Refs. [26, 33] only studied the sliding behavior of healthy 
bearing without considering the effects of defects on the roller sliding. To overcome 
these problems, a nonlinear dynamic model of rolling bearing with roller defects is 
proposed using explicit FE analysis method in this paper. In the proposed model, the 
flexible deformation of all the components is considered, which makes the load dis-
tribution more accurate. In addition to the contact force generated by the local defor-
mation, the friction force, the centrifugal force, the interaction between rollers and 
cage are also considered. The size of the rollers is also considered so that the trajec-
tory of the defective roller can be investigated, from which the slippage of the roller 
can be reflected. Then the proposed model is verified theoretically and experimen-
tally. Based on the proposed model, the effect of roller defects on vibration response 
of the bearing and the cage skidding are investigated.

2 � Dynamic Modeling

Explicit FE software package, ANSYS/LS-DYNA, is used to model the roller bear-
ing with roller spalling. The components in the proposed model only have transla-
tional motions in the plane of bearing.

2.1 � Discretization of the Explicit FE Model

The model comprises an outer ring, an inner ring, a cage, 13 rollers and an 
adapter that supports the bearing. The geometrical and material parameters 
of components are given in Table  1. All the components within the model are 
meshed using two-dimensional quadrilateral shell elements because high-qual-
ity quadrilateral elements can improve the precision of the model and shorten 
the solution time. The element size is 0.25 mm. There are 39,196 elements and 

Table 1   Geometrical and material parameters of the components within the FE model

Parameter Value Parameter Value

Outer diameter of the outer ring (mm) 52 Bearing radial clearance (mm) 0.02
Inner diameter of the outer ring (mm) 45 Elastic modulus of the rings (Pa) 2.06 × 1011

Outer diameter of the inner ring (mm) 32 Elastic modulus of the rollers (Pa) 2.06 × 1011

Inner diameter of the inner ring (mm) 25 Elastic modulus of the cage (Pa) 1 × 1011

Outer diameter of the cage (mm) 21 Poisson’s ratio of the rings 0.3
Inner diameter of the cage (mm)
Diameter of the rollers (mm)
Number of rollers
Width of the adapter (mm)
Height of the adapter (central) (mm)
Cage pocket clearance (mm)

17.75
6.5
13
40
31
0.2

Poisson’s ratio of the rollers
Poisson’s ratio of the cage
Density of the rings (Kg/m3)
Density of the rollers (Kg/m3)
Density of the cage (Kg/m3)

0.3
0.36
7850
7850
8920
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41,361 nodes within the whole explicit FE model. The meshed 2-D explicit FE 
model is shown in Fig. 1. An approximate rectangular defect is modeled on one 
of the rollers. The dimension parameters of the roller defect are shown in Fig. 2.

For appropriate mesh size, it is suggested to use at least 20 elements-per-wave-
length (EPW) [34]. The bending wave propagation velocity can be calculated by

where E is the elastic modulus, h is the thickness, υ is Poisson’s ratio, ρ is 
the density, and ω is the highest angular frequency of concern. The bending 
wave propagation velocity for the 3.5 mm outer ring of the bearing at 40 kHz is 
1159.15  m/s, and the corresponding wavelength is 0.0289  m. That is, there are 
about 116 EPW for the element size of 0.25 mm, which is about six times of the 

(1)Cb =
√
�

�
Eh2

12
�
1 − �2

�
�

�1∕4

Fig. 1   Diagrams of the 2-D FE bearing model: a schematic of all the components, and b an enlarged 
drawing showing the defect on one of the rollers

Fig. 2   Dimensions of the roller 
defect
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recommended value. Therefore, the mesh size of the proposed model can ensure 
the accuracy requirements.

Loads and boundary conditions of the explicit FE model are as follows. (1) All 
the DOF of the bottom nodes of the adapter are constrained. (2) A radial load of 10 
kN is applied on the inner ring. (3) The rotating speed of the inner ring rises from 
zero uniformly before 0.005 s and then a constant angular velocity of 1200 r/min is 
applied. (4) A static frictional coefficient of 0.01 and a dynamic frictional coefficient 
of 0.005 are defined in the proposed model. (5) A global damping of 2% is applied 
to the proposed model [34].

2.2 � Calculation of Contact Force and Friction Force

Calculation of contact force in the proposed model uses the symmetric penalty func-
tion method. The location of each slave node is examined for penetration through 
the master surface every time step. If there is no penetration, no force will be exerted 
to the slave node. When penetration occurs, a contact force will be applied between 
the slave node and the master surface. Then the same process is executed again to 
each master node. Figure 3 shows the contact relationship between the slave node 
ns and the master surface. The gap function gn represents the penetration distance 
between the slave node ns and the contact point pc. The normal contact force Fn can 
be calculated by

where Kn is the penalty stiffness calculated by [38]

where αf is the scale factor, Eb is the bulk modulus, Ab is the area of the contact 
element, and Lmax is the maximum diagonal length of shell elements.

(2)Fn = −Kngn

(3)Kn =
�fEbAb

Lmax

Fig. 3   Schematic of the contact relationship between the slave node and the master surface
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After obtaining the normal contact Fn of the slave node, tangential friction force 
is given based on the Coulomb frictional model [38]. The maximum friction force 
Fm of the slave node is given by

where � is the frictional coefficient. Suppose f k is the friction force of the slave 
node at time tk, then the trial friction force f * at time tk+1 is calculated by

where Ks is the interface stiffness, Δm is the increment movement of the slave 
node given by

where r is the position vector of the slave node, ξ and η are the coordinates. Then 
the friction force of the slave node at time tk+1 is calculated by

According to the principle of reacting force, Fn and f are applied at the contact 
point in the opposite direction, then are allocated to the four master nodes on the 
master surface and finally assembled to the total load vector P.

2.3 � Kinetic Equations of the Explicit FE Model

The kinetic equations of the explicit FE model can be written as

where M is the mass matrix, C is the damping matrix, P is the external force 
vector, F is the internal force vector, H is the hourglass force vector. The detailed 
calculating process of F and H can be obtained from Ref. [38]. The step-changing 
explicit central difference method is used to solve the kinetic equation Eq. (8). The 
calculation flowchart is shown in Fig. 4.

3 � Verification of the Explicit FE Model

In this section, the presented explicit finite element model is verified by compar-
ing the contact force with the analytical model and by comparing the vibration 
responses with the experimental results.

(4)Fm = �||Fn
||

(5)f ∗ = f k − KsΔm

(6)Δm = rk+1(�k+1, �k+1) − rk+1(�k, �k)

(7)

⎧⎪⎨⎪⎩

f k+1 = f ∗ if �f ∗� ≤ Fm

f k+1 =
Fmf

∗

�f ∗� if �f ∗� > Fm

(8)𝐌𝐱̈ + 𝐂𝐱̇ = 𝐏 − 𝐅 +𝐇
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3.1 � Contact Force Verification

An analytical model of Harris–Jones [33] is applied to obtain the roller-to-raceway 
contact force compared with that obtained from the explicit FE model. The Har-
ris–Jones model consists of a set of nonlinear force balance equations.

For the inner race, the equilibrium equation can be expressed as

where Fr is the radial load applied on the inner ring, Kin is the contact stiffness 
between the roller and inner race calculated according to the Harris’s method [39], 
z is the number of rollers, δin j is the contact deformation between the jth roller and 
inner race, ψj is the angle between the jth roller and the negative y-axis.

For a single roller, the equilibrium equation can be expressed as

(9)Fr − Kin

j=z∑
j=1

(
�in j

)10∕9
cos�j = 0

(10)Kin

(
�in j

)10∕9
+ Fc = Kout

(
�r j − �in j

)10∕9
, j = 1… z

Fig. 4   Flowchart of explicit finite element method



227

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:219–243	

where Kout is the contact stiffness between the roller and outer race, δr j is the total 
contact deformation between the jth roller and raceways, Fc is centrifugal force of 
the rollers obtained by the Harris’s method [39].

Equations (9) and (10) are solved by Newton–Raphson iteration. After obtaining 
the contact deformation δin j between the inner race and the roller, the outer race-to-
roller contact force can be obtained according to the following formula

Figure  5 compares the vertical roller-to-outer race contact force calculated by 
the analytical model with that obtained by the explicit FE model. It can be found 
that good agreement is obtained between the simulated and the analytical results. 
Because the components of bearing are discretized into finite elements, the surface 
of components is not strictly smooth but polygonal, which leads to the fluctuation of 
contact force.

3.2 � Vibration Response Verification

Experiments are conducted to verify the vibration response of the explicit FE model. 
The experimental system is shown in Fig. 6a. The bearing acceleration signals in the 
y and z directions are measured using two accelerometers (CA-YD-182) placed on 
the top and one side of the bearing housing, as shown in Fig. 6b. Data acquisition 
system (DH5956) is used to collect the acceleration signals with a sampling fre-
quency of 20 kHz, as shown in Fig. 6c. One end of the rotating shaft is supported by 
SKF6205 bearing and the other end is supported by the tested bearing N205EM, as 
shown in Fig. 6d. A rectangular spall on the roller is manufactured by wire-electrode 
cutting. The geometrical dimensions of the defective bearing is the same as that of 
the explicit FE model. The rotation speed of the shaft is 1200 r/min.

Figure 7 shows the bearing acceleration responses in the z direction obtained by 
simulation and experiment. It should be noted that due to the interference of various 
factors in the test, the amplitudes of the response of simulation and test are difficult 
to be consistent, the normalization procedure is applied to the both results. Periodic 
impulses produced by the roller defect can be observed in the time domain signals 

(11)Fout j = Kin

(
�in j

)10∕9
+ Fc

Fig. 5   Contact force verification of explicit FE model: a schematic of roller position and b contact force 
comparison between the two models
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Fig. 6   Experimental system: a test rig, b accelerometer, c data acquisition system and d defective roller

Fig. 7   Simulation and experiment results: a simulated acceleration signal in time domain, b envelope 
spectrum of the simulated signal, c experimental acceleration signal in time domain, d envelope spec-
trum of the experimental signal



229

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:219–243	

of the simulation and experiment (Fig. 7a, c). It can be found that the impulses due 
to the impact are larger when the defective roller locates in the loaded zone. From 
the envelope spectrum (Fig. 7b, d), it can be found that the simulated signal and the 
experimental signal have the same frequency components: defect frequency fb and 
its harmonics, sidebands spaced at the cage rotation frequency fc. The theoretical 
values of the cage rotation frequency fc and the roller defect frequency fb can be cal-
culated according to Ref. [39].

The cage rotation frequency is given by

where fs is the shaft rotation frequency, d is the roller diameter, D is the pitch 
diameter, and α is the contact angle. For the cylindrical roller bearing, α = 0.

The roller spinning frequency is given by

When the roller rotates, the defect will alternately contact the inner and outer 
race, so the roller defect frequency is twice of its spinning frequency, i.e.

The calculated theoretical values fb = 115.08  Hz, fc = 8.31  Hz, approximately 
equal to the simulated (fb = 114.49  Hz, fc = 8.69  Hz) and experimental values 
(fb = 113.48 Hz, fc = 8.2 Hz), indicating the correctness of the simulation and experi-
ment. It should be noted that the roller defect frequency of the simulated and the 
experimental results are slightly smaller than that of the theoretical results, which is 
because the theoretical formulas do not consider the skidding of the defective roller.

4 � Results and Discussions

4.1 � Explanation of the Sliding Behavior

Figure 8 shows the experimental and the simulated acceleration responses. The nor-
malization procedure is applied to the both results. It can be found that there exists 
the time delay between the two impacts produced by the roller defect. The real run-
ning state of the defective roller during the experiment can not be observed, while it 
can be achieved using the proposed model.

Trajectory of the node located on the edge of the defective roller during a period 
of time obtained from the proposed model are presented in Fig. 9. It can be clearly 
found that there exists the sliding of defective roller during this time. At point A 
(time t1), the defective roller stops rolling and starts to slip. In the process of slid-
ing, the trajectory of the node located on the edge of the defective roller overlaps the 
outer race, and the defect keeps rubbing with the raceway until reaches the point B, 

(12)fc =
fs

2

(
1 −

d

D
cos�

)

(13)fr =
Dfs

2d

(
1 −

d2

D2
cos2 �

)

(14)fb = 2fr
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where the defective roller resumes rolling. When the roller rotates, the defect will 
interact alternately with the raceways, intensifying the vibration of bearing. When 
the roller slips, the defect continually rubbing with the raceway without impact, alle-
viating the vibration of bearing. The proposed model has realized the simulation of 
sliding, using which the mechanical characteristics of roller sliding can be investi-
gated. This further proves that the proposed model can well simulate the real run-
ning state of bearings.

Figure 10a, b show the rollers-to-cage contact force at the same position relative 
to the loaded zone [(a) healthy roller-to-cage and (b) defective roller-to-cage]. It can 
be found that under the normal condition, the contact between rollers and cage is 

Fig. 8   Sliding behavior of the defective roller: a experimental time domain acceleration and b simulated 
time domain acceleration

Fig. 9   Trajectory of the node 
located on the edge of the defec-
tive roller
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highly random and the contact force is small. When the spalls exist on the roller, the 
defective roller-to-cage contact force increases and the contact time also increases. 
Figure 10c shows the defective roller-to-inner race contact force when the defective 
roller is sliding. At time t1, the defective roller is in the location as shown in Fig. 9. 
Due to the increased clearance between the defective roller and raceways, the defec-
tive roller-to-raceways contact force decrease to zero, leading to a lack of traction of 
the inner race on the defective roller. The defective roller stops rotating around its 
axis and starts to slide along the raceway. During this time, the cage begins to play 
a role in promoting the movement of the defective roller, so the defective roller-to-
cage contact force increases. The motion state of the defective roller is not stable 
because it has just gone from rolling to sliding. The trend of rolling still exists, so 
there are fluctuations of inner race-to-defective roller contact force. After time t2, 
the defective roller goes into a stable state under the combined force of the cage 
and the raceway, and the defective roller-cage contact force continues to maintain a 
large value. Until the time t3, the defective roller enters into the unstable sliding state 
again and gradually turns to the rolling state.

Fig. 10   Contact force analysis during the sliding of the defective roller: a healthy roller-to-cage, b defec-
tive roller-to-cage and c defective roller-to-inner race
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Figure 11 is the stress nephogram of the defective roller when it is sliding, from 
which the position and stress state of the defective roller can be seen. Figure 11a 
shows the stress nephogram at three moments when the defective roller is in an 
unstable state. It can be seen that the roller alternately collides with the front and 
the rear ends of the cage pocket. Figure 11b shows the stress nephogram at three 
moments when the defective roller is in a stable state. It can be found that the defec-
tive roller contact continually with the rear end of the cage pocket.

Fig. 11   Contact state of the defective roller during sliding: a unstable sliding state and b stable sliding 
state

Fig. 12   The simulated vibration responses in the vertical direction with three different defect widths: a–c 
acceleration signals for 0.46, 1.38, and 2.27 mm respectively, d–f envelope spectrum for 0.46, 1.38, and 
2.27 mm respectively
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4.2 � Effects of the Defects Parameter on the Dynamic Characteristics

4.2.1 � Effects of the Defect Width

To analyze the effect of the defect width on the dynamic characteristics of the bear-
ing, the defect depth is given as 0.59 mm and the defect width varies from 0.46 to 
2.27 mm. Figures 12 and 13 show the simulated and the experimental acceleration 
responses of the bearing in the vertical direction in the cases of three different defect 
widths respectively. The shaft rotating speed of the explicit finite element model is 
6000 r/min and that of the experiment is 1200 r/min. In order to better show the law, 
the simulated and experimental acceleration response are processed with following 
dimensionless method:

where X′
i
 is the processed acceleration response, Xi is the original acceleration 

response, Ymax is the maximum of the acceleration response of bearing without 
defect, N is the data size. The same data processing method is adopted in the follow-
ing analyses.

It can be clearly found that the level of the vibration increases as the defect 
width is increased. Figure  14a shows the vertical defective roller-to-outer race 
contact force when the defective roller rolls in the loaded zone in the cases of 
three different defect widths. For the case of defect width wd = 0.46  mm, the 
defective roller-to-outer race contact force is slightly reduced due to a small 
increase of the clearance when the defect rolls through the raceway, so the impact 

(15)X�
i
=

Xi

Ymax

, i= 1, 2, 3,… ,N

Fig. 13   The experimental vibration responses in the vertical direction with three different defect widths: 
a–c acceleration signals for 0.46, 1.38, and 2.27 mm respectively, d–f envelope spectrum for 0.46, 1.38, 
and 2.27 mm respectively



234	 Journal of Nonlinear Mathematical Physics (2022) 29:219–243

1 3

produced by roller defect is slight and there is no obvious impulse in the accel-
eration response signal and no fault feature frequency in the envelope spectrum. 
For the case of defect width wd = 1.38 mm, when the roller defect rolls through 
the raceway, the clearance increases greatly and the defective roller-to-raceway 
contact force will be reduced to zero in a short time, which leads to an impulse 
in the acceleration signal. For the case of defect width wd = 2.27 mm, it is similar 
to the case of wd = 1.38  mm. The defective roller-to-raceway contact force will 
be reduced to zero when the roller defect rolls through the raceway. Unlike the 
case of wd = 1.38 mm, the defective roller does not immediately resume contact 
with the raceway because it will take a bit longer for the rear edge of the wider 
roller defect to come into contact with raceway. Before the rear edge of the defect 
resume contact with the raceway, the defective roller impact the raceway due 
to its inertia and centrifugal force, leading to the contact force impulses, so the 
vibration response in the case of wd = 2.27 mm is greater than that in the case of 
wd = 1.38 mm.

Figure 15a shows the cage rotation speed in the cases of three different defect 
widths. It can be found that with the increment of defect width, the fluctuation of 
the cage rotation speed become larger. That is, the motion instability of the cage 
is increased.

The sliding ratio is often used to measure the sliding of the cage, which can be 
depicted as

where ωc is the actual cage rotation speed, and �c is the theoretical cage rota-
tion speed.

Figure 15b shows the RMS value of the cage sliding ratio in the cases of five 
different defect widths. It can be found that the sliding ratio of the cage increases 
as the defect width is increased. Figure  15c shows the defective roller-to-cage 
contact force in time domain with three different defect widths, and Fig.  15d 

(16)S =
�c − �c

�c

× 100%

Fig. 14   Defective roller-to-outer race contact force: a effects of the width and b effects of the depth
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shows the RMS value of the contact force with five different defect widths. It is 
found that the defective roller-to-cage contact force increases as the defect width 
is increased. By comparing Fig.  15b, d, it can be found that the motion stabil-
ity and sliding ratio of the cage depend on the roller-to-cage contact force. The 
greater roller-to-cage contact force results in the greater motion instability and 
sliding ratio of the cage.

4.2.2 � Effects of the Defect Depth

To analyze the effect of the defect depth on the dynamic characteristics of the 
bearing, the defect width is given as 1.38  mm and the defect depth varies from 
0.46 to 1.18  mm. Figures  16 and 17 show the simulated and experimental vibra-
tion responses in the vertical direction in the cases of three different defect depths 
respectively. The shaft rotating speed of the explicit finite element model is 6000 r/
min and that of the experiment is 1200 r/min. It can be found that the level of the 
vibration remains unchanged as the defect depth increases. Figure  14b shows the 
vertical defective roller-to-outer race contact force when the defective roller rolls 
in the loaded zone in the cases of three different defect depths. It can be found that 
under the condition of a certain defect width, the depth has almost no influence on 
the contact force. That is the bearing dynamic response is not sensitive to the defect 
depth.

Figure 18a shows the cage rotation speed in the cases of three different defect 
depths. It can be found that with the increment of defect depth, the amplitude of 

Fig. 15   Effects of the defect width on the cage sliding ratio and the roller-to-cage contact force: a rota-
tion speed of the cage, b RMS value of the cage sliding ratio, c contact force in time domain and d con-
tact force RMS value
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the fluctuation of the cage rotation speed remains unchanged. Figure 18b shows 
the RMS value of the cage sliding ratio in the cases of five different defect depths. 
It can be found that as the defect depth increases, the sliding ratio of the cage 
changes irregularly. Figure  18c shows the defective roller-to-cage contact force 
in time domain with three different defect depths, and Fig. 18d shows the RMS 
value of the contact force with five different defect depths. It can be found that 

Fig. 16   The simulated vibration responses in the vertical direction with three different defect depths: a–c 
acceleration signals for 0.59, 0.885, and 1.18 mm respectively, d–f envelope spectrum for 0.59, 0.885, 
and 1.18 mm respectively

Fig. 17   The experimental vibration responses in the vertical direction with three different defect depths: 
a–c acceleration signals for 0.59, 0.885, and 1.18  mm respectively, d–f envelope spectrum for 0.59, 
0.885, and 1.18 mm respectively
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as the defect depth increases, the defective roller-to-cage contact force changes 
irregularly. This  was  caused mainly  by the numerical contact noise. When the 
rollers rotates, the vertex of polygonal components contact with raceways, which 
will create slight impact. The vibration response of bearing have  a certain  ran-
domness due to the numerical contact noise, and the cage speed and contact 
force are not sensitive to the defect depth, so the root mean square values of cage 
speed and contact force changes irregularly. By comparing Fig. 18b, d, it can be 
found that with the increment of defect depth, the sliding ratio of the cage and the 
defective roller-to-cage contact force have the same changing trend, which further 
indicates that the motion stability and sliding ratio of the cage depend on the 
roller-to-cage contact force.

Fig. 18   Effects of the defect depth on the cage sliding ratio and the defective roller-to-cage contact force: 
a rotation speed of the cage, b RMS value of the cage sliding ratio, c contact force in time domain and d 
contact force RMS value

Fig. 19   Schematic of number and location of defective rollers
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4.2.3 � Effects of the Number of Defective Rollers

Figure 19 shows the schematic of number and location of defective rollers. Fig-
ures 20 and 21 show the simulated and the experimental vibration responses in 
the vertical direction with different numbers of defective rollers respectively. 
The shaft rotating speed of the explicit finite element model is 4000  r/min and 

Fig. 20   The simulated vibration responses in the vertical direction with different numbers of defective 
rollers: a–c acceleration signals for 1, 2, and 3 respectively, d–f envelope spectrum for 1, 2, and 3 respec-
tively

Fig. 21   The experimental vibration responses in the vertical direction with different numbers of defec-
tive rollers: a–c acceleration signals for 1, 2, and 3 respectively, d–f envelope spectrum for 1, 2, and 3 
respectively
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that of the experiment is 1800 r/min. The dimensions of the defect are 1.38 mm 
(width) × 0.59  mm (depth). It can be seen that the number of defective rollers 
has no influence on the frequency components of vibration response, but only 
increases the level of vibration response. Figure 22 shows the defective roller-to-
outer race contact force when the defective roller rolls in the loaded zone under 
these three working conditions. It can be found that when there is only one defec-
tive roller, the contact force of the defective roller will decrease to zero periodi-
cally. When multiple defective rollers are involved, not only the defective roll-
ers-to-raceway contact force decreases to zero periodically, but also a substantial 
increase occurs periodically. The adjacent defective roller losing contact with the 
raceway will lead to a reduction of the number of loaded rollers, so an increase in 
magnitude of contact force occurs. The drastic fluctuation will result in the occur-
rence of surface fatigue cracks, accelerating the degradation of bearing.

Figure  23a shows the cage rotation speed with different numbers of defec-
tive rollers. It can be found that as the number of defective rollers increases, the 
fluctuation of the cage rotation speed become larger. Figure 23b shows the RMS 
value of the cage sliding ratio. It can be found that the sliding ratio of the cage 
increases as the number of defective rollers is increased. Figure  23c shows the 

Fig. 22   Defective roller-to-outer race contact force: a one defective roller, b two defective rollers and c 
three defective rollers
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defective roller-to-cage contact force in time domain, and Fig. 23d shows the con-
tact force RMS value. It is found that the defective roller-to-cage contact force 
increases as the defect number is increased. By comparing Fig. 23b, d, the same 
conclusion can be drawn as mentioned before: the motion stability and sliding 
ratio of the cage depend on the roller-to-cage contact force.

5 � Conclusion

A two-dimensional explicit FE model of cylindrical roller bearing is established 
considering flexibility of all the components, the internal friction force, the rela-
tive sliding, the finite size of rollers and interactions between rollers and the cage. 
Effects of the roller spalling defects on the vibration response and the sliding behav-
ior of the bearing are investigated by discussing the characteristics of the rollers-to-
raceway and the rollers-to-cage contact force. The conclusions are summarized as 
follows:

1.	 The spalling defects on rollers will lead to a lack of traction of the inner race on 
the defective roller, aggravating the slippage of the defective roller and increasing 
the defective rollers-to-cage contact force.

2.	 The vibration amplitude of the bearing increases with the increment of defect 
width, while remains unchanged with the increment of defect depth. The sliding 

Fig. 23   Effects of the defective rollers numbers on the cage sliding ratio and the defective roller-to-cage 
contact force: a rotation speed of the cage, b RMS value of the cage sliding ratio, c contact force in time 
domain and d contact force RMS value



241

1 3

Journal of Nonlinear Mathematical Physics (2022) 29:219–243	

ratio of the cage increases with the increment of defect width, while changes 
irregularly with the increment of defect depth.

3.	 The number of defective rollers has no effect on the vibration response frequency 
components, but influences the vibration level of the bearing. The increment of 
defective rollers number results in a significant increase of the vibration response 
of bearing and the sliding ratio of cage.
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